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ABSTRACT

For each infinite cardinal ¥, we give a structural characterization of the graphs with no K -miner. ‘We also give

such a characterization of the graphs with no “‘half-grid”* minor.




1. INTRODUCTION

The first two authors proved (or claim to have proved — the proof is still being refereed) Wagner’s conjecture,
that for any infinite seqﬁence Gy, Gy,... of finite graphs, there exists integers j > { = 1 such that G; is isomorphic to
a minor of ;. (Definitions are given later.) The main step of the proof was a lemma that for any finite graph H
{which we might as well assume to be complete), all finite graphs not containing H as a minor have a restricted
struc‘ture; roughly, each such graph consists of pieces which ‘‘almost™ have bounded genus, fitted together at small

cutsets in a tree structure. This lemma, while powerful, suffers from several disadvantages:
(1) it is very difficult to state and to apply
(ii) it is even more difficult to prove

(iit) it is not necessary and sufficient for the exclusion of H, but merely necessary for the exclusion of H and

sufficient for the exclusion of some other, larger, graph.

Nevertheless, given this lemma, one can attack Wagner’s conjecture as follows. Let Gy, G,.... be a sequence of
finite graphs; then, since we may assume that for { 22 G; does not contain G; as a minor, it follows that G4, G3,...
all have the structure of the lemma (taking H = G ), and it therefore suffices to prove the result for sequences of

graphs with this structure,

7 What about extending Wagner’s conjecture to sequences of infinite graphs? Thomas [10] gave countably many
infinite graphs none of which was a minor of another, and sé Wagner's conjecture does not extend to infinite graphs
in an unrestricted way. However, Thomas’ graphs are unc_oi.mtable, and it_ js an open qlfestion whether there is a
countable set of countable graphs no member of which is a minor of another. Another open question is: let X be an

infinite cardinal, and let Cbe a set of graphs, such that | €| =« and every graph in Chas < X vertices; then do there

necessarily exist distinct G, H € Cso that H is a minor of G?

There is not much chance of proving these conjectures because they imply that the set of all finite graﬁhs is
*‘better-quasi-ordered’” by minor containment, which in itself seems to be a hopelessly difficult problem.
Nevertheless, there is a natural first step, a generalization to infinite graphs of the finite graph lemma about the
structure resulting from excluding a minor; and the main result of this paper is such a generalization. As often

happens with infinite graph theory, things work better than in the finite case; the structure resulting from excluding




as a minor the complete graph K, with x vertices (when x is an infinite cardinal) is relatively easy to explain and to

prove, and is both necessary and sufficient.

This is one reason for interest in examining the structure resulting from excluding X, as a minor. Another is as
follows. Let ¥ be a cardinal; a haven B of order ¥ is a graph G is a function assigning, to every set X of < x vertices,
a component B(X) of the graph obtained by deleting X, so that if X ¢ ¥ then f(¥) ¢ B(X). For x and G finite, it was
shown in [0] that G has a haven of order « if and only if G cannot be expressed as a tree-structure of pieces each
with < ¥ vertices (that is, G has ‘‘tree-width”’ = x - 1); and since tree-width is an interesting and useful concept for
finite graphs, it seems that havens of finite order have some significance. For x = Ry, the havens in G are 1-1
correspondence with the “‘ends” of G, and the latter have been extensively studied. This suggests that perhaps
havens of uncountable order K, and the graphs with no such havens, might also be interesting. But it is easy to show.
that for ¥ uncountable, G has a haven of order k if and only if G has K, as a minor, _and so the result of this paper

solves also the question of which graphs have havens of order k. That is a second reason for interest in this topic.

A third reason for interest is that, in finite graph theory, there are a number of important theorems about the
structure resulting from the exclusion of a fixed minor or set of minors — for example, the Kuratowski-Wagner
theorem that a graph has no K5 or K3 3 minor if and only if it is planar. It is hatural to ask for infinite analogues
with infinite excluded minors. Along these lines, Halin [2] gave a necessary and sufﬁcie.nt structural description of
the graphs with no 1-way infinite path; in [8] the last two authors gave a necessary and sufficient structur.al
condition for a graph not to contain as a minor the K-valent tree, for each cardinal ¥; and in [7] we gave a structural
description of the graphs not containing K. “‘topologically’’, for each infinite x. {A similar result when ¥ is regular
uncountable was independently obtained by Diestel [1].) But not much else seems to have been done, and the result
of this paper is the natural next step. (For k regulat and uncountable, excluding K topologically is equivalent to
excluding it as a minor, as Jung [4] showed; but for X singular or countable, the two kinds of éontainment are not

equivalent.)

