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Abstract

We prove that every (simple) graph on n ≥ 9 vertices and at least 7n − 27 edges
either has a K9 minor, or is isomorphic to K2,2,2,3,3, or is isomorphic to a graph obtained
from disjoint copies of K1,2,2,2,2,2 by identifying cliques of size six. The proof of one of
our lemmas is computer-assisted.

1 Introduction

All graphs in this paper are finite and simple. Our work is motivated by the following

theorem of Mader [18].

Theorem 1.1 For every integer p = 1, 2, . . . , 7, a graph on n ≥ p vertices and at least

(p − 2)n −
(

p−1

2

)

+ 1 edges has a Kp minor.

For p ≤ 5, this was first proved by Dirac [5]. Some years later but independently of

Mader, Györi [7] proved Theorem 1.1 for p ≤ 6.

Mader pointed out that Theorem 1.1 does not hold for p = 8: the graph K2,2,2,2,2 is a coun-

terexample. However, one can construct further counterexamples by repeatedly identifying

cliques of size five. So for graphs H1, H2 and an integer k, let us define an (H1, H2, k)-cockade

recursively as follows. Any graph isomorphic to H1 or H2 is an (H1, H2, k)-cockade. Now let

G1, G2 be (H1, H2, k)-cockades and let G be obtained from the disjoint union of G1 and G2

by identifying a clique of size k in G1 with a clique of the same size in G2. Then the graph G
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is also an (H1, H2, k)-cockade, and every (H1, H2, k)-cockade can be constructed this way. If

H1 = H2 = H, then G is called an (H, k)-cockade. Jørgensen [13] generalized Theorem 1.1

as follows.

Theorem 1.2 Every graph on n ≥ 8 vertices and at least 6n − 20 edges either has a K8

minor, or is a (K2,2,2,2,2, 5)-cockade.

To see that Theorem 1.2 implies Theorem 1.1, let G and p be as in Theorem 1.1, and

apply Theorem 1.2 to the graph obtained from G by adding 8− p vertices, each adjacent to

every other vertex of the graph.

Our main result is the following next step. Note that every (K2,2,2,3,3, 6)-cockade is

isomorphic to K2,2,2,3,3.

Theorem 1.3 Every graph on n ≥ 9 vertices and at least 7n − 27 edges either has a K9

minor, or is a (K1,2,2,2,2,2, 6)-cockade, or is isomorphic to K2,2,2,3,3.

Our motivation was threefold. First, the bound in Theorem 1.1 is related to Hadwiger’s

conjecture [8], the following.

Conjecture 1.4 For every integer t ≥ 1, every graph with no Kt+1 minor is t-colorable.

Hadwiger’s conjecture is trivially true for t ≤ 2, and reasonably easy for t = 3, as shown

by Dirac [4]. However, for t ≥ 4, Hadwiger’s conjecture implies the Four Color Theorem.

(To see that, let H be a planar graph, and let G be obtained from H by adding t−4 vertices,

each joined to every other vertex of the graph. Then G has no Kt+1 minor, and hence is

t-colorable by Hadwiger’s conjecture, and hence H is 4-colorable.) Wagner [26] proved that

the case t = 4 of Hadwiger’s conjecture is, in fact, equivalent to the Four Color Theorem,

and the same was shown for t = 5 by Robertson, Seymour, and the second author [19]. Their

proof made use of Theorem 1.1 for p = 6. Hadwiger’s conjecture remains open for t ≥ 6.

In [3] Chen, Gould, Kawarabayashi, Pfender and Wei proved that every graph on n

vertices and at least 9n − 45 edges has a K9 minor, and used that to deduce that if, in

addition, G is 6-connected, then it is 3-linked. It turns out [22] that the latter conclusion

can be obtained from a weaker bound on the number of edges by a more direct argument,

but the work of Chen, Gould, Kawarabayashi, Pfender and Wei suggested that there may

be interest in the extremal problem for K9 minors.
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Theorem 1.1 is such a nice result that it raises the question of whether it can be gener-

alized to all values of p. But there are more depressing news than Mader’s example above:

for large p a graph must have at least Ω(p
√

log pn) edges in order to guarantee a Kp minor,

because, as noted by several people (Kostochka [15, 16], and Fernandez de la Vega [6] based

on Bollobás, Catlin and Erdös [2]), a random graph with no Kp minor may have average

degree of order p
√

log p. Kostochka [15, 16] and Thomason [23] proved that this is indeed

the correct order of magnitude, and in a remarkable recent result [24] Thomason was able

to determine the constant of proportionality. Thus it may seem that an effort to generalize

Theorem 1.1 will be in vain, but there is still the following possibility. The random graph

examples provide only finitely many counterexamples for any given value of p. Of course,

more counterexamples can be obtained by taking disjoint unions or even gluing counterex-

amples along small cutsets, but we know of no construction of highly connected infinite

families of counterexamples. More specifically, Seymour and the second author conjecture

the following.

Conjecture 1.5 For every p ≥ 1 there exists a constant N = N(p) such that every (p− 2)-

connected graph on n ≥ N vertices and at least (p − 2)n −
(

p−1

2

)

+ 1 edges has a Kp minor.

It was this conjecture that was the third motivating factor for our research. Thus our

main result implies that Conjecture 1.5 holds for p ≤ 9. Recently, Böhme, Kawarabayashi,

Maharry and Mohar [1] showed that Conjecture 1.5 holds for 31(p + 1)/2-connected graphs.

The extremal functions for K−

p minors have also been studied, where K−

p denotes the

graph obtained from Kp by removing one edge. Jakobsen [10, 11] proved that, for p ≤ 7,

every graph on n ≥ p vertices and at least (p− 5

2
)n− 1

2
(p− 3)(p− 1) edges has a K−

p minor,

or G is a (Kp−1, p − 3)-cockade, or p = 7 and G is a (K2,2,2,2, K6, 4)-cockade. Recently, the

first author [21] proved a conjecture of Jakobsen [11] that every graph on n ≥ 8 vertices and

at least 1

2
(11n − 35) edges has a K−

8 minor or is a (K1,2,2,2,2, K7, 5)-cockade. The extremal

functions for the graphs obtained from Kp by deleting two edges were determined in [9, 10]

when p = 7 or 8. In related work Jørgensen [14] proved that every 4-connected graph on

n ≥ 8 vertices and at least 4n − 7 edges has a K4,4 minor.

We need to introduce more notation. If G is a graph and K is a subgraph of G, then by

N(K) we denote the set of vertices of V (G) − V (K) that are adjacent to a vertex of K. If

V (K) = {x}, then we use N(x) to denote N(K). By abusing notation we will also denote

by N(x) the graph induced by the set N(x). We define N [x] = N(x) ∪ {x}, and similarly
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will use the same symbol for the graph induced by that set. If x, y are adjacent vertices of

a graph G, then we denote by G/xy the graph obtained from G by contracting the edge xy

and deleting all resulting parallel edges. If u, v are distinct nonadjacent vertices of a graph

G, then by G + uv we denote the graph obtained from G by adding an edge with ends u

and v. If u, v are adjacent or equal, then we define G + uv to be G. We write G > H if

a graph isomorphic to H can be obtained from a subgraph of G by contracting edges. In

those circumstances we say that G has an H minor. For a graph G we use |G|, e(G), δ(G)

to denote the number of vertices, number of edges and minimum degree of G, respectively.

The degree of a vertex v in a graph is denoted by dG(v) or simply d(v).

2 Outline of proof

Suppose for a contradiction that G is a counterexample to Theorem 1.3 with minimum

number of vertices, say n. Since deletion or contraction of edges does not produce smaller

counterexamples, it follows easily that G has minimum degree at least eight, and with some

effort it can be shown that every edge of G is in at least seven triangles. It also follows by a

straightforward counting argument that G is 6-connected. Also e(G) = 7n − 27, and hence

G has a vertex x of degree at least eight and at most thirteen. Fix such a vertex, and let K

be a component of G−N [x]. Assume for a moment that every vertex of N(x) has a neighbor

in K. If there exists a vertex y ∈ N(x) such that N(x) − y > K7, then by contracting the

connected set V (K) ∪ {y} to a single vertex, we see that G > K9. Thus G − y 6> K7 for

every vertex y ∈ N(x). On the other hand, N(x) has minimum degree at least seven and at

most thirteen vertices. Those properties are fairly restrictive: there are only fourteen such

graphs, and so they can be found explicitly. It turns out that they all have two properties

in common (conditions (A) and (B) stated prior to Lemma 3.7) that allow us to find a K9

minor in G in a different way. This is how we deal with the case when there is a component

K of G−N [x] satisfying N(x) = N(K). In fact, the argument extends to the situation when

there exists a component K of G−N [x] such that N(K ′)∩M ⊆ N(K) for every component

K ′ of G − N [x], where M is the set of all vertices of N(x) that are not adjacent to every

other vertex of N(x).

Thus we may assume that for no vertex x of degree at most thirteen such a component

exists. In the next step we prove a lemma inspired by Claim (15) of [13], namely that

if x ∈ V (G) has degree at most 13, then there is no component K of G − N [x] such that
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dG(v) ≥ 14 for all vertices v ∈ V (K). This follows by counting edges, for if such a component

exists, then we exhibit a proper minor of G with n′ < n vertices and more than 7n′ − 27

edges. That minor of G has a K9 minor by the minimality of G, and hence G has a K9

minor, a contradiction. Finally, in the last step, we select a vertex x ∈ V (G) of degree at

most thirteen to minimize the size of a component K of G − N [x]. It follows easily that K

does not have a vertex whose degree in G is at most 13.

3 Preliminaries

The following result of Jørgensen [13] follows from the proof of Lemma 3.7 below, but we

state it separately for convenience.

Theorem 3.1 Let G be a graph with n ≤ 11 vertices and δ(G) ≥ 6 such that for every

vertex x in G, G − x is not contractible to K6. Then G is one of the graphs K2,2,2,2, K3,3,3

or the complement of the Petersen graph.

The next theorem was first proved by Jung [12]. Seymour [20] and Thomassen [25]

gave a complete characterization of all (not necessarily 4-connected) graphs that satisfy the

hypothesis of the theorem.

Theorem 3.2 Let G be a 4-connected graph and let x1, x2, y1, y2 be distinct vertices in G.

If G does not contain an x1 − y1 path and an x2 − y2 path that are disjoint, then G is planar

and e(G) ≤ 3|G| − 7.

As noted in Section 2, our proof uses induction by deleting and contracting edges of

G. Thus we need to investigate graphs G such that the new graph G − xy or G/xy is a

(K1,2,2,2,2,2, 6)-cockade or is isomorphic to K2,2,2,3,3. We do that next.

Lemma 3.3 Let G be K2,2,2,3,3 or a (K1,2,2,2,2,2, 6)-cockade and let x and y be nonadjacent

vertices in G. Then G + xy is contractible to K9.

Proof. This is easily checked if G = K2,2,2,3,3 or G = K1,2,2,2,2,2. So we may assume that G is

obtained from H1 and H2 by identifying cliques of size 6, where H1 and H2 are (K1,2,2,2,2,2, 6)-

cockades. If x and y are both in H1 or H2, then H1 +xy > K9 or H2 +xy > K9 by induction.

So we may assume that x ∈ V (H1) − V (H2) and y ∈ V (H2) − V (H1). Note that no
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(K1,2,2,2,2,2, 6)-cockade contains K7 as a subgraph. Therefore there exists z ∈ V (H1)∩V (H2)

such that zy /∈ V (G). Now by contracting V (H1) − V (H2) to the vertex z in G + xy, the

resulting graph is H2 + zy. By induction, H2 + zy > K9.

Lemma 3.4 Let G be a graph. Let x, y ∈ V (G) be such that xy ∈ E(G) with exactly six

common neighbors. If G/xy is isomorphic to K2,2,2,3,3, then G > K9.

Proof. Let w be the new vertex in G/xy. Since x and y have exactly six common neighbors,

there exist distinct vertices w1, w2, w3, w4 ∈ V (G/xy)−w such that w1w2, w3w4 /∈ E(G/xy),

and w1, w2, w3 are common neighbors of x and y in G. Moreover, w4 is adjacent to x or y,

say to y, in G. By contracting the edges xw2 and yw4 we see that G has a K9 minor, as

desired.

Lemma 3.5 Let G be a graph and let x, y be adjacent vertices of G with exactly six com-

mon neighbors. If G/xy is isomorphic to K1,2,2,2,2,2, then G has a K9 minor, unless G is

isomorphic to K2,2,2,3,3 and x, y have degree nine in G.

Proof. Let w be the new vertex of G/xy, and let z, x1, y1, . . . , x5, y5 be the vertices of G/xy

numbered so that xi is not adjacent to yi. Assume first that w 6= z, say w = x1. Since x

and y have six common neighbors, we may assume that x2, y2, x3 are common neighbors of

x and y. Moreover, y3 is adjacent to x or y, say to y. By contracting the edges xy2, yy3 and

y4y5 we see that G has a K9 minor, as desired.

Thus we may assume that w = z. Since x, y have six common neighbors, their degree is

at least seven. Assume for a moment that dG(x) = 7. Since x, y have six common neighbors

in G, we deduce that y is adjacent to all other vertices of G and there exists an index i

such that xi, yi are common neighbors of x, y. We may assume that i = 1. By contracting

the edges xx1, x2x3 and x4x5, we obtain a K9 minor of G. Hence we may assume that

d(x), d(y) ≥ 8. We may also assume that G is not isomorphic to K2,2,2,3,3 with x, y of degree

nine, and so it follows that one of x, y is adjacent to xi or yi for every i = 1, 2, 3, 4, 5. Thus we

may assume (by swapping xi and yi) that x is adjacent to all of X, where X = {x1, . . . , x5}.
Moreover, we may assume that if y is also adjacent to every vertex of X, then d(x) ≤ d(y).

Let Y = {y1, . . . , y5}. Since y has degree at least eight, there is some i such that y is adjacent

to xi and yi. We claim that y is adjacent to at least three vertices of Y . For if not, then x

is adjacent to at least three vertices of Y (the non-neighbors of y) and, since d(y) ≥ 8, y is
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adjacent to all vertices of X. But then d(x) > d(y), a contradiction. Thus y is adjacent to

at least three vertices of Y .

Thus there exist distinct indices i, j, k such that y is adjacent to xi, yi, yj, yk. Choose

such indices so that, if possible, x is not adjacent to yi. We may assume that i = 1, j = 2

and k = 3. We claim that x is adjacent to at least two vertices of Y −{y1}. For if not, then

y has at least four neighbors in Y , and hence x, y have at least four common neighbors in

X, and so the indices i, j, k above can be chosen so that x is not adjacent to yi. Thus x is

not adjacent to y1, and hence x has at most one neighbor in Y , implying that d(x) = 7, a

contradiction. Thus x has at least two neighbors in Y − {y1}, and so we may assume that

x has a neighbor in {y2, y4} and a neighbor in {y3, y5}. By contracting the edges yy1, y2y4

and y3y5 we see that G has a K9 minor, as required.

Lemma 3.6 Let G be a graph with δ(G) ≥ 7. Let x, y ∈ V (G) be such that xy ∈ E(G) with

exactly six common neighbors. If G/xy is a (K1,2,2,2,2,2, 6)-cockade, then either G > K9, or

G is isomorphic to K2,2,2,3,3 and x, y have degree nine in G.

Proof. We proceed by induction on |G|. By Lemma 3.5 we may assume that G/xy = H1 ∪
H2, where H1∩H2 is a complete graph on six vertices and both H1 and H2 are (K1,2,2,2,2,2, 6)-

cockades. Let w be the new vertex of G/xy. For i = 1, 2 let H∗

i = G[(V (Hi)−{w})∪{x, y}].
If w ∈ V (H1) − V (H2), then H∗

1 6= K2,2,2,3,3 (because the latter graph has no K6 subgraph)

and the result follows by induction applied to H∗

1 . From the symmetry we may assume that

w ∈ V (H1)∩V (H2). Let S = V (H1)∩V (H2)−{w}; thus V (H∗

1 )∩V (H∗

2 ) = S ∪{x, y}. Let

Z denote the set of six common neighbors of x and y in G. If Z ⊆ V (H∗

1 ), then by induction

applied to H∗

1 we may assume that H∗

1 is isomorphic to K2,2,2,3,3 and x, y have degree nine

in H∗

1 . Since H∗

1 has no K6 subgraph one of x, y, say x, is not adjacent to some s ∈ S and x

has at least one neighbor in V (H2)−V (H1). By using a path with ends x and s and interior

in H∗

2 − V (H∗

1 ) we deduce that G > H∗

1 + sx > K9 by Lemma 3.3, as desired.

Thus we may assume that Z − V (H∗

1 ) 6= ∅ 6= Z − V (H∗

2 ). Since H2 is a (K1,2,2,2,2,2, 6)-

cockade, it is 6-connected. Let k = |Z − V (H1)|. Since |Z ∩ V (H2)| ≤ 5 we have |S − Z| =

5−|Z ∩S| ≥ k. Thus there exist k disjoint paths P1, P2, . . . , Pk in H2− (Z ∩S)−w between

Z ∩ V (H2 − S) and S − Z. Consequently H∗

1 has a supergraph H ′

1 on the same vertex set

such that H ′

1 < G and x, y have exactly six common neighbors in H ′

1. By induction H ′

1 is

isomorphic to K2,2,2,3,3 and x, y have degree nine in H ′

1. By symmetry the same holds for

the analogous graph H ′

2. It follows that in H ′

1 the vertex x has a unique non-neighbor in S,
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say x′. Then x′ 6∈ V (P1 ∪ · · · ∪Pk). From the symmetry between H1 and H2 we may assume

that k ≤ 3. (In fact, |Z − V (H1)| = |Z − V (H2)| = 3.) It follows that the k disjoint paths

P1, . . . , Pk can each be chosen of length one, and that there exists a common neighbor of x

and x′ in V (H∗

2), say u, that does not belong to any of the paths. Thus by contracting the

edge ux′ and all the edges of the paths P1, . . . , Pk we deduce that G > H ′

1 + xx′ > K9 by

Lemma 3.3, as desired.

As pointed out in Section 2, we need to examine graphs G such that |V (G)| ≤ 13,

δ(G) ≥ 7 and G 6> K7 ∪ K1. (Here K7 ∪ K1 stands for a disjoint union of K7 and K1.) The

next lemma shows that those graphs G satisfy the following properties:

(A) either G is isomorphic to K1,2,2,2,2, or G has four distinct vertices a1, b1, a2, b2 such that

a1a2, b1b2 /∈ E(G) and for i = 1, 2 the vertex ai is adjacent to bi, the vertices ai, bi have

at most four common neighbors, and G + a1a2 + b1b2 > K8,

(B) for any two sets A, B ⊆ V (G) of cardinality at least five such that neither is complete

and A ∪ B includes all vertices of G of degree at most |G| − 2, either

(B1) there exist a ∈ A and b ∈ B such that G′ > K8, where G′ is obtained from G by

adding all edges aa′ and bb′ for a′ ∈ A − {a} and b′ ∈ B − {b}, or

(B2) there exist a ∈ A − B and b ∈ B − A such that ab ∈ E(G) and the vertices a and b

have at most five common neighbors in G, or

(B3) one of A and B contains the other and G + ab > K7 ∪K1 for all distinct nonadjacent

vertices a, b ∈ A ∩ B.

Figure 1: graph J1 and graph J2.

Lemma 3.7 Let n be an integer satisfying 9 ≤ n ≤ 13 and let G be a graph on n vertices

with δ(G) ≥ 7. Then either G > K7 ∪ K1, or G satisfies (A) and (B).
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Proof. By a computer search we have determined that the graphs G with 9 ≤ n ≤ 13

vertices, δ(G) ≥ 7 and G 6> K7 ∪ K1 are the following ones: K1,2,2,2,2, K1,3,3,3, K3,3 + P4,

K3,3 + C4, K2,2,3,3, K2,3 + C5, C5 + C5, K3 + C7, K3,4,4, K3 + V 8, K1 + P , P ′, J1 and

K1 + J2. Here H + G stands for the graph obtained from G ∪ H by adding all edges with

one end in V (H) and the other in V (G), G denotes the complement of a graph, P4 denotes

the path of four vertices, V8 denotes the graph obtained from C8 by joining all four pairs

of diagonally opposite vertices, P is the Petersen graph, P ′ denotes the graph obtained

from P by subdividing one edge, and the graphs J1 and J2 are depicted in Figure 1. It is

straightforward to check that those graphs satisfy (A) and (B). The details of this and of

the computer search can be obtained from the authors’ websites.

4 Proof of Theorem 1.3

In this section, we are going to prove Theorem 1.3 by induction on n. The only graph G

with 9 vertices and e(G) ≥ 7 × 9 − 27 = 36 is K9. Thus we may assume that n ≥ 10 and

that the assertion holds for smaller values of n. Throughout this section we assume that G

is a graph with n vertices and e(G) ≥ 7n − 27 but G is not contractible to K9 and G is not

K2,2,2,3,3 or a (K1,2,2,2,2,2, 6)-cockade. By Lemma 3.3, we may assume that e(G) = 7n − 27.

Suppose that G has a vertex x of degree at most 6. Then e(G − x) ≥ 7(n − 1) − 26,

and hence G > G − x > K9 by induction, a contradiction. Suppose now that G has two

adjacent vertices x, y with at most five common neighbors. Then e(G/xy) ≥ 7(n − 1)− 26.

By induction, G > K9, a contradiction. Thus δ(G) ≥ 7 and δ(N(x)) ≥ 6. If G has a

vertex x of degree 7, then N(x) = K7 and e(G − x) ≥ 7(n − 1) − 27. Note that neither a

(K1,2,2,2,2,2, 6)-cockade nor K2,2,2,3,3 contain K7 as a subgraph. Thus, by induction, G − x >

K9, a contradiction. Hence

(1) δ(G) ≥ 8 and δ(N(x)) ≥ 6 for any x ∈ V (G).

Let S be a separating set of vertices in G, and let G1 and G2 be proper subgraphs of G

so that G = G1 ∪ G2 and G1 ∩ G2 = G[S]. Let mi = 7|Gi| − 27 − e(Gi), i = 1, 2. Then

7n − 27 = e(G) = e(G1) + e(G2) − e(G[S]) = 7n + 7|S| − 54 − m1 − m2 − e(G[S]), and so

(2) 7|S| = 27 + m1 + m2 + e(G[S]).

For i = 1, 2, let di be the maximum number of edges that can be added to G3−i by

9



contracting edges of G with at least one end in Gi. More precisely, let di be the largest

integer so that Gi contains disjoint set of vertices V1, V2, . . . , Vp so that Gi[Vj] is connected,

|S ∩ Vj| = 1 for 1 ≤ j ≤ p = |S|, and so that the graph obtained from Gi by contracting

V1, V2, . . . , Vp and deleting V (G) − (
⋃

j Vj) has e(G[S]) + di edges. By (1), δ(G) ≥ 8. Thus

|Gi| ≥ 9, i = 1, 2. By induction, d1 ≤ m2 and d2 ≤ m1. By (2),

(3) 7|S| ≥ 27 + d1 + d2 + e(G[S]).

In particular, |S| ≥ 4. If S is a minimal separating set, then let v ∈ S be a vertex of

minimum degree in G[S]. By choosing V1 = V (Gi) − (S − {v}) and the rest of the sets Vj

to be singletons, we see that di ≥ |S| − 1 − δ(G[S]) for i = 1, 2. Thus

(4) if S is a minimal separating set, then

5|S| ≥ 25 + e(G[S]) − 2δ(G[S])) ≥ 25 +
1

2
(|S| − 4)δ(G[S]).

Lemma 4.1 G is 6-connected.

Proof. Suppose G is not 6-connected. Let S be a minimal separating set of G, and let

G1, G2, d1, d2 be as above. By (4) G is 5-connected and G[S] = K5. We next show that

d1 ≥ 5. Let x and y be distinct vertices in G1\S. By Menger’s theorem, there exist five

x-S paths P1, P2, . . . , P5 in G1 which have only the vertex x in common. If all these paths

have length 1, then, since there are at least four internally disjoint y-S paths in G1\{x}, by

contracting these paths we deduce that d1 ≥ 7. We may now assume that P1 has length at

least 2. Let V (P1) ∩ S = {z}. As {x, z} is not a separating set in G, there is a path P from

a vertex on P1\{x, z} to a vertex on some Pi\{x}, i 6= 1, so that only the end vertices of

P belong to
⋃

5

j=1
Pj. By contracting a suitable subset of the edges of P ∪ P1 ∪ · · · ∪ P5 we

deduce that d1 ≥ 5, as claimed.

By symmetry, d2 ≥ 5 and so d1 + d2 ≥ 10. However, by (3), d1 + d2 ≤ 8, which is a

contradiction.

Lemma 4.2 There is no separating set S with a vertex x so that G[S − x] is complete.

Proof. Suppose that G[S−x] is complete and let G1, G2 be as above. We may assume that

S is a minimal separating set. By Lemma 4.1, |S| ≥ 6. If |S| ≥ 8, by contracting V (G1)−S
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to x and V (G2)−S to a new vertex, we get a K9 minor, a contradiction. So we may assume

that |S| = 6 or |S| = 7.

If |S| = 6, by (4), 5|S| ≥ 25+ e(G[S])− 2δ(G[S])) ≥ 25+10+ δ(G[S])− 2δ(G[S]), which

implies that G[S] = K6. By induction, we may assume e(Gi) ≤ 7|Gi| − 27, i = 1, 2. Since

7n− 12 = 7n− 27 + 15 = e(G) + 15 = e(G1) + e(G2) ≤ 7|G1| − 27+ 7|G2| − 27 = 7n− 12, it

follows that e(Gi) = 7|Gi|−27, i = 1, 2. Since K2,2,2,3,3 does not contain K6 as a subgraph, by

induction, Gi > K9 or Gi is a (K1,2,2,2,2,2, 6)-cockade. Thus G > K9 or G is a (K1,2,2,2,2,2, 6)-

cockade, a contradiction.

If |S| = 7, by (4), 5|S| ≥ 25+ e(G[S])− 2δ(G[S])) ≥ 25+15+ δ(G[S])− 2δ(G[S]), which

implies that G[S] is isomorphic to K7 or K7 with an edge deleted. Let e(G[S]) = 21 − t,

where t = 0 or 1. Suppose e(G1) ≥ 7|G1|−27− t. Let G′

1 be obtained from G by contracting

V (G2) − S to x. Then e(G′

1) = e(G1) + t ≥ 7|G′

1| − 27. Since G′

1 contains a K7 subgraph,

it is not K2,2,2,3,3 or a (K1,2,2,2,2,2, 6)-cockade, and hence by induction, G > G′

1 > K9. Thus

e(G1) ≤ 7|G1| − 28 − t. Similarly, we have e(G2) ≤ 7|G2| − 28 − t. But now e(G) =

e(G1) + e(G2) − e(G[S]) ≤ 7(n + 7) − 28 − t − 28 − t − 21 + t = 7n − 28 − t, which is a

contradiction.

Lemma 4.3 δ(N(x)) ≥ 7 for any x ∈ V (G).

Proof. Suppose δ(N(x)) ≤ 6. By (1) there exists a vertex y ∈ N(x) such that x and y

have exactly six common neighbors. Then e(G/xy) = 7(n − 1) − 27. Since G 6> K9, the

minimality of |G| implies that G/xy is isomorphic to K2,2,2,3,3 or is a (K1,2,2,2,2,2, 6)-cockade.

In either case, by Lemma 3.4 or Lemma 3.6, G > K9 or G = K2,2,2,3,3, a contradiction.

Lemma 4.4 δ(G) ≥ 9.

Proof. Let x ∈ V (G) be such that d(x) = δ(G) ≤ 8. By Lemma 4.3, N(x) = K8 and so

G > N [x] = K9, a contradiction.

Lemma 4.5 If G − N [x] is 2-connected or has at most two vertices, then N(x) 6= K1,2,2,2,2.

Proof. Suppose for a contradiction that N(x) = K1,2,2,2,2. Let V (N(x)) = {y, z1, z2, z3, z4,

w1, w2, w3, w4} so that y is adjacent to all vertices in N(x) − y and ziwi /∈ E(G).
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We next show that zi and wi have no common neighbor in G − N [x] for i = 1, 2, 3, 4.

To this end suppose that there exists a vertex v ∈ V (G − N [x]) adjacent to, say z1 and w1.

Let K = G − N [x] − v. Then K is not null by Lemma 4.4, because G is not isomorphic to

K1,2,2,2,2,2. Since G − N [x] has no cut vertex, K is connected. If zi, wi ∈ N(K) for some

i ∈ {2, 3, 4}, then let P be a path with ends zi and wi and interior in K. By contracting

the edge z1v and all but one of the edges of P we see that G > N [x] + z1v1 + ziwi > K9,

a contradiction. Thus we may assume that w2, w3, w4 6∈ N(K). Let i ∈ {2, 3, 4}. It follows

from Lemma 4.3 applied to wi that v is adjacent to wi. By Lemma 4.3 the edge vwi is in

at least seven triangles, and hence z2, z3, z4 are all adjacent to v. By Lemma 4.2 the set

N(K)−{v} is not complete, and hence z1, w1 ∈ N(K). By contracting the edge vw2 and all

but one edge of a z1-w1 path with interior in K we deduce that G > N [x]+z1w1+z2w2 > K9,

a contradiction. This proves that the vertices zi and wi have no common neighbor in G−N [x].

Let u ∈ V (G) − N [x] be a neighbor of z1. By Lemma 4.3 the vertices u and z1 have at

least seven common neighbors, and so by the result of the previous paragraph z1 has at least

four neighbors in G − N [x]. By symmetry the same holds for all zi and wi.

Let H = G − {x, y, z3, w3, z4, w4}. We next show that H is 4-connected. Suppose for

a contradiction that S is a minimal separating set of at most three vertices in H. Since

G − N [x] has no cut vertex, |S| ≥ 2 and |S ∩ N(x)| ≤ 1. If |S ∩ N(x)| = 1, we may assume

that w1 ∈ S. Since z1z2, z1w2 ∈ E(G), z1, z2, w2 are in the same component of H−S. Denote

this component by K. If w1 /∈ S, then also w1 ∈ K. Since z2, w2 have at least four neighbors

in G − N [x], there exist z′2 and w′

2 in G − N [x] − S adjacent to z2 and w2, respectively.

Clearly, z′2 and w′

2 belong to K. As G − N [x] has no cut vertex, G − N [x] contains two

independent z′2-w
′

2 paths. One of these paths is contained in G[K ∪ S].

Since G is not contractible to N [x] + z2w2 + ziwi > K9 for i = 3, 4, there is no zi-wi

path in G[K ′ ∪ {zi, wi}], where K ′ 6= K is another component of H − S. But this implies

that K ′ is separated from x by S and three pairwise adjacent vertices. We may assume that

such three vertices are y, w3, w4. Since G is 6-connected, |S| = 3. Let S = {s1, s2, s3}, where

s1 = w1 if w1 ∈ S, and let S ′ = S∪{y, w3, w4}. Then S ′ is a minimal separating set of G. Let

H1 = G[K ′∪S ′] and H2 = G−K ′. Let d1 and d2 be defined as in the paragraph prior to (3).

Clearly, K ∪ {x, z3, z4} is contained in H2. By Menger’s theorem, there exist three disjoint

paths between {x, w1, w2} and S in G−{y, w3, w4}. Now by contracting those paths, we get

d2 + e(G[S ′]) = e(K6) = 15. By Lemma 4.2, d1 ≥ 1. By (3), 42 = 7|S ′| ≥ 27 + 1 + 15 = 43,

a contradiction. Thus H is 4-connected.
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Since G is not contractible to K9, it follows from Theorem 3.2 applied to the vertices

z1, z2, w1, w2 that e(H) ≤ 3|H| − 7 = 3(n− 6)− 7. Since for i ∈ {3, 4} the vertices zi and wi

have no common neighbor in G − N [x], they together have at most |G| − |N [x]| = n − 10

neighbors in G − N [x]. The vertices {z3, w3, z4, w4} are incident with 20 edges of N(x) − y.

Thus

7n − 27 = e(G) ≤ d(x) + d(y) − 1 + e(H) + 2(n − 10) + 20

≤ 9 + n − 2 + 3(n − 6) − 7 + 2(n − 10) + 20 = 6n − 18.

It follows that n ≤ 9, a contradiction.

Lemma 4.6 Let x ∈ V (G) be such that 9 ≤ d(x) ≤ 13. Then there is no component K of

G − N [x] such that N(K ′) ∩ M ⊆ N(K) for every component K ′ of G − N [x], where M is

the set of vertices of N(x) not adjacent to all other vertices of N(x).

Proof. Assume such a component K exists. Among all vertices x with 9 ≤ d(x) ≤ 13

for which such a component exists, choose x to be of minimal degree. We first prove that

M ⊆ N(K). Suppose for a contradiction that M − N(K) 6= ∅, and let y ∈ M − N(K)

be such that d(y) is minimum. Clearly, d(y) < d(x). Let J be the component of G − N [y]

containing K. Since d(y) < d(x) the choice of x implies that N(x)−N [y] 6⊆ V (J), and hence

some component H of N(x) − N [y] is disjoint from N(K). We have dG(z) ≥ dG(y) for all

z ∈ V (H) by the choice of y. Let t = |V (H)|. Then t ≥ 2, for otherwise the vertex y and

component H contradict the choice of x. On the other hand t ≤ d(x) − d(y) ≤ 13 − 9 = 4.

From Lemma 4.3 applied to y we deduce that N(y) ∩ N(x) has minimum degree at least

six. Let L be the subgraph of G induced by (N [y] ∩ N(x)) ∪ V (H). Then the edge-set of

L consists of edges of N(x) ∩ N(y), edges incident with y, and edges incident with V (H).

Thus

e(L) ≥ 3(d(y)− 1) + d(y) − 1 + t(d(y) − 1) − 1

2
t(t − 1)

≥ 6(d(y) + t) + (t − 2)d(y)− 4 − 7t − 1

2
t(t − 1) ≥ 6|V (L)| − 20,

because d(y) ≥ 9 and 2 ≤ t ≤ 4. Since 11 ≤ |V (L)| ≤ 13 the graph L is not a (K2,2,2,2,2, 5)-

cockade, and hence N(x) > L > K8 by Theorem 1.2. Thus G > K9, a contradiction. This

proves that M ⊆ N(K).
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If N(x) > K7 ∪ K1, then N(x) has a vertex y such that N(x) − y > K7. If y 6∈ M ,

then N(x) > K8. Otherwise, by contracting the connected set V (K) ∪ {y} we can contract

K8 onto N(x). Thus in either case G > K9, a contradiction. Thus by Lemma 3.7, we may

assume that N(x) satisfies properties (A) and (B).

If G − N [x] is 2-connected or has at most two vertices, then by Lemma 4.5, we may

assume that N(x) 6= K1,2,2,2,2. Then by property (A) and Lemma 4.3 the set N(x) has four

distinct vertices a1, b1, a2, b2 such that a1a2, b1b2 /∈ E(G), N(x) + a1a2 + b1b2 > K8 and for

i = 1, 2 the vertex ai is adjacent to bi, the vertices ai, bi have at least two common neighbors

in G− N [x]. Let u1, u2 (resp. w1, w2) be two distinct common neighbors of a1 and b1 (resp.

a2 and b2) in G − N [x]. By Menger’s Theorem, G − N [x] contains two disjoint paths from

{u1, u2} to {w1, w2} and so G > N [x] + a1a2 + b1b2 > K9, a contradiction.

Thus we may assume that G−N [x] has at least three vertices and is not 2-connected. If

G−N [x] is disconnected, let H1 = K and H2 be another connected component of G−N [x].

If G− N [x] has a cut-vertex, say w, let H1 be a connected component of G− N [x] −w and

let H2 = G − N [x] − V (H1). In either case, H1 and H2 are disjoint connected subgraphs of

G − N [x] such that M ⊆ N(H1) ∪ N(H2) (because we have shown that M ⊆ N(K)). For

i = 1, 2 let Ai = N(Hi) ∩ N(x). By Lemma 4.2 and Lemma 4.1, Ai is not complete and

|Ai| ≥ 5 for i = 1, 2. By property (B), A1 and A2 satisfy properties (B1), (B2) or (B3).

Suppose first that A1 and A2 satisfy property (B1). Then there exist ai ∈ Ai such that

N(x) + {a1a : a ∈ A1 − {a1}} + {a2a : a ∈ A2 − {a2}} > K8. By contracting the connected

sets V (H1)∪ {a1} and V (H2)∪ {a2} to single vertices, we see that G > K9, a contradiction.

Suppose next that A1 and A2 satisfy property (B2). Then there exist a1 ∈ A1 − A2 and

a2 ∈ A2 − A1 such that a1a2 ∈ E(G) and the vertices a1 and a2 have at most five common

neighbors in N(x). Thus a1, a2 ∈ M by Lemma 4.3, and by another application of the same

lemma there exists a common neighbor u ∈ V (G) − N [x] of a1 and a2. But a1 6∈ A2 and

a2 6∈ A1, and hence u 6∈ V (H1) ∪ V (H2). Thus G − N [x] is disconnected and H1 = K.

But then a2 ∈ M ⊆ N(K) = N(H1), a contradiction. Thus we may assume that A1 and

A2 satisfy (B3), and hence Ai ⊆ A3−i for some i ∈ {1, 2}. As M ⊆ A1 ∪ A2, we have

M ⊆ N(H3−i). Since Ai is not complete, let a, b ∈ Ai be distinct and not adjacent. By

property (B3), N(x) + ab > K7 ∪ K1. Let P be an a-b path with interior in Hi. By

contracting all but one of the edges of the path P and by contracting H3−i similarly as

above, we see that G > K9, a contradiction.
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Lemma 4.7 G − N [x] is disconnected for every vertex x ∈ V (G) of degree at most 13.

Proof. If G−N [x] is not null, then it is disconnected by Lemma 4.6. Thus we may assume

that x is adjacent to every other vertex of G. Let H = G− x. Then e(H) = e(G)− n + 1 =

7n− 27− n + 1 = 6|H| − 20. By Theorem 1.2 applied to H the graph G has a K9 minor or

is a (K1,2,2,2,2,2, 6)-cockade, a contradiction.

Lemma 4.8 δ(G) ≥ 10.

Proof. Let x ∈ V (G) be such that d(x) = δ(G) = 9. By Lemma 4.3, δ(N(x)) ≥ 7,

and hence N(x) > K1,2,2,2,2. Let K, K ′ be two components of G − N [x]. By Lemma 4.2,

N(K) and N(K ′) contain distinct pairs of nonadjacent vertices of N(x), say a, b and c, d,

respectively. Thus G > N [x] + ab + cd > K9 by the existence of internally disjoint a-b and

c-d paths with interiors in K, K ′ respectively, a contradiction.

Lemma 4.9 Let x ∈ V (G) be such that 10 ≤ d(x) ≤ 13. Then there is no component K of

G − N [x] such that dG(y) ≥ 14 for every vertex y ∈ V (K).

Proof. Assume that such a component K exists. Let G1 = G−K and G2 = G[K ∪N(K)].

Let d1 be defined as in the paragraph prior to (3). Let G′

2 be a graph with V (G′

2) = V (G2)

and e(G′

2) = e(G2) + d1 edges obtained from G by contracting edges in G1. By Lemma 4.8,

|G′

2| ≥ 11. If e(G′

2) ≥ 7|G′

2| − 26, then by induction G > G′

2 > K9, a contradiction. Thus

e(G2) = e(G′

2) − d1 ≤ 7|G2| − 27 − d1 = 7|N(K)| + 7|K| − 27 − d1.

By contracting the edge xz, where z ∈ N(K) has minimum degree in N(K), we see that

d1 ≥ |N(K)| − d − 1, and hence

e(G2) ≤ 6|N(K)| + 7|K| − 26 + d. (a)

Let t = eG(N(K), K) and d = δ(N(K)). We have e(G2) = e(K) + t + e(N(K)) and

2e(K) ≥ 14|K| − t, (b)

and hence

e(G2) ≥ 7|K| + t/2 + d|N(K)|/2. (c)
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Since N(x) has minimum degree at least seven, it follows that the subgraph N(K) of N(x)

has minimum degree at least 7−(d(x)−|N(K)|). Thus d ≥ 7−(d(x)−|N(K)|) ≥ |N(K)|−6.

From (a) and (c) we get

−t/2 ≥ 26 − 6|N(K)| + d(|N(K)| − 2)/2 ≥ −18, (d)

where the second inequality holds with equality only when |N(K)| = 10. Since G is not

contractible to K9, we deduce from (b) by induction that |K| < 9. The inequality e(K) ≥
7|K| − 18 implies |K| ≤ 3. But every vertex of K has degree at least 14 and N(K) is a

proper subgraph of N(x), and hence |K| = 3, |N(K)| = 12 and (d) holds with equality,

contrary to our earlier observation that (d) holds with equality only when |N(K)| = 10.

By Lemma 4.8 and the fact that e(G) = 7n − 27 there is a vertex x of degree 10, 11, 12

or 13 in G. Choose such a vertex x so that G−N [x] has a component K of minimum order.

Then choose a vertex y ∈ V (K) of least degree in G. Thus 10 ≤ dG(y) ≤ 13 by lemmas 4.8

and 4.9. Let L be the component of G − N [y] containing x. We claim that N(L) contains

all vertices of N(y) that are not adjacent to all other vertices of N(y). Indeed, let z ∈ N(y)

be not adjacent to some vertex of N(y)−{z}. We may assume that z /∈ N(x), for otherwise

z ∈ N(L). Thus z ∈ V (K), and hence dG(z) ≥ dG(y) by the choice of y. Thus z has a

neighbor z′ ∈ N [x] ∪ K − N [y]. Then z′ ∈ V (L), for otherwise the component of G − N [y]

containing z′ would be a proper subgraph of K. Thus z ∈ N(L). This proves our claim that

N(L) contains all vertices z as above, contrary to Lemma 4.6. This contradiction completes

the proof of Theorem 1.3.
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