The Extremal Function for K_{9} Minors

Zi-Xia Song* and Robin Thomas ${ }^{\dagger}$
School of Mathematics, Georgia Institute of Technology
Atlanta, GA 30332, USA

6 July 2005

Abstract

We prove that every (simple) graph on $n \geq 9$ vertices and at least $7 n-27$ edges either has a K_{9} minor, or is isomorphic to $K_{2,2,2,3,3}$, or is isomorphic to a graph obtained from disjoint copies of $K_{1,2,2,2,2,2}$ by identifying cliques of size six. The proof of one of our lemmas is computer-assisted.

1 Introduction

All graphs in this paper are finite and simple. Our work is motivated by the following theorem of Mader [18].

Theorem 1.1 For every integer $p=1,2, \ldots, 7$, a graph on $n \geq p$ vertices and at least $(p-2) n-\binom{p-1}{2}+1$ edges has a K_{p} minor.

For $p \leq 5$, this was first proved by Dirac [5]. Some years later but independently of Mader, Györi [7] proved Theorem 1.1 for $p \leq 6$.

Mader pointed out that Theorem 1.1 does not hold for $p=8$: the graph $K_{2,2,2,2,2}$ is a counterexample. However, one can construct further counterexamples by repeatedly identifying cliques of size five. So for graphs H_{1}, H_{2} and an integer k, let us define an $\left(H_{1}, H_{2}, k\right)$-cockade recursively as follows. Any graph isomorphic to H_{1} or H_{2} is an $\left(H_{1}, H_{2}, k\right)$-cockade. Now let G_{1}, G_{2} be $\left(H_{1}, H_{2}, k\right)$-cockades and let G be obtained from the disjoint union of G_{1} and G_{2} by identifying a clique of size k in G_{1} with a clique of the same size in G_{2}. Then the graph G

[^0]is also an $\left(H_{1}, H_{2}, k\right)$-cockade, and every $\left(H_{1}, H_{2}, k\right)$-cockade can be constructed this way. If $H_{1}=H_{2}=H$, then G is called an (H, k)-cockade. Jørgensen [13] generalized Theorem 1.1 as follows.

Theorem 1.2 Every graph on $n \geq 8$ vertices and at least $6 n-20$ edges either has a K_{8} minor, or is a $\left(K_{2,2,2,2,2}, 5\right)$-cockade.

To see that Theorem 1.2 implies Theorem 1.1, let G and p be as in Theorem 1.1, and apply Theorem 1.2 to the graph obtained from G by adding $8-p$ vertices, each adjacent to every other vertex of the graph.

Our main result is the following next step. Note that every $\left(K_{2,2,2,3,3}, 6\right)$-cockade is isomorphic to $K_{2,2,2,3,3}$.

Theorem 1.3 Every graph on $n \geq 9$ vertices and at least $7 n-27$ edges either has a K_{9} minor, or is a $\left(K_{1,2,2,2,2,2}, 6\right)$-cockade, or is isomorphic to $K_{2,2,2,3,3}$.

Our motivation was threefold. First, the bound in Theorem 1.1 is related to Hadwiger's conjecture [8], the following.

Conjecture 1.4 For every integer $t \geq 1$, every graph with no K_{t+1} minor is t-colorable.
Hadwiger's conjecture is trivially true for $t \leq 2$, and reasonably easy for $t=3$, as shown by Dirac [4]. However, for $t \geq 4$, Hadwiger's conjecture implies the Four Color Theorem. (To see that, let H be a planar graph, and let G be obtained from H by adding $t-4$ vertices, each joined to every other vertex of the graph. Then G has no K_{t+1} minor, and hence is t-colorable by Hadwiger's conjecture, and hence H is 4-colorable.) Wagner [26] proved that the case $t=4$ of Hadwiger's conjecture is, in fact, equivalent to the Four Color Theorem, and the same was shown for $t=5$ by Robertson, Seymour, and the second author [19]. Their proof made use of Theorem 1.1 for $p=6$. Hadwiger's conjecture remains open for $t \geq 6$.

In [3] Chen, Gould, Kawarabayashi, Pfender and Wei proved that every graph on n vertices and at least $9 n-45$ edges has a K_{9} minor, and used that to deduce that if, in addition, G is 6 -connected, then it is 3 -linked. It turns out [22] that the latter conclusion can be obtained from a weaker bound on the number of edges by a more direct argument, but the work of Chen, Gould, Kawarabayashi, Pfender and Wei suggested that there may be interest in the extremal problem for K_{9} minors.

Theorem 1.1 is such a nice result that it raises the question of whether it can be generalized to all values of p. But there are more depressing news than Mader's example above: for large p a graph must have at least $\Omega(p \sqrt{\log p} n)$ edges in order to guarantee a K_{p} minor, because, as noted by several people (Kostochka [15, 16], and Fernandez de la Vega [6] based on Bollobás, Catlin and Erdös [2]), a random graph with no K_{p} minor may have average degree of order $p \sqrt{\log p}$. Kostochka $[15,16]$ and Thomason [23] proved that this is indeed the correct order of magnitude, and in a remarkable recent result [24] Thomason was able to determine the constant of proportionality. Thus it may seem that an effort to generalize Theorem 1.1 will be in vain, but there is still the following possibility. The random graph examples provide only finitely many counterexamples for any given value of p. Of course, more counterexamples can be obtained by taking disjoint unions or even gluing counterexamples along small cutsets, but we know of no construction of highly connected infinite families of counterexamples. More specifically, Seymour and the second author conjecture the following.

Conjecture 1.5 For every $p \geq 1$ there exists a constant $N=N(p)$ such that every $(p-2)$ connected graph on $n \geq N$ vertices and at least $(p-2) n-\binom{p-1}{2}+1$ edges has a K_{p} minor.

It was this conjecture that was the third motivating factor for our research. Thus our main result implies that Conjecture 1.5 holds for $p \leq 9$. Recently, Böhme, Kawarabayashi, Maharry and Mohar [1] showed that Conjecture 1.5 holds for $31(p+1) / 2$-connected graphs.

The extremal functions for K_{p}^{-}minors have also been studied, where K_{p}^{-}denotes the graph obtained from K_{p} by removing one edge. Jakobsen [10, 11] proved that, for $p \leq 7$, every graph on $n \geq p$ vertices and at least $\left(p-\frac{5}{2}\right) n-\frac{1}{2}(p-3)(p-1)$ edges has a K_{p}^{-}minor, or G is a $\left(K_{p-1}, p-3\right)$-cockade, or $p=7$ and G is a $\left(K_{2,2,2,2}, K_{6}, 4\right)$-cockade. Recently, the first author [21] proved a conjecture of Jakobsen [11] that every graph on $n \geq 8$ vertices and at least $\frac{1}{2}(11 n-35)$ edges has a K_{8}^{-}minor or is a $\left(K_{1,2,2,2,2}, K_{7}, 5\right)$-cockade. The extremal functions for the graphs obtained from K_{p} by deleting two edges were determined in $[9,10]$ when $p=7$ or 8 . In related work Jørgensen [14] proved that every 4-connected graph on $n \geq 8$ vertices and at least $4 n-7$ edges has a $K_{4,4}$ minor.

We need to introduce more notation. If G is a graph and K is a subgraph of G, then by $N(K)$ we denote the set of vertices of $V(G)-V(K)$ that are adjacent to a vertex of K. If $V(K)=\{x\}$, then we use $N(x)$ to denote $N(K)$. By abusing notation we will also denote by $N(x)$ the graph induced by the set $N(x)$. We define $N[x]=N(x) \cup\{x\}$, and similarly
will use the same symbol for the graph induced by that set. If x, y are adjacent vertices of a graph G, then we denote by $G / x y$ the graph obtained from G by contracting the edge $x y$ and deleting all resulting parallel edges. If u, v are distinct nonadjacent vertices of a graph G, then by $G+u v$ we denote the graph obtained from G by adding an edge with ends u and v. If u, v are adjacent or equal, then we define $G+u v$ to be G. We write $G>H$ if a graph isomorphic to H can be obtained from a subgraph of G by contracting edges. In those circumstances we say that G has an H minor. For a graph G we use $|G|, e(G), \delta(G)$ to denote the number of vertices, number of edges and minimum degree of G, respectively. The degree of a vertex v in a graph is denoted by $d_{G}(v)$ or simply $d(v)$.

2 Outline of proof

Suppose for a contradiction that G is a counterexample to Theorem 1.3 with minimum number of vertices, say n. Since deletion or contraction of edges does not produce smaller counterexamples, it follows easily that G has minimum degree at least eight, and with some effort it can be shown that every edge of G is in at least seven triangles. It also follows by a straightforward counting argument that G is 6 -connected. Also $e(G)=7 n-27$, and hence G has a vertex x of degree at least eight and at most thirteen. Fix such a vertex, and let K be a component of $G-N[x]$. Assume for a moment that every vertex of $N(x)$ has a neighbor in K. If there exists a vertex $y \in N(x)$ such that $N(x)-y>K_{7}$, then by contracting the connected set $V(K) \cup\{y\}$ to a single vertex, we see that $G>K_{9}$. Thus $G-y \ngtr K_{7}$ for every vertex $y \in N(x)$. On the other hand, $N(x)$ has minimum degree at least seven and at most thirteen vertices. Those properties are fairly restrictive: there are only fourteen such graphs, and so they can be found explicitly. It turns out that they all have two properties in common (conditions (A) and (B) stated prior to Lemma 3.7) that allow us to find a K_{9} minor in G in a different way. This is how we deal with the case when there is a component K of $G-N[x]$ satisfying $N(x)=N(K)$. In fact, the argument extends to the situation when there exists a component K of $G-N[x]$ such that $N\left(K^{\prime}\right) \cap M \subseteq N(K)$ for every component K^{\prime} of $G-N[x]$, where M is the set of all vertices of $N(x)$ that are not adjacent to every other vertex of $N(x)$.

Thus we may assume that for no vertex x of degree at most thirteen such a component exists. In the next step we prove a lemma inspired by Claim (15) of [13], namely that if $x \in V(G)$ has degree at most 13 , then there is no component K of $G-N[x]$ such that
$d_{G}(v) \geq 14$ for all vertices $v \in V(K)$. This follows by counting edges, for if such a component exists, then we exhibit a proper minor of G with $n^{\prime}<n$ vertices and more than $7 n^{\prime}-27$ edges. That minor of G has a K_{9} minor by the minimality of G, and hence G has a K_{9} minor, a contradiction. Finally, in the last step, we select a vertex $x \in V(G)$ of degree at most thirteen to minimize the size of a component K of $G-N[x]$. It follows easily that K does not have a vertex whose degree in G is at most 13 .

3 Preliminaries

The following result of Jørgensen [13] follows from the proof of Lemma 3.7 below, but we state it separately for convenience.

Theorem 3.1 Let G be a graph with $n \leq 11$ vertices and $\delta(G) \geq 6$ such that for every vertex x in $G, G-x$ is not contractible to K_{6}. Then G is one of the graphs $K_{2,2,2,2}, K_{3,3,3}$ or the complement of the Petersen graph.

The next theorem was first proved by Jung [12]. Seymour [20] and Thomassen [25] gave a complete characterization of all (not necessarily 4-connected) graphs that satisfy the hypothesis of the theorem.

Theorem 3.2 Let G be a 4-connected graph and let $x_{1}, x_{2}, y_{1}, y_{2}$ be distinct vertices in G. If G does not contain an $x_{1}-y_{1}$ path and an $x_{2}-y_{2}$ path that are disjoint, then G is planar and $e(G) \leq 3|G|-7$.

As noted in Section 2, our proof uses induction by deleting and contracting edges of G. Thus we need to investigate graphs G such that the new graph $G-x y$ or $G / x y$ is a ($K_{1,2,2,2,2,2}, 6$)-cockade or is isomorphic to $K_{2,2,2,3,3}$. We do that next.

Lemma 3.3 Let G be $K_{2,2,2,3,3}$ or a ($K_{1,2,2,2,2,2}, 6$)-cockade and let x and y be nonadjacent vertices in G. Then $G+x y$ is contractible to K_{9}.

Proof. This is easily checked if $G=K_{2,2,2,3,3}$ or $G=K_{1,2,2,2,2,2}$. So we may assume that G is obtained from H_{1} and H_{2} by identifying cliques of size 6 , where H_{1} and H_{2} are ($K_{1,2,2,2,2,2}, 6$)cockades. If x and y are both in H_{1} or H_{2}, then $H_{1}+x y>K_{9}$ or $H_{2}+x y>K_{9}$ by induction. So we may assume that $x \in V\left(H_{1}\right)-V\left(H_{2}\right)$ and $y \in V\left(H_{2}\right)-V\left(H_{1}\right)$. Note that no
($K_{1,2,2,2,2,2}, 6$)-cockade contains K_{7} as a subgraph. Therefore there exists $z \in V\left(H_{1}\right) \cap V\left(H_{2}\right)$ such that $z y \notin V(G)$. Now by contracting $V\left(H_{1}\right)-V\left(H_{2}\right)$ to the vertex z in $G+x y$, the resulting graph is $H_{2}+z y$. By induction, $H_{2}+z y>K_{9}$.

Lemma 3.4 Let G be a graph. Let $x, y \in V(G)$ be such that $x y \in E(G)$ with exactly six common neighbors. If $G / x y$ is isomorphic to $K_{2,2,2,3,3}$, then $G>K_{9}$.

Proof. Let w be the new vertex in $G / x y$. Since x and y have exactly six common neighbors, there exist distinct vertices $w_{1}, w_{2}, w_{3}, w_{4} \in V(G / x y)-w$ such that $w_{1} w_{2}, w_{3} w_{4} \notin E(G / x y)$, and w_{1}, w_{2}, w_{3} are common neighbors of x and y in G. Moreover, w_{4} is adjacent to x or y, say to y, in G. By contracting the edges $x w_{2}$ and $y w_{4}$ we see that G has a K_{9} minor, as desired.

Lemma 3.5 Let G be a graph and let x, y be adjacent vertices of G with exactly six common neighbors. If $G / x y$ is isomorphic to $K_{1,2,2,2,2}$, then G has a K_{9} minor, unless G is isomorphic to $K_{2,2,2,3,3}$ and x, y have degree nine in G.

Proof. Let w be the new vertex of $G / x y$, and let $z, x_{1}, y_{1}, \ldots, x_{5}, y_{5}$ be the vertices of $G / x y$ numbered so that x_{i} is not adjacent to y_{i}. Assume first that $w \neq z$, say $w=x_{1}$. Since x and y have six common neighbors, we may assume that x_{2}, y_{2}, x_{3} are common neighbors of x and y. Moreover, y_{3} is adjacent to x or y, say to y. By contracting the edges $x y_{2}, y y_{3}$ and $y_{4} y_{5}$ we see that G has a K_{9} minor, as desired.

Thus we may assume that $w=z$. Since x, y have six common neighbors, their degree is at least seven. Assume for a moment that $d_{G}(x)=7$. Since x, y have six common neighbors in G, we deduce that y is adjacent to all other vertices of G and there exists an index i such that x_{i}, y_{i} are common neighbors of x, y. We may assume that $i=1$. By contracting the edges $x x_{1}, x_{2} x_{3}$ and $x_{4} x_{5}$, we obtain a K_{9} minor of G. Hence we may assume that $d(x), d(y) \geq 8$. We may also assume that G is not isomorphic to $K_{2,2,2,3,3}$ with x, y of degree nine, and so it follows that one of x, y is adjacent to x_{i} or y_{i} for every $i=1,2,3,4,5$. Thus we may assume (by swapping x_{i} and y_{i}) that x is adjacent to all of X, where $X=\left\{x_{1}, \ldots, x_{5}\right\}$. Moreover, we may assume that if y is also adjacent to every vertex of X, then $d(x) \leq d(y)$. Let $Y=\left\{y_{1}, \ldots, y_{5}\right\}$. Since y has degree at least eight, there is some i such that y is adjacent to x_{i} and y_{i}. We claim that y is adjacent to at least three vertices of Y. For if not, then x is adjacent to at least three vertices of Y (the non-neighbors of y) and, since $d(y) \geq 8, y$ is
adjacent to all vertices of X. But then $d(x)>d(y)$, a contradiction. Thus y is adjacent to at least three vertices of Y.

Thus there exist distinct indices i, j, k such that y is adjacent to $x_{i}, y_{i}, y_{j}, y_{k}$. Choose such indices so that, if possible, x is not adjacent to y_{i}. We may assume that $i=1, j=2$ and $k=3$. We claim that x is adjacent to at least two vertices of $Y-\left\{y_{1}\right\}$. For if not, then y has at least four neighbors in Y, and hence x, y have at least four common neighbors in X, and so the indices i, j, k above can be chosen so that x is not adjacent to y_{i}. Thus x is not adjacent to y_{1}, and hence x has at most one neighbor in Y, implying that $d(x)=7$, a contradiction. Thus x has at least two neighbors in $Y-\left\{y_{1}\right\}$, and so we may assume that x has a neighbor in $\left\{y_{2}, y_{4}\right\}$ and a neighbor in $\left\{y_{3}, y_{5}\right\}$. By contracting the edges $y y_{1}, y_{2} y_{4}$ and $y_{3} y_{5}$ we see that G has a K_{9} minor, as required.

Lemma 3.6 Let G be a graph with $\delta(G) \geq 7$. Let $x, y \in V(G)$ be such that $x y \in E(G)$ with exactly six common neighbors. If $G / x y$ is a $\left(K_{1,2,2,2,2,2}, 6\right)$-cockade, then either $G>K_{9}$, or G is isomorphic to $K_{2,2,2,3,3}$ and x, y have degree nine in G.

Proof. We proceed by induction on $|G|$. By Lemma 3.5 we may assume that $G / x y=H_{1} \cup$ H_{2}, where $H_{1} \cap H_{2}$ is a complete graph on six vertices and both H_{1} and H_{2} are ($K_{1,2,2,2,2,2}, 6$)cockades. Let w be the new vertex of $G / x y$. For $i=1,2$ let $H_{i}^{*}=G\left[\left(V\left(H_{i}\right)-\{w\}\right) \cup\{x, y\}\right]$. If $w \in V\left(H_{1}\right)-V\left(H_{2}\right)$, then $H_{1}^{*} \neq K_{2,2,2,3,3}$ (because the latter graph has no K_{6} subgraph) and the result follows by induction applied to H_{1}^{*}. From the symmetry we may assume that $w \in V\left(H_{1}\right) \cap V\left(H_{2}\right)$. Let $S=V\left(H_{1}\right) \cap V\left(H_{2}\right)-\{w\}$; thus $V\left(H_{1}^{*}\right) \cap V\left(H_{2}^{*}\right)=S \cup\{x, y\}$. Let Z denote the set of six common neighbors of x and y in G. If $Z \subseteq V\left(H_{1}^{*}\right)$, then by induction applied to H_{1}^{*} we may assume that H_{1}^{*} is isomorphic to $K_{2,2,2,3,3}$ and x, y have degree nine in H_{1}^{*}. Since H_{1}^{*} has no K_{6} subgraph one of x, y, say x, is not adjacent to some $s \in S$ and x has at least one neighbor in $V\left(H_{2}\right)-V\left(H_{1}\right)$. By using a path with ends x and s and interior in $H_{2}^{*}-V\left(H_{1}^{*}\right)$ we deduce that $G>H_{1}^{*}+s x>K_{9}$ by Lemma 3.3, as desired.

Thus we may assume that $Z-V\left(H_{1}^{*}\right) \neq \emptyset \neq Z-V\left(H_{2}^{*}\right)$. Since H_{2} is a $\left(K_{1,2,2,2,2,2}, 6\right)$ cockade, it is 6 -connected. Let $k=\left|Z-V\left(H_{1}\right)\right|$. Since $\left|Z \cap V\left(H_{2}\right)\right| \leq 5$ we have $|S-Z|=$ $5-|Z \cap S| \geq k$. Thus there exist k disjoint paths $P_{1}, P_{2}, \ldots, P_{k}$ in $H_{2}-(Z \cap S)-w$ between $Z \cap V\left(H_{2}-S\right)$ and $S-Z$. Consequently H_{1}^{*} has a supergraph H_{1}^{\prime} on the same vertex set such that $H_{1}^{\prime}<G$ and x, y have exactly six common neighbors in H_{1}^{\prime}. By induction H_{1}^{\prime} is isomorphic to $K_{2,2,2,3,3}$ and x, y have degree nine in H_{1}^{\prime}. By symmetry the same holds for the analogous graph H_{2}^{\prime}. It follows that in H_{1}^{\prime} the vertex x has a unique non-neighbor in S,
say x^{\prime}. Then $x^{\prime} \notin V\left(P_{1} \cup \cdots \cup P_{k}\right)$. From the symmetry between H_{1} and H_{2} we may assume that $k \leq 3$. (In fact, $\left|Z-V\left(H_{1}\right)\right|=\left|Z-V\left(H_{2}\right)\right|=3$.) It follows that the k disjoint paths P_{1}, \ldots, P_{k} can each be chosen of length one, and that there exists a common neighbor of x and x^{\prime} in $V\left(H_{2}^{*}\right)$, say u, that does not belong to any of the paths. Thus by contracting the edge $u x^{\prime}$ and all the edges of the paths P_{1}, \ldots, P_{k} we deduce that $G>H_{1}^{\prime}+x x^{\prime}>K_{9}$ by Lemma 3.3, as desired.

As pointed out in Section 2, we need to examine graphs G such that $|V(G)| \leq 13$, $\delta(G) \geq 7$ and $G \ngtr K_{7} \cup K_{1}$. (Here $K_{7} \cup K_{1}$ stands for a disjoint union of K_{7} and K_{1}.) The next lemma shows that those graphs G satisfy the following properties:
(A) either G is isomorphic to $K_{1,2,2,2,2}$, or G has four distinct vertices $a_{1}, b_{1}, a_{2}, b_{2}$ such that $a_{1} a_{2}, b_{1} b_{2} \notin E(G)$ and for $i=1,2$ the vertex a_{i} is adjacent to b_{i}, the vertices a_{i}, b_{i} have at most four common neighbors, and $G+a_{1} a_{2}+b_{1} b_{2}>K_{8}$,
(B) for any two sets $A, B \subseteq V(G)$ of cardinality at least five such that neither is complete and $A \cup B$ includes all vertices of G of degree at most $|G|-2$, either
(B1) there exist $a \in A$ and $b \in B$ such that $G^{\prime}>K_{8}$, where G^{\prime} is obtained from G by adding all edges $a a^{\prime}$ and $b b^{\prime}$ for $a^{\prime} \in A-\{a\}$ and $b^{\prime} \in B-\{b\}$, or
(B2) there exist $a \in A-B$ and $b \in B-A$ such that $a b \in E(G)$ and the vertices a and b have at most five common neighbors in G , or
(B3) one of A and B contains the other and $G+a b>K_{7} \cup K_{1}$ for all distinct nonadjacent vertices $a, b \in A \cap B$.

Figure 1: graph J_{1} and graph J_{2}.
Lemma 3.7 Let n be an integer satisfying $9 \leq n \leq 13$ and let G be a graph on n vertices with $\delta(G) \geq 7$. Then either $G>K_{7} \cup K_{1}$, or G satisfies (A) and (B).

Proof. By a computer search we have determined that the graphs G with $9 \leq n \leq 13$ vertices, $\delta(G) \geq 7$ and $G \ngtr K_{7} \cup K_{1}$ are the following ones: $K_{1,2,2,2,2}, K_{1,3,3,3}, K_{3,3}+P_{4}$, $K_{3,3}+\bar{C}_{4}, K_{2,2,3,3}, K_{2,3}+C_{5}, C_{5}+C_{5}, \bar{K}_{3}+\bar{C}_{7}, K_{3,4,4}, \bar{K}_{3}+\bar{V}_{8}, K_{1}+\bar{P}, \overline{P^{\prime}}, \overline{J_{1}}$ and $K_{1}+J_{2}$. Here $H+G$ stands for the graph obtained from $G \cup H$ by adding all edges with one end in $V(H)$ and the other in $V(G), \bar{G}$ denotes the complement of a graph, P_{4} denotes the path of four vertices, V_{8} denotes the graph obtained from C_{8} by joining all four pairs of diagonally opposite vertices, P is the Petersen graph, P^{\prime} denotes the graph obtained from P by subdividing one edge, and the graphs J_{1} and J_{2} are depicted in Figure 1. It is straightforward to check that those graphs satisfy (A) and (B). The details of this and of the computer search can be obtained from the authors' websites.

4 Proof of Theorem 1.3

In this section, we are going to prove Theorem 1.3 by induction on n. The only graph G with 9 vertices and $e(G) \geq 7 \times 9-27=36$ is K_{9}. Thus we may assume that $n \geq 10$ and that the assertion holds for smaller values of n. Throughout this section we assume that G is a graph with n vertices and $e(G) \geq 7 n-27$ but G is not contractible to K_{9} and G is not $K_{2,2,2,3,3}$ or a ($K_{1,2,2,2,2,2}, 6$)-cockade. By Lemma 3.3, we may assume that $e(G)=7 n-27$.

Suppose that G has a vertex x of degree at most 6 . Then $e(G-x) \geq 7(n-1)-26$, and hence $G>G-x>K_{9}$ by induction, a contradiction. Suppose now that G has two adjacent vertices x, y with at most five common neighbors. Then $e(G / x y) \geq 7(n-1)-26$. By induction, $G>K_{9}$, a contradiction. Thus $\delta(G) \geq 7$ and $\delta(N(x)) \geq 6$. If G has a vertex x of degree 7 , then $N(x)=K_{7}$ and $e(G-x) \geq 7(n-1)-27$. Note that neither a ($K_{1,2,2,2,2,2}, 6$)-cockade nor $K_{2,2,2,3,3}$ contain K_{7} as a subgraph. Thus, by induction, $G-x>$ K_{9}, a contradiction. Hence
(1) $\delta(G) \geq 8$ and $\delta(N(x)) \geq 6$ for any $x \in V(G)$.

Let S be a separating set of vertices in G, and let G_{1} and G_{2} be proper subgraphs of G so that $G=G_{1} \cup G_{2}$ and $G_{1} \cap G_{2}=G[S]$. Let $m_{i}=7\left|G_{i}\right|-27-e\left(G_{i}\right), i=1,2$. Then $7 n-27=e(G)=e\left(G_{1}\right)+e\left(G_{2}\right)-e(G[S])=7 n+7|S|-54-m_{1}-m_{2}-e(G[S])$, and so
(2) $7|S|=27+m_{1}+m_{2}+e(G[S])$.

For $i=1,2$, let d_{i} be the maximum number of edges that can be added to G_{3-i} by
contracting edges of G with at least one end in G_{i}. More precisely, let d_{i} be the largest integer so that G_{i} contains disjoint set of vertices $V_{1}, V_{2}, \ldots, V_{p}$ so that $G_{i}\left[V_{j}\right]$ is connected, $\left|S \cap V_{j}\right|=1$ for $1 \leq j \leq p=|S|$, and so that the graph obtained from G_{i} by contracting $V_{1}, V_{2}, \ldots, V_{p}$ and deleting $V(G)-\left(\bigcup_{j} V_{j}\right)$ has $e(G[S])+d_{i}$ edges. By $(1), \delta(G) \geq 8$. Thus $\left|G_{i}\right| \geq 9, i=1,2$. By induction, $d_{1} \leq m_{2}$ and $d_{2} \leq m_{1}$. By (2),
(3) $7|S| \geq 27+d_{1}+d_{2}+e(G[S])$.

In particular, $|S| \geq 4$. If S is a minimal separating set, then let $v \in S$ be a vertex of minimum degree in $G[S]$. By choosing $V_{1}=V\left(G_{i}\right)-(S-\{v\})$ and the rest of the sets V_{j} to be singletons, we see that $d_{i} \geq|S|-1-\delta(G[S])$ for $i=1,2$. Thus
(4) if S is a minimal separating set, then

$$
5|S| \geq 25+e(G[S])-2 \delta(G[S])) \geq 25+\frac{1}{2}(|S|-4) \delta(G[S])
$$

Lemma 4.1 G is 6-connected.

Proof. Suppose G is not 6 -connected. Let S be a minimal separating set of G, and let $G_{1}, G_{2}, d_{1}, d_{2}$ be as above. By (4) G is 5 -connected and $G[S]=\overline{K_{5}}$. We next show that $d_{1} \geq 5$. Let x and y be distinct vertices in $G_{1} \backslash S$. By Menger's theorem, there exist five x-S paths $P_{1}, P_{2}, \ldots, P_{5}$ in G_{1} which have only the vertex x in common. If all these paths have length 1 , then, since there are at least four internally disjoint y - S paths in $G_{1} \backslash\{x\}$, by contracting these paths we deduce that $d_{1} \geq 7$. We may now assume that P_{1} has length at least 2. Let $V\left(P_{1}\right) \cap S=\{z\}$. As $\{x, z\}$ is not a separating set in G, there is a path P from a vertex on $P_{1} \backslash\{x, z\}$ to a vertex on some $P_{i} \backslash\{x\}, i \neq 1$, so that only the end vertices of P belong to $\bigcup_{j=1}^{5} P_{j}$. By contracting a suitable subset of the edges of $P \cup P_{1} \cup \cdots \cup P_{5}$ we deduce that $d_{1} \geq 5$, as claimed.

By symmetry, $d_{2} \geq 5$ and so $d_{1}+d_{2} \geq 10$. However, by (3), $d_{1}+d_{2} \leq 8$, which is a contradiction.

Lemma 4.2 There is no separating set S with a vertex x so that $G[S-x]$ is complete.

Proof. Suppose that $G[S-x]$ is complete and let G_{1}, G_{2} be as above. We may assume that S is a minimal separating set. By Lemma $4.1,|S| \geq 6$. If $|S| \geq 8$, by contracting $V\left(G_{1}\right)-S$
to x and $V\left(G_{2}\right)-S$ to a new vertex, we get a K_{9} minor, a contradiction. So we may assume that $|S|=6$ or $|S|=7$.

If $|S|=6$, by (4), $5|S| \geq 25+e(G[S])-2 \delta(G[S])) \geq 25+10+\delta(G[S])-2 \delta(G[S])$, which implies that $G[S]=K_{6}$. By induction, we may assume $e\left(G_{i}\right) \leq 7\left|G_{i}\right|-27, i=1,2$. Since $7 n-12=7 n-27+15=e(G)+15=e\left(G_{1}\right)+e\left(G_{2}\right) \leq 7\left|G_{1}\right|-27+7\left|G_{2}\right|-27=7 n-12$, it follows that $e\left(G_{i}\right)=7\left|G_{i}\right|-27, i=1,2$. Since $K_{2,2,2,3,3}$ does not contain K_{6} as a subgraph, by induction, $G_{i}>K_{9}$ or G_{i} is a ($K_{1,2,2,2,2,2}, 6$)-cockade. Thus $G>K_{9}$ or G is a $\left(K_{1,2,2,2,2,2}, 6\right)$ cockade, a contradiction.

If $|S|=7$, by (4), $5|S| \geq 25+e(G[S])-2 \delta(G[S])) \geq 25+15+\delta(G[S])-2 \delta(G[S])$, which implies that $G[S]$ is isomorphic to K_{7} or K_{7} with an edge deleted. Let $e(G[S])=21-t$, where $t=0$ or 1 . Suppose $e\left(G_{1}\right) \geq 7\left|G_{1}\right|-27-t$. Let G_{1}^{\prime} be obtained from G by contracting $V\left(G_{2}\right)-S$ to x. Then $e\left(G_{1}^{\prime}\right)=e\left(G_{1}\right)+t \geq 7\left|G_{1}^{\prime}\right|-27$. Since G_{1}^{\prime} contains a K_{7} subgraph, it is not $K_{2,2,2,3,3}$ or a ($K_{1,2,2,2,2,2}, 6$)-cockade, and hence by induction, $G>G_{1}^{\prime}>K_{9}$. Thus $e\left(G_{1}\right) \leq 7\left|G_{1}\right|-28-t$. Similarly, we have $e\left(G_{2}\right) \leq 7\left|G_{2}\right|-28-t$. But now $e(G)=$ $e\left(G_{1}\right)+e\left(G_{2}\right)-e(G[S]) \leq 7(n+7)-28-t-28-t-21+t=7 n-28-t$, which is a contradiction.

Lemma $4.3 \delta(N(x)) \geq 7$ for any $x \in V(G)$.

Proof. Suppose $\delta(N(x)) \leq 6$. By (1) there exists a vertex $y \in N(x)$ such that x and y have exactly six common neighbors. Then $e(G / x y)=7(n-1)-27$. Since $G \ngtr K_{9}$, the minimality of $|G|$ implies that $G / x y$ is isomorphic to $K_{2,2,2,3,3}$ or is a ($K_{1,2,2,2,2,2}, 6$)-cockade. In either case, by Lemma 3.4 or Lemma $3.6, G>K_{9}$ or $G=K_{2,2,2,3,3}$, a contradiction.

Lemma $4.4 \delta(G) \geq 9$.

Proof. Let $x \in V(G)$ be such that $d(x)=\delta(G) \leq 8$. By Lemma 4.3, $N(x)=K_{8}$ and so $G>N[x]=K_{9}$, a contradiction.

Lemma 4.5 If $G-N[x]$ is 2 -connected or has at most two vertices, then $N(x) \neq K_{1,2,2,2,2}$.

Proof. Suppose for a contradiction that $N(x)=K_{1,2,2,2,2}$. Let $V(N(x))=\left\{y, z_{1}, z_{2}, z_{3}, z_{4}\right.$, $\left.w_{1}, w_{2}, w_{3}, w_{4}\right\}$ so that y is adjacent to all vertices in $N(x)-y$ and $z_{i} w_{i} \notin E(G)$.

We next show that z_{i} and w_{i} have no common neighbor in $G-N[x]$ for $i=1,2,3,4$. To this end suppose that there exists a vertex $v \in V(G-N[x])$ adjacent to, say z_{1} and w_{1}. Let $K=G-N[x]-v$. Then K is not null by Lemma 4.4, because G is not isomorphic to $K_{1,2,2,2,2,2}$. Since $G-N[x]$ has no cut vertex, K is connected. If $z_{i}, w_{i} \in N(K)$ for some $i \in\{2,3,4\}$, then let P be a path with ends z_{i} and w_{i} and interior in K. By contracting the edge $z_{1} v$ and all but one of the edges of P we see that $G>N[x]+z_{1} v_{1}+z_{i} w_{i}>K_{9}$, a contradiction. Thus we may assume that $w_{2}, w_{3}, w_{4} \notin N(K)$. Let $i \in\{2,3,4\}$. It follows from Lemma 4.3 applied to w_{i} that v is adjacent to w_{i}. By Lemma 4.3 the edge $v w_{i}$ is in at least seven triangles, and hence z_{2}, z_{3}, z_{4} are all adjacent to v. By Lemma 4.2 the set $N(K)-\{v\}$ is not complete, and hence $z_{1}, w_{1} \in N(K)$. By contracting the edge $v w_{2}$ and all but one edge of a $z_{1}-w_{1}$ path with interior in K we deduce that $G>N[x]+z_{1} w_{1}+z_{2} w_{2}>K_{9}$, a contradiction. This proves that the vertices z_{i} and w_{i} have no common neighbor in $G-N[x]$.

Let $u \in V(G)-N[x]$ be a neighbor of z_{1}. By Lemma 4.3 the vertices u and z_{1} have at least seven common neighbors, and so by the result of the previous paragraph z_{1} has at least four neighbors in $G-N[x]$. By symmetry the same holds for all z_{i} and w_{i}.

Let $H=G-\left\{x, y, z_{3}, w_{3}, z_{4}, w_{4}\right\}$. We next show that H is 4 -connected. Suppose for a contradiction that S is a minimal separating set of at most three vertices in H. Since $G-N[x]$ has no cut vertex, $|S| \geq 2$ and $|S \cap N(x)| \leq 1$. If $|S \cap N(x)|=1$, we may assume that $w_{1} \in S$. Since $z_{1} z_{2}, z_{1} w_{2} \in E(G), z_{1}, z_{2}, w_{2}$ are in the same component of $H-S$. Denote this component by K. If $w_{1} \notin S$, then also $w_{1} \in K$. Since z_{2}, w_{2} have at least four neighbors in $G-N[x]$, there exist z_{2}^{\prime} and w_{2}^{\prime} in $G-N[x]-S$ adjacent to z_{2} and w_{2}, respectively. Clearly, z_{2}^{\prime} and w_{2}^{\prime} belong to K. As $G-N[x]$ has no cut vertex, $G-N[x]$ contains two independent $z_{2}^{\prime}-w_{2}^{\prime}$ paths. One of these paths is contained in $G[K \cup S]$.

Since G is not contractible to $N[x]+z_{2} w_{2}+z_{i} w_{i}>K_{9}$ for $i=3,4$, there is no z_{i} - w_{i} path in $G\left[K^{\prime} \cup\left\{z_{i}, w_{i}\right\}\right]$, where $K^{\prime} \neq K$ is another component of $H-S$. But this implies that K^{\prime} is separated from x by S and three pairwise adjacent vertices. We may assume that such three vertices are y, w_{3}, w_{4}. Since G is 6 -connected, $|S|=3$. Let $S=\left\{s_{1}, s_{2}, s_{3}\right\}$, where $s_{1}=w_{1}$ if $w_{1} \in S$, and let $S^{\prime}=S \cup\left\{y, w_{3}, w_{4}\right\}$. Then S^{\prime} is a minimal separating set of G. Let $H_{1}=G\left[K^{\prime} \cup S^{\prime}\right]$ and $H_{2}=G-K^{\prime}$. Let d_{1} and d_{2} be defined as in the paragraph prior to (3). Clearly, $K \cup\left\{x, z_{3}, z_{4}\right\}$ is contained in H_{2}. By Menger's theorem, there exist three disjoint paths between $\left\{x, w_{1}, w_{2}\right\}$ and S in $G-\left\{y, w_{3}, w_{4}\right\}$. Now by contracting those paths, we get $d_{2}+e\left(G\left[S^{\prime}\right]\right)=e\left(K_{6}\right)=15$. By Lemma $4.2, d_{1} \geq 1$. By (3), $42=7\left|S^{\prime}\right| \geq 27+1+15=43$, a contradiction. Thus H is 4 -connected.

Since G is not contractible to K_{9}, it follows from Theorem 3.2 applied to the vertices z_{1}, z_{2}, w_{1}, w_{2} that $e(H) \leq 3|H|-7=3(n-6)-7$. Since for $i \in\{3,4\}$ the vertices z_{i} and w_{i} have no common neighbor in $G-N[x]$, they together have at most $|G|-|N[x]|=n-10$ neighbors in $G-N[x]$. The vertices $\left\{z_{3}, w_{3}, z_{4}, w_{4}\right\}$ are incident with 20 edges of $N(x)-y$. Thus

$$
\begin{aligned}
7 n-27 & =e(G) \leq d(x)+d(y)-1+e(H)+2(n-10)+20 \\
& \leq 9+n-2+3(n-6)-7+2(n-10)+20=6 n-18
\end{aligned}
$$

It follows that $n \leq 9$, a contradiction.
Lemma 4.6 Let $x \in V(G)$ be such that $9 \leq d(x) \leq 13$. Then there is no component K of $G-N[x]$ such that $N\left(K^{\prime}\right) \cap M \subseteq N(K)$ for every component K^{\prime} of $G-N[x]$, where M is the set of vertices of $N(x)$ not adjacent to all other vertices of $N(x)$.

Proof. Assume such a component K exists. Among all vertices x with $9 \leq d(x) \leq 13$ for which such a component exists, choose x to be of minimal degree. We first prove that $M \subseteq N(K)$. Suppose for a contradiction that $M-N(K) \neq \emptyset$, and let $y \in M-N(K)$ be such that $d(y)$ is minimum. Clearly, $d(y)<d(x)$. Let J be the component of $G-N[y]$ containing K. Since $d(y)<d(x)$ the choice of x implies that $N(x)-N[y] \nsubseteq V(J)$, and hence some component H of $N(x)-N[y]$ is disjoint from $N(K)$. We have $d_{G}(z) \geq d_{G}(y)$ for all $z \in V(H)$ by the choice of y. Let $t=|V(H)|$. Then $t \geq 2$, for otherwise the vertex y and component H contradict the choice of x. On the other hand $t \leq d(x)-d(y) \leq 13-9=4$. From Lemma 4.3 applied to y we deduce that $N(y) \cap N(x)$ has minimum degree at least six. Let L be the subgraph of G induced by $(N[y] \cap N(x)) \cup V(H)$. Then the edge-set of L consists of edges of $N(x) \cap N(y)$, edges incident with y, and edges incident with $V(H)$. Thus

$$
\begin{aligned}
e(L) & \geq 3(d(y)-1)+d(y)-1+t(d(y)-1)-\frac{1}{2} t(t-1) \\
& \geq 6(d(y)+t)+(t-2) d(y)-4-7 t-\frac{1}{2} t(t-1) \geq 6|V(L)|-20
\end{aligned}
$$

because $d(y) \geq 9$ and $2 \leq t \leq 4$. Since $11 \leq|V(L)| \leq 13$ the graph L is not a $\left(K_{2,2,2,2,2}, 5\right)$ cockade, and hence $N(x)>L>K_{8}$ by Theorem 1.2. Thus $G>K_{9}$, a contradiction. This proves that $M \subseteq N(K)$.

If $N(x)>K_{7} \cup K_{1}$, then $N(x)$ has a vertex y such that $N(x)-y>K_{7}$. If $y \notin M$, then $N(x)>K_{8}$. Otherwise, by contracting the connected set $V(K) \cup\{y\}$ we can contract K_{8} onto $N(x)$. Thus in either case $G>K_{9}$, a contradiction. Thus by Lemma 3.7, we may assume that $N(x)$ satisfies properties (A) and (B).

If $G-N[x]$ is 2 -connected or has at most two vertices, then by Lemma 4.5, we may assume that $N(x) \neq K_{1,2,2,2,2}$. Then by property (A) and Lemma 4.3 the set $N(x)$ has four distinct vertices $a_{1}, b_{1}, a_{2}, b_{2}$ such that $a_{1} a_{2}, b_{1} b_{2} \notin E(G), N(x)+a_{1} a_{2}+b_{1} b_{2}>K_{8}$ and for $i=1,2$ the vertex a_{i} is adjacent to b_{i}, the vertices a_{i}, b_{i} have at least two common neighbors in $G-N[x]$. Let u_{1}, u_{2} (resp. w_{1}, w_{2}) be two distinct common neighbors of a_{1} and b_{1} (resp. a_{2} and b_{2}) in $G-N[x]$. By Menger's Theorem, $G-N[x]$ contains two disjoint paths from $\left\{u_{1}, u_{2}\right\}$ to $\left\{w_{1}, w_{2}\right\}$ and so $G>N[x]+a_{1} a_{2}+b_{1} b_{2}>K_{9}$, a contradiction.

Thus we may assume that $G-N[x]$ has at least three vertices and is not 2-connected. If $G-N[x]$ is disconnected, let $H_{1}=K$ and H_{2} be another connected component of $G-N[x]$. If $G-N[x]$ has a cut-vertex, say w, let H_{1} be a connected component of $G-N[x]-w$ and let $H_{2}=G-N[x]-V\left(H_{1}\right)$. In either case, H_{1} and H_{2} are disjoint connected subgraphs of $G-N[x]$ such that $M \subseteq N\left(H_{1}\right) \cup N\left(H_{2}\right)$ (because we have shown that $M \subseteq N(K)$). For $i=1,2$ let $A_{i}=N\left(H_{i}\right) \cap N(x)$. By Lemma 4.2 and Lemma 4.1, A_{i} is not complete and $\left|A_{i}\right| \geq 5$ for $i=1,2$. By property (B), A_{1} and A_{2} satisfy properties (B1), (B2) or (B3).

Suppose first that A_{1} and A_{2} satisfy property (B1). Then there exist $a_{i} \in A_{i}$ such that $N(x)+\left\{a_{1} a: a \in A_{1}-\left\{a_{1}\right\}\right\}+\left\{a_{2} a: a \in A_{2}-\left\{a_{2}\right\}\right\}>K_{8}$. By contracting the connected sets $V\left(H_{1}\right) \cup\left\{a_{1}\right\}$ and $V\left(H_{2}\right) \cup\left\{a_{2}\right\}$ to single vertices, we see that $G>K_{9}$, a contradiction. Suppose next that A_{1} and A_{2} satisfy property (B2). Then there exist $a_{1} \in A_{1}-A_{2}$ and $a_{2} \in A_{2}-A_{1}$ such that $a_{1} a_{2} \in E(G)$ and the vertices a_{1} and a_{2} have at most five common neighbors in $N(x)$. Thus $a_{1}, a_{2} \in M$ by Lemma 4.3, and by another application of the same lemma there exists a common neighbor $u \in V(G)-N[x]$ of a_{1} and a_{2}. But $a_{1} \notin A_{2}$ and $a_{2} \notin A_{1}$, and hence $u \notin V\left(H_{1}\right) \cup V\left(H_{2}\right)$. Thus $G-N[x]$ is disconnected and $H_{1}=K$. But then $a_{2} \in M \subseteq N(K)=N\left(H_{1}\right)$, a contradiction. Thus we may assume that A_{1} and A_{2} satisfy (B3), and hence $A_{i} \subseteq A_{3-i}$ for some $i \in\{1,2\}$. As $M \subseteq A_{1} \cup A_{2}$, we have $M \subseteq N\left(H_{3-i}\right)$. Since A_{i} is not complete, let $a, b \in A_{i}$ be distinct and not adjacent. By property (B3), $N(x)+a b>K_{7} \cup K_{1}$. Let P be an $a-b$ path with interior in H_{i}. By contracting all but one of the edges of the path P and by contracting H_{3-i} similarly as above, we see that $G>K_{9}$, a contradiction.

Lemma 4.7 $G-N[x]$ is disconnected for every vertex $x \in V(G)$ of degree at most 13 .

Proof. If $G-N[x]$ is not null, then it is disconnected by Lemma 4.6. Thus we may assume that x is adjacent to every other vertex of G. Let $H=G-x$. Then $e(H)=e(G)-n+1=$ $7 n-27-n+1=6|H|-20$. By Theorem 1.2 applied to H the graph G has a K_{9} minor or is a ($K_{1,2,2,2,2,2}, 6$)-cockade, a contradiction.

Lemma $4.8 \quad \delta(G) \geq 10$.

Proof. Let $x \in V(G)$ be such that $d(x)=\delta(G)=9$. By Lemma 4.3, $\delta(N(x)) \geq 7$, and hence $N(x)>K_{1,2,2,2,2}$. Let K, K^{\prime} be two components of $G-N[x]$. By Lemma 4.2, $N(K)$ and $N\left(K^{\prime}\right)$ contain distinct pairs of nonadjacent vertices of $N(x)$, say a, b and c, d, respectively. Thus $G>N[x]+a b+c d>K_{9}$ by the existence of internally disjoint $a-b$ and $c-d$ paths with interiors in K, K^{\prime} respectively, a contradiction.

Lemma 4.9 Let $x \in V(G)$ be such that $10 \leq d(x) \leq 13$. Then there is no component K of $G-N[x]$ such that $d_{G}(y) \geq 14$ for every vertex $y \in V(K)$.

Proof. Assume that such a component K exists. Let $G_{1}=G-K$ and $G_{2}=G[K \cup N(K)]$. Let d_{1} be defined as in the paragraph prior to (3). Let G_{2}^{\prime} be a graph with $V\left(G_{2}^{\prime}\right)=V\left(G_{2}\right)$ and $e\left(G_{2}^{\prime}\right)=e\left(G_{2}\right)+d_{1}$ edges obtained from G by contracting edges in G_{1}. By Lemma 4.8, $\left|G_{2}^{\prime}\right| \geq 11$. If $e\left(G_{2}^{\prime}\right) \geq 7\left|G_{2}^{\prime}\right|-26$, then by induction $G>G_{2}^{\prime}>K_{9}$, a contradiction. Thus

$$
e\left(G_{2}\right)=e\left(G_{2}^{\prime}\right)-d_{1} \leq 7\left|G_{2}\right|-27-d_{1}=7|N(K)|+7|K|-27-d_{1} .
$$

By contracting the edge $x z$, where $z \in N(K)$ has minimum degree in $N(K)$, we see that $d_{1} \geq|N(K)|-d-1$, and hence

$$
\begin{equation*}
e\left(G_{2}\right) \leq 6|N(K)|+7|K|-26+d \tag{a}
\end{equation*}
$$

Let $t=e_{G}(N(K), K)$ and $d=\delta(N(K))$. We have $e\left(G_{2}\right)=e(K)+t+e(N(K))$ and

$$
\begin{equation*}
2 e(K) \geq 14|K|-t \tag{b}
\end{equation*}
$$

and hence

$$
\begin{equation*}
e\left(G_{2}\right) \geq 7|K|+t / 2+d|N(K)| / 2 \tag{c}
\end{equation*}
$$

Since $N(x)$ has minimum degree at least seven, it follows that the subgraph $N(K)$ of $N(x)$ has minimum degree at least $7-(d(x)-|N(K)|)$. Thus $d \geq 7-(d(x)-|N(K)|) \geq|N(K)|-6$. From (a) and (c) we get

$$
\begin{equation*}
-t / 2 \geq 26-6|N(K)|+d(|N(K)|-2) / 2 \geq-18 \tag{d}
\end{equation*}
$$

where the second inequality holds with equality only when $|N(K)|=10$. Since G is not contractible to K_{9}, we deduce from (b) by induction that $|K|<9$. The inequality $e(K) \geq$ $7|K|-18$ implies $|K| \leq 3$. But every vertex of K has degree at least 14 and $N(K)$ is a proper subgraph of $N(x)$, and hence $|K|=3,|N(K)|=12$ and (d) holds with equality, contrary to our earlier observation that (d) holds with equality only when $|N(K)|=10$.

By Lemma 4.8 and the fact that $e(G)=7 n-27$ there is a vertex x of degree $10,11,12$ or 13 in G. Choose such a vertex x so that $G-N[x]$ has a component K of minimum order. Then choose a vertex $y \in V(K)$ of least degree in G. Thus $10 \leq d_{G}(y) \leq 13$ by lemmas 4.8 and 4.9. Let L be the component of $G-N[y]$ containing x. We claim that $N(L)$ contains all vertices of $N(y)$ that are not adjacent to all other vertices of $N(y)$. Indeed, let $z \in N(y)$ be not adjacent to some vertex of $N(y)-\{z\}$. We may assume that $z \notin N(x)$, for otherwise $z \in N(L)$. Thus $z \in V(K)$, and hence $d_{G}(z) \geq d_{G}(y)$ by the choice of y. Thus z has a neighbor $z^{\prime} \in N[x] \cup K-N[y]$. Then $z^{\prime} \in V(L)$, for otherwise the component of $G-N[y]$ containing z^{\prime} would be a proper subgraph of K. Thus $z \in N(L)$. This proves our claim that $N(L)$ contains all vertices z as above, contrary to Lemma 4.6. This contradiction completes the proof of Theorem 1.3.

Acknowledgement

We are indebted to Brendan McKay for providing us with the list of edge-minimal graphs of minimum degree seven on at most 13 vertices. Having that list was extremely important; by checking that only 12 of those graphs had no $K_{7} \cup K_{1}$ minor we convinced ourselves that we will be able to complete this project. We thank the referees for helpful comments; in particular we are grateful to the referee who suggested a considerable shortening of the last step of the proof.

References

[1] T. Böhme, K. Kawarabayashi, J. Maharry and B. Mohar, Linear connectivity forces large complete bipartite minors, submitted.
[2] B. Bollobás, P. Catlin and P. Erdös, Hadwiger's conjecture is true for almost every graph, European J. Combin. Theory 1 (1980) 195-199.
[3] G. Chen, R. J. Gould, K. Kawarabayashi, F. Pfender and B. Wei, Graph Minors and Linkages, J. Graph Theory 49 (2005) 75-91.
[4] G. A. Dirac, A property of 4-chromatic graphs and some remarks on critical graphs, J. London Math. Soc. 27 (1952) 85-92.
[5] G. A. Dirac, Homomorphism theorems for graphs, Math. Ann. 153 (1964) 69-80.
[6] W. Fernandez de la Vega, On the maximum density of graphs which have no subtractions to K^{s}, Discrete Math. 46 (1983) 109-110.
[7] E. Györi, On the edge numbers of graphs with Hadwiger number 4 and 5, Period. Math. Hung. 13 (1982) 21-27.
[8] H. Hadwiger, Über eine Klassifikation der Strechenkomplexe, Vierteljschr. Naturforsch. Ges Zürich 88 (1943) 133-142.
[9] I. T. Jakobsen, A homomorphism theorem with an application to the conjecture of Hadwiger, Studia Sci. Math. Hung. 6 (1971) 151-160.
[10] I. T. Jakobsen, On certain homomorphism properties of graphs I, Math. Scand. 31 (1972) 379-404.
[11] I. T. Jakobsen, On certain homomorphism properties of graphs II, Math. Scand. 52 (1983) 229-261.
[12] H. A. Jung, Eine Verallgemeinerung des n-fachen Zusammenhangs für Graphen, Math. Ann. 187 (1970) 95-103.
[13] L. K. Jørgensen, Contractions to K_{8}, J. Graph Theory 18 (1994) 431-448.
[14] L. K. Jørgensen, Vertex partitions of $K_{4,4}$-minor free graphs, Graphs Combin. 17 (2001) 265-274.
[15] A. V. Kostochka, The minimum Hadwiger number for graphs with a given mean degree of vertices (in Russian), Metody Diskret. Analiz. 38 (1982) 37-58.
[16] A. V. Kostochka, A lower bound for the Hadwiger number of graphs by their average degree, Combinatorica 4 (1984) 307-316.
[17] W. Mader, Über trennende Eckenmengen in homomorphiekritischen Graphen, Math. Ann. 175 (1968) 243-252.
[18] W. Mader, Homomorphiesätze für Graphen, Math. Ann. 178 (1968) 154-168.
[19] N. Robertson, P. Seymour and R. Thomas, Hadwiger's conjecture for K_{6}-free graphs, Combinatorica 13 (1993) 279-361.
[20] P. Seymour, Disjoint paths in graphs, Discrete Math. 29 (1980) 293-309.
[21] Z-X Song, The extremal function for K_{8}^{-}minors, J. Combin. Theory Ser. B, to appear.
[22] R. Thomas and P. Wollan, An improved linear edge bound for graph linkages, European. J. Combin. 26 (2005) 309-324.
[23] A. Thomason, An extremal function for contractions of graphs, Math. Proc. Cambridge Phil. Soc. 95 (1984) 261-265.
[24] A. Thomason, The extremal functions for complete minors, J. Combin. Theory Ser. B 81 (2001) 318-338.
[25] C. Thomassen, 2-linked graphs, European. J. Combin. 1 (1980) 371-378.
[26] K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Math. Ann. 114 (1937) 570590.

This material is based upon work supported by the National Science Foundation under Grant No. 0200595 . Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

[^0]: *Partially supported by NSF grant 0200595.
 †Partially supported by NSF grant 0200595 and ONR grant N00014-01-0608.