Our main result states, roughly, that for every cardinal x = R, if a graph has no K -minor then it admits a kind
of generalized tree-decomposition into pieces of cardinality < K, with some additional constraints; and conversely,
no graph with a K -minor admits such a decomposition. The case K= R is exceptional, however. When x = X,

admitting this decomposition is sufficient for excluding K -minors, but not necessary, and is in fact necessary and
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sufficient for excluding the ‘‘half-grid”’ as a minor. We shall deal with the case k= Ry, but the corresponding

structure is quite different.
Let us be more precise.

Graphs in this paper may be infinite, and may have loops or multiple edges. We denote the complete graph with
X vertices, where K is a cardinal, by K. The half-grid is the graph with vertex set all pairs (x, y) of integers with
y 20, in which (x, y) and {x’, y") are adjacent if | " —x| + ]y’ —y| =1. A graph G has a minor isomorphic to a
graph H (or briefly an H-minor) if there is a function ¢ with domain V{H) U E (H) (V(H) and E (H) are the vertex-

and edge-sets of H) such that

(i) for each v € V(H), av) is a non-null connected subgraph of G, and for distinct v, v4 € V(H), afv,) and

ofv,) are vertex-disjoint
(i) for each e € E(H), oe) € E(G), and for distinct eq, €5 € E(H), ofe) # cfey)
(iii) foreach v € V{(H)and e € E(H), e € E(a(v))

(iv)if e € E(H) has ends v, v, then one end of ce) belongs to V(o{v,)) and the other to V{a(vs)) Gf

v =V, then V{(oi(v)} contains both ends of o(e)).

~We say that G is a subdivision of H if G can be obtained from H by replacing the edges of H by intemaily
disjoint paths joining the same ends; and that G contains H topologically if some subgraph of G is isomerphic to a
subdivision of H. A set X of ordinals all less than K is cofinal in x if for evéry ordinal A < « there exists |1 € X with
A < ; and the least order type of sets cofinal in K is called the cofinality of X and denoted by ¢f (). We say a

cardinal x is regular if ¢f (x) = x, and singular otherwise.

The paper is organized as follows. Our main results are stated in section 2, and that also contains a brief
discussion of the connection between the structures of this paper (*‘dissections’”) and the more familiar ‘‘tree-
decompositions””. Sections 3 and 4 introduce *‘havens’’, which are a kind of escape strategy for fugitives in ﬂ:.te'
graph, and which greatly simplify finding the minors we are concerned with. In section 5 we prove the easy halves
of our structure theorems, that no graph containing the minor can have the stated structure. Sections 6 and 7 contain
the proof that for x uncountable graphs with no K -minor have decompositions. Sections § and 9 contain lemmas

for later use, and the structures corresponding to excluding the half-grid and Ky, are established in sections 10 and




11 respectively. Section 12 contains a more detailed analysis of the connection between tree-decompositions and

dissections, and enables us to restate some of our results in terms of tree-decompositions. Finally, in sections 13-15

we prove a strengthening of the results of sections 6 and 7.

2. DISSECTIONS

A separation in a graph G is a pair (A, B) of subsets of V{G) such that A U B = V(G) and no edge of G has one

end in A — B and the other in B — A. Two separations (4, By), (A4, B») cross unless one of the following holds:

A] QAZ and32 ;Bl
Al ng and A, c By
B1 gAz andB2 QAl

Bl ;Bz andA, cA,.

A dissection of G is a set D of separations such that

(iyif (A, B)e D then (B, A)e D
(i)if (A, B)e D then A = V(G)
(iii) if (A, B1), (A, ByYe DandA; #A, then B # B,
(iv) no two members of 72 cross.
Let us observe the following useful lemma.

(1) IfD isadissection, (A, By, (A, By)€ D and A, C Ay, then By C By

Proof. Now A, & B, by (i) above, and so A, & B,. Similarly, B, & A, and so B, £ A;. If A; cA; then
A| =A, and hence B, = B, by (iii} above, and so we may assume that A, & A,. Since (A, By) and (4,, B,) do

not cross the desired conclusion follows. W

An orientation of a dissection D is a subset P ¢ D such that
(iyif (4, B) € D then P contains one of (4, B), (B, A)

(11) lf(Al, BI), (Az, Bz) € P then Bl gAz




It follows from (i) and (ii) that if (4, B)e © then P contains exactly one of (A, B), (B, A). We call

V(GYN (YB : (A, B) € P) the centre of P. We say that D has width < x, where x is a cardinal, if for every
orientation P of D, the centre of Z has cardinality <x. The harder “‘only if"’ part of the following is a

consequence of a result of an earlier paper [7].

(2.2) For every infinite cardinal x, a graph does not contain K, topologically if and only zf it has a dissectior of

width < K.

Nevertheless, we shall give another proof of (2.2) (with k= ¥;) in this paper, because it is a simple

consequence of lemmas which we need to develop in any case.
Jung [4] proved ~

(2.3) If ¥ is a regular uncountable cardinal, then a graph has a K-minor if and only if it contains K\

topologically.
Thus, from (2.1) and (2.3} we deduce
(24) Ifx is regular uncountable, then a graph G has no K c-minor if and only if it admits a dissection of width < x.

If x is countable or singular then (2.4) fails. That is a consequence of (2.2} and the fact that (2.3) is false for k
countable (‘>r singular, but it may be helpful to see an example directly. Let G be a connected, locally finite graph
with a K xo-minor. Choose u € V(G), and for every integer i = 0, let A; be the set of all v € V(G) such that there is
a pathl between u and v with <i edges. For iz 1, let B; = V(G)—A;_;; then (A;, B;) is a separation, and
AicAsc....,B2ByD.. . Let D={(A;, B;):i21}; then D is a dissection. Let P be an orientation of D,
with centre W. We claim that W is finite. For let v € W and choose [ 2 1 such that v € B;. It follows that W & B;,
50 (B;, Ap e P, and W C 4;. Since A; is finite (because G is locally finite} it follows that W is finite. Hence 2 has
width < Rg. Thus (2.4) fails for x = Ry. There are similar, more complicated counterexamples for any singular

cardinal x.

‘We temark that although the ““‘only if*” part of (2.4) is more difficult to prove, it is the “‘if"” part which fails

when X is singular or countable; the *‘only if’’ part is true in general, because of (2.2).

Our problem, then, is to adapt (2.4) so that it applies when ¥ is singular or countable. We need to replace the




condition that the dissection has width < k¥ with a more restrictive condition, and the appropriate concept is that of

“*adhesion’’.

Let P be an orientation of a dissection D. If (4, B), (A’, B") € P, we say that (A*, B") cuts off (A, B) (from P)
if A cA’and B’ c B. If ¥’ is a cardinal, we say that 2 has adhesion < ¥’ at P if for every member of P there is a
member of P cutting it off, of order £ k. (The order of a separation (4, B) is | A N B|.) We say that D has
adhe.ls"ion < ¥ if for every orientation P of D there exists ¥ < ¥ such that D has adhesion < ¥ at P. Qur first main

result is

(2.5) For every cardinal x > Ry, a graph has no K -minor if and only if it has a dissection of width < x and

adhesion < K.

In the case when K is regular, (2.5) doés not seem to say exactly the same thing as (2.4). The equivalence of
(2.4) and (2.5) is easy if k¥ is a successor cardinal, but if it is not (that is, K is “‘weakly inaccessible’”) the

equivalence of (2.4) and (2.5) requires some non-trivial argument.

(2.5) fails when K= R, for the half-grid is a counterexample. Indeed, we shall show that a graph has no half-
grid minor if and only if it has a dissection of width < R, and adhesion < Ry. This result can be stated more

informatively, but to do so we need some further definitions.

" A tree is a non-null connected graph without circuits. A tree-decomposition of a graph G is a pair (T, W),

where W = (W, : t € V(TY)) is a family of subsets of V(G) satisfying

@D\ KW, te V(ﬂ) =V(G), and fpr every edge e of G there exists t &€ V(T) such that W, contains both ends

of e
(i) if ¢, ¢/, ¢ € V(T) and ¢’ lies on the path between ¢ and t” then W, N Wy < W,e.

We say that (T, W) has width < xif | W,| <« forallf e V(T), and

U W, | <x

jz1 J2i

for every infinite path 1, s, ... of 7. For f & E(T), the order of fis | W, n W, |, where fhas ends 1,, 1. We say

that (T, W) has adhesion < xif




(i) for every ¢ € V(T), there exists ¥’ < ¥ such that every edge of T incident with ¢ has order £ ¥/, and
(i) for every infinite path R of T, there exists ¥’ < ¥ such that infinitely many edges of R have order < x'.

We shall show that
(2.6) For a graph G, the following are equivalent:
' (i) G has no half-grid minor
(i) G admits a dissection of width < R and adhesion < Ry
(iii) G admits a tree-decomposition of width < Ry and adhesion < Rgq.

The analogous strengthening of (2.5) is false, even for K regular; for a graph is given in [S] with x uncountable
which has no K .-minor and yet which has no tree-decomposition of width < k. On the other hand, it was shown in
[7] that for any k2 ¥,, every graph which does not contain K, topo]ogically. has a “‘well-founded tree;-
decomposition” of width <%, where we permit order-theoretic trees rather than graph-theoretic trees in the
definition of tree-decomposition. In sections 13-15 we show that this device permits a strengthening of (2.5), that is,

every graph with no K .-minor has a ““well-founded tree-decomposition™ of width < « and adhesion < k.

Our third and last main result concerns the structure of graphs with no X -minor. This again needs some
further definitions. Let % be an orientation of a dissection 2 of G, with centre /. We define the forso of G at P
{denoted by s (P)) to be the simple graph with vertex set U, in which distinct u, v € U are adjacent if either they .
are adjacent in G, or there exists (A, B)e P withu, v € A N B. Similarly, if (T, W) is a tree-decomposition of G
and ¢ & V{(T)}, we define the torso of G at t (denoted 25 (1)) to be the simple graph with vertex set W,, in which
distinct #, v € W, are adjacent if either they are adjacent in G, or there is a neighbour ¢" of £ in T with u, v € Wp.

Our last main result is
(2.7 For a graph G, the following are equivalent:

(i) G has no K x,-minor

(i} G admits a dissection ‘D of adhesion < Ry, such that for every orientation P of D there is an integer

k = 0 such that 1s(‘P) has no Ky-minor.




(iii) G admits a tree-decomposition of adhesion < Ry, such that for every t € V(T) there is an integer k 20

such that ts(t) has no K -minor.

To aid the reader’s intuition let us informally study the connection between tree-decompositions and dissections.

Let (T, W) be a tree-decomposition of G. For each e € E(T), let Ty, T, be the components of T\e, and let
A= W ite VLN (E=1,2).

Then (A, A5) is a separation of G. Let D be the set of all such separations arising from edges of T; then D
satisfies conditions (i) and (iv) in the definition of a dissection. It may not satisfy (ii) or (iii), but these are
inessential conditions included merely for convenience, and in any case it is usually possible to modify (T, W)
slightly so that they are satisfied. Thus, it is more or less true that tree-decompositions yield dissections, What
about the converse? Not every dissection arises from a tree-decomposition (that is why we are using dissections,
because they are more general) but the only reas;)n why not is “‘trouble with inﬁnity”.. More precisely, a dissection
P arises from some tree-decomposition if and only if for all u, v € V(G) there are only finitely many (4, B)e D
with x € A — B and v € B —A. For instance, every dissection of a finite graph (or more ggnerally, every finite

dissection of a graph) arises from a tree-decomposition. We shall show this in section 12.

Given (T, W) and D as before, what arc the orientations of 2?7 Each orentation corresponds to a way of
directing the edges of T so that no two edges point away from one another. (For, with e, A, A, T}, T, as before,
let e be directed from T to T, if (A;, A,) belongs to the orientation.) Thus there is an orientation of D
corresponding to each vertex ¢ of T (direct all edges of T towards it), and it is easy to see that its centre is W,. There
are also ori.éntations which correspond to no vertex, as follows. Let t1, ta, ... be an infinite path R of T,. and for each

edge e of T direct e towards the infinite part of R. The centre of this orientation is

We shall see in section 12 that every onentation of D is of one of these two kinds, Thus, (7, W) has width < x if

and only if D has width < %, and similarly for adhesion.




3. HAVENS AND MINORS

Let x be a cardinal. If V is a set we denote by [V]<* the set of all subsets of V of cardinality < x. If G is a graph
and X € V(G), an X-flap in G is the vertex set of a component of G\X (the graph obtained from G by deleting X). A
haven of order ¥ in G is a function [ which assigns to each X €[V(G)]* an X-flap B(X), in such a way that if
XcYe V(G then B(Y) = B(X). An escape of order ¥ in G is a function f which assigns to each
Xe ‘EV(G)]“‘a union of X-flaps B(X), such that B(&) 2 &, and if X = ¥ € [V(G)]™F then B(X) includes precisely
those X-flaps that have non-empty intersection with B(Y). Escapes were discussed in [8], and a number of theorems
were proved about them. Since havens are escapes, we may apply these theorems to havens. Havens are of interest

to us, because as we shall prove later in this section,
(3.1) Forx > Ry, G has a haven of order x if and only if G has a K .-minor.
A cluster in G is a set Cof non-;empty subsets of V (G}, such that
() G| X is connected foreach X € C
(ii) if X, ¥ e Care distinct then X m ¥ =@ and there is an edge of G with one end in X and the otherin ¥.

(If X € V(G), G| X denotes the restriction of G to X.) It is easy to see that if G has a K -minor, and o is the
corresponding function, then {V{a(v)) : v e V(K )} is a cluster of cardinality x; and conversely, if G has a cluster

of cardinality K then it has a X .-minor,

(3.2) Let C be a cluster in G with | C| =«. For each X € [V(G)]**, let B(X) be an X-flap which includes a

member of C. Then-B is a haven of order x.

Proof. We observe, first, that if X e [V(G)]** then there is a unique X-flap which includes a member of C. For
some member ¥ of C is disjoint from X, since | { > | X|, and so Y is included in an X-flap, since G| 7Y is
connected; and no other X-flap includes a member of C, since any two members of C are joined by an edge. Now

verifying that [3 is a haven is easy.

1t is convenient to write B, for the haven B arising from the cluster Cas above. Havens which arise in this way

from some cluster are said to be clustered.

Let B be a haven in G of order x. For X’ 5%, a vertex v € V(G) is ¥-major if v e X v BX) for all
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Xe [V(G)]"". Tt is proved in [8, theorem (2.4)] that

(3.3) IfPisahaven in G of order x > R, and ¥ is regular with Ry < <X, then for every X € [V(G)]*, BX)

contains a K'-major vertex,
(3.1) is a consequence of (3.2) and the following.
(3.4). Every haven of order = R is clustered.

Proof. Let B be a haven in G of order K2 ;. Let A =¢f(x) if x is singular, and A = R if K is regular. We say a

cluster Cis good if
()| X| <max(h, | d)foreachX e C
(ii) for each regular X’ with ¥y £ ¥’ £ x and each X € C, some member of X is ¥’-major.

By Zom’'s lemma, there is a maximal good cluster C. Suppose, for a contrédiction, that | € <x Let
Y= J(X:Xe C. Then | ¥| <x, since | (] <x and each X e C satisfies | X| smax(h, | () <x. If x is
singular, let  be a set of regular cardinals, cofinal in ¥, with | I] = ¢f (x); and if x is regular let [ = {x}. For each

¥’ € I, there is by (3.3) a x’-major vertex v (k) € B(¥). Let
Zi={v(xY: K el}.

We claim that

(1) Foreach X € Cthere exists v(X) e B(Y) with a neighbour in X.

For choose X’ regular with | ¥| < ¥’ <% Since X contains a k¥’-major vertex, it follows that X m B(Y = X) = &,

and in particular B(Y — X) # B(Y). Since ¥ —X c Y and so B(Y) ¢ B(Y ~ X), we deduce that B(Y) is not a (¥ — X)-

flap, and the claim follows.

LetZ,={v(X):Xe C}. Then|Z,| <|I| <hand|Z,] €| d,andso|Z;wZ;| £max(}, | ). Choosea
minimal tree 7 with V(T) < B(Y) such that Z; UZ, < V(7). Then | V(T)| <max(A, | &), for if Z, UZ; is
infinite then | V(T)| =1|Z; UZ,|, and otherwise | V(T)| is finite. Hence CU {V (T} is a good cluster, contrary

to the maximality of C. This proves that | > k.

Choose C < C with | C| =x, and let p'=B¢. We claim that B’ =p. For let X e [V(G)]™, and choose ¥’
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regular with | X| < ¥ <x. Choose C e C with C "X =, and choose v € C, ¥/-major {with respect to B). Then

C ¢ B'(X) by definition of f’, but v € X U B(X) and so v € B(X). Hence B'(X) = B(X), as required. B

(3.1) yields a very convenient way to produce the desired minors, because it is usually easier to construct a
haven than to exhibit a minor directly, Our next objective is to similarly replace finding a half-grid minor and
finding a K y,-minor by finding certain kinds of havens. In this section we discuss the half-grid, and Ky, in the

next.

A ray in G is a 1-way infinite path of G. Two rays Ry, R, are parallel if for every finite X ¢ V(G), the unique
X-flap F with F n V{R,) infinite has F N V(R;,} infinite. This is an equivalence relation, and its equivalence
classes are called the ends of G. These were introduced by Halin [3], We shall see that there is a natural 1-1

correspondence between the ends of G and the havens of order R in G.

First, if R is a ray in G, for each finite X  V(G) let B(X) be the X-flap F with F n V (R) infinite; then clearly B
is a haven of order Ry. Any other ray paraliel to R yields the same haven and we call § the haven produced by the
end IT, where I is the end containing R. Moreover, two rays Ry, R, in different ends produce different havens,
because there is a finite set X ¢ V(G) such that the X-flap with infinite intersection with V(R ) has only finite
intersection with V(Rj). It remains to show that every haven of order Ry is produced by some end. That is a

corollary of theorem (5.4) of [8].

Suppose that G has a minor isomorphic to the half-grid H. For every edge e of H there corresponds an edge
oe) of G; and for every ray S of H there is a ray R of G with c{e) e E(R) for every e € E(S). Moreover, all these
rays of G belong to the same end. The endlv. which arise in thls way from half-grid minors \;vere charaéterized by
Halin [3]. In particular, Halin showed that an end arises from a half-grid minor if and only if for every integer k =0
there is a finite set X ¢ V(G) such that for every ¥ ¢ V(G) with | Y| <k, the Y-flap containing a ray of the end
intersects X. Let us express this in terms of havens. We say a haven [ in G is a half-grid haven if it has order ¥,

and the corresponding end arises from a half-grid minor. Thus, Halin’s result asserts that

(3.5) A haven B in G of order Ry is a half-grid haven if and only if for every integer k 2 0 there exists a finite

X CV(G)suchthat X nB(Y)# D forevery Y cV(G) with | Y| <k
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4. CLUSTERED HAVENS OF ORDER R,

‘We wish to find a characterization of clustered havens of order Ry, to facilitate producing Ky -minors, in the

same spirit as (3.4) and (3.5). If P is a haven of order x, and ¥' <x is a cardinal, define B'(X)=P(X) for all

X e [V(G)I<¥; then B’ is a haven of order ¥, called the K'~fruncation of B. Our characterization is the following.

(4.1) Let B be a haven in G of order Ro. Then B is clustered if and only if for every integer k 2 0, the k-truncation

of B is clustered.

The proof of (4.1) will require a number of steps. We begin with the following. A rooted path in G is a path
(finite or a ray) with a designated end, called its root. If it is finite, its other end is its rip. A comb is a set of
mutually vertex-disjoint rooted paths. If B is a haven in G of order x, a finite subset X  V(G) is B-free if | X| <x
and X N P(Y)# @ for all ¥ ¢ V(G) with | ¥| <|X]. A subset ¥ ¢ V(G) (or a subgraph H with V(H)=1Y) is

majorif ¥ m (X W BX))# @ forall X e [V(G)*. The following was proved in [6, theorem (3.18)].

(4.2) Let B be a haven in G of order Ry and let X € V(G) be B-free. Then there is a comb with set of roots X,

every member of which is major.

We need a refinement of (4.2). Let us say two rooted paths are cofinal if either they are both finite with the
same tip, or they are both rays and their intersection includes a ray. If B is a haven in G, a rooted path P is cofinally

mc‘zjor if every rooted path cofinal with P is major.

(4.3) Let P be a haven in G of order Ry, and let P be a major rooted path. There is a cofinally major rooted path

Q with the same root, contained in P.

Proof. Let P have root u. If there is a vertex v € V(P) such that {v} is major, we may take Q to be the subpath of
P between u and v. We assume then that there is no such vertex. We shall show that P itself is cofinally 3-major.
For let Q be a rooted path cofinal with P, and suppose that there exists X ¢ V{G) with V(@) N X U BX) =&.

Foreachv € V{(P), let X,  V(G) be finite such that v € X, v B(X,). Let
Y=XuyUX, :ve V(P)-V(O).

Then Y is finite, because V (P)— V(@) is finite. Let Z < ¥ be the set of vertices in ¥ with a neighbour in B(¥); then

B(Z)=B(Y) c B(X). Since P is major, there exists v € V(P) N (Z v B(Z)). Now v & V(Q), for no vertex of Q
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belongs to B(X) or has a neighbour in B(X), since V(@) N X U BXN =@. Henceve V(P)-V(Q),andso X, c Y
and B(Y) = B(X,). But v £ B(X,) and v has no neighbour in B(X,), and yet either v € B(¥) or v has a neighbour in

p(¥), a contradiction. Thus there is no such X, and so @ is major. The result follows. W
From (4.2) and (4.3) we immediately have

(4.4) Let B be a haven in G of order R, and let X  V(G) be B-free. Then there is a comb with set of roots X,

every member of which is cofinally major.
A cluster Cis local if each member of Cis finite.

(4.5) If Cis afinite cluster in G, there is a local cluster C with | C| =| {0 such that every member of Cincludes a

member of C, and hence By =B

Proof. Let C={Cy,.., G} and for 1<i <j<klete; be an edge of G between C; and C;. For 1 <i <k, exactly
k — 1 of these edges have an end in C;; let T; be a finite tree of G with & = V(T}) € C;, containing the ends in C; of

these & — 1 edges. Then ' = {V(T;): 1 £i £k} is the required local cluster, W

We shall need the following theorem of {6]. A comb % is said to traverse a cluster C if each member of P has

its root, and no other vertex, in (_j(C : C € (), and no two members of 2 have their roots in the same member of 2.

(4.6) Let Che a cluster in a finite graph G with | C| 22k, and let X € V(G) with | X| "=k Suppose that there is
no separation (A, B) of G of order < k such that X C A and B — A includes a member of C. Then there exists C — C
with| C} =| d —kand withX ~ C =8 for all C e C, and a comb P traversing C with | P| =k, such that X is

its set of tips. : -
We apply (4.6) to deduce the following.

(4.7) Let Cbe a finite local cluster in a graph G, with | C| 22k, and let X ¢ V(G) with | X| =k, where X is B
free. Then there exists C < Cwith | C| =1 —k and with XnC=@ for C e C, and a comb P traversing C

with | P =k, such that X is its set of tips.

Progf. For each C € Cthere are k paths of G between X and C, mutually vertex-disjoint except possibly for their
ends in C, by Menger's theorem. Let G be the union of all these paths (for all C e C together with

G4 _(C:Ce C). Then G’ is finite, and Cis a cluster in it. Suppose that (4, B) is a separation of G’ such that
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. X c V(A) and B — A includes a member of C. Since there are & paths of G’ between X and V(C), mutually vertex-

disjoint except for their ends in C, we deduce that | A ™ B| 2 k. The result follows from (4.6) applied to G*. M

Let Cbe a cluster in G, and let B be a haven in G, of order 2 | €| . We say that Cis B-free if for every X < V(G)
with | X| < | ¢, B(X) includes a member of G, that is, B is the | (] -truncation of B. We say that Cis B-combed if
there is a comb P traversing C such that every member of C contains a root of some member of P, and every

member of P is major (with respect to B). We call P a B-comb for C.
(4.8) With C, B as above, if Cis B-combed then it is P-free.

Proof. Let # be a f-comb for C and let Z={P(C}): C e C}, where P(C) has its root in C. Let X < V(G) with
{X| <{ . Now the sets CUV(P(CY)(Ce € are mutually disjoint, and so there exists C e C with
(CUVP(ICMNX=3 But VIPICHNXwBE) =S, since P(C) is majoi‘, and so C LU V(P(C) < pE),

since G| (C w V{P(C))) is connected. Hence C < B(X), as required. W

(4.9) Let B be a haven in G of order R, and let C be a finite local B-free cluster in G with | | =2k. Then there

exists C < Cwith | C| =k which is p-combed.
Proof. First we claim
(1) Thereis acomb R in G with| R| =k, every member of which is cofinally major.

Forlet X ¢\ )(C:C e O with | X| =k, such that | X C| <1 forall Ce C. We claim that X is B-free. For
let ¥ = V(G) with | ¥} < | X|. Then B(Y) includes a member of C since Cis B-free, and so every member of C
intersects ¥ W B(Y). Since at most k — 1 intersect ¥, and G| C is connected for each C e C, it follows that B(Y)
includes at least £ + 1 members of C. At least one of these intersects X, and so X m B(¥) # &. Hence X is B-free, as

claimed. Then (1) follows from (4.4).
Let R = {R} ... Ri}.

(2) ForlsiZkandeach C e C there are k paths of G between V(R;) and C, such that any common vertex of two

of these paths is an end of both.

For suppose that (A, B) is a separation of G of order < k with V(R;)cA—-Band CcB—A. Let X=AnNBAB.

Since R; is major, it follows that V(R M (X u B(X) = I, and 50 B(X)c A — B. Since Cis B-free there exists
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C'e Cwith C"gB(X)cA —B. But C cB —A and there is an edge between C and C’, a contradiction. Thus,

there is no such (4, B), and the claim follows from Menger’s theorem.

Let G, be the union of k paths as in (2), for all C € Cand all i (1 <i<k), together with G| WNC:Ce O
Then (G, is finite, and so for 1 i <k, there is a vertex x; € V(R;) such that the subpath P; of R; between x; and the
root of R; contains every vertex of V(G )N V(R;). Let Ga =Gy WPy UL Py, and let X = {x ,..., x;}. Suppose
that (A, B) is a separation of G, of order < k with X c A and C B — A for some C € C. Choose i with 1<i <k
such that V(P A n B =, Since x; € A and P; is connected it follows that V(P;) ¢ A ~ B. But there are & paths
of G4 between V(P;} and C, mutually disjoint except for their ends, which is impossible. Hence there is no such

{4, B).

By (4.6) applied to G, there is a cluster ¢’ & Cwith | C| =k, and a comb 2’ for C' in G, with | 2’| =%, where
® = (P ,..., Pi} say, such that for 1 <i <k P} has tip x;. Let R} be the union of P; and the path Q; with edge set
E(R;) — E(P;) with one end x;, and designate the root of P; to be the root of R;. Now each Q; is major since it is

cofinal with P;, and hence each R; is major. It follows that {R} ..., R} is a B-comb for C, as required. W

(4.10) Let B be a haven in G of order Ry, such that for every k 2 0 the k-truncation of B is clustered. Let Cbe a
finite local B-combed cluster. Then there is a local B-combed cluster C with | C| =| (| +1 such that every

member of C except one includes a member of C

Proof. Let C={C) ,.., G}, and let C; L...u C, =Z, where | Z| =n. Let {Ry,..., R;} be a B-comb for C, and let
ne CGAVR)(1<i<k). ThusZNV(R)={x;} (1 €£i<k) Let G be aB-free cluster with | G| =6k +2n +2.
(This exists because the (6k + 2n + 2)-truncation of § is clustered.) By (4.5) we may assume that ( is locz;l. By
(4.9), there exists G, = ¢ with | G| =3k +r + 1 which is B-combed. Let $={S(C): Ce G} be a B-comb for
G,, such that for each C e G, C contains the root of S(C). Since | Z| =n, and ali the sets CU V(S(C) (C e G)
are mutually disjoint, it follows that there exists G € G with | G| =3k + 1 such that Z n (C U V(S(C))) =& for

all C € G. Let G'be G\Z - X) where X = {x; ,..., x;}, and let §’ be the haven in G’ obtained from G;.
(1) XisP'-freeinG".

Forlet Y c V(G with | Y| < X| =k and let Y=Y U (Z-X). Now (Y} is a Y-flap of G, and since it

includes a member of G € G and G is B-free and | ¥| <] G, it follows that §'(¥") = B(Y). Now Ry ,..., R, are
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major, and so VIR)N Y UBYN# D for 1<i<k Since VIRINEZ -X)= for 1<i<k, and | Y| <x, it
follows that V(R;) N ¥ = @ for some i, and hence x; € V(R;) c B(Y) = B'(¥Y"). Thus X m B'(¥") = D, and so X is -

free, as required.

From (4.7) applied to G and G, there exists Cy ¢ G with | G| =2k + 1, and a comb P traversing €, with
| 2§ =k, such that X is its set of tips. Let us choose C;, and P such that the graph H U \J(FP : P € P)is minimal,
where H =1\ j(§(C): C € (). (This is possible since all the paths in % are finite.) Let G be the set of those

members C € (4 which contain a root of a member of 2.
(2 IfCe G=GCthen(CLOVESONNMUV(P):Pe P)=D.

For suppose that this set is non-empty. Let A be a minimal path from C to (C L V(S(CH) m\_(V(P}: P € P)
with VAo CUV(S(C)). Let A haveends a, b whereae Cand b e V(P) fo;: some P e 2. Let P have root
ce C'e G and tip x € X, and let B be the subpath of P between b and x. Let P’ be the path A U B, rooted at a.
Let P’ = (P —{P}) W {P’}; then, by the minimality of A, P’ is a comb traversing Cs=(C - {C'Hw {C}.
Moreover, the first edge of P (moving away from c) which has an end not in C" U V(§(C")) does not belong to P’,

and this contradicts the minimality of H W (P € P).

Let ®={P, .., P}, G={C],.., Ci}, C—Cs={Cq C) ,..., C¢}, where P; has root in C; and tip in

C; (1 <i<k). Define Dy = Cy,
Di=CuCIuUC;WV(P) (1<isk).

Then, by (2), {D¢, D1 ,..., D;} is a cluster, and it is B-combed since it is traversed by the comb {S(C;): 0<i <k},

by (2), every member of which is major. The result follows. H
Proof of (4.1).

The *“ only if’* part is clear, for if § = B for some cluster C, choose C ¢ Cwith | C| =k, and then B is the k-
truncation of 3. Let us prove *‘if”*. By (4.10) there is a séquence G, (, G,,... of local B-combed clusters, such that
| G| =i and each member of C,,, except one includes a member of G (i 20). Let G ={CY ,..., C}}, where

ClcCtfor1<i<j<k andlet C;=\_yCl. Then C={Cy, Cs,...} is a cluster with | €] = Ry, and we claim that
N Jjzi

B=PBc. Forlet X ¢ V(G) be finite. Choose i > | X| such that C; "X =@. Then C} N X =, and since G is p-
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combed and hence B-free by (4.8), and | X| < | G|, it follows that C} < B(X). Hence C; c B(X)andso B=P,. W

5. THE EASY HALVES

In this section we shall prove the easier parts of our main theorems, that if the dissection exists then the minor

does not. We begin with the following.
(5.1)' Let D be a dissection and let (Ag, Bo) € D. Let

P={(A, B)e D : (A, BY#(By, Ay) and either A CAq or A By},
Then P is an orientation of D.

Proof. I (A, B) € D then since it does not cross (Ag, By) it follows that P contains one of (A, B), (B, A). Now
let (A, By), (A2, ByYe P, and suppose that B; cA,. Since (A1, B;)e P, it follows that either A CAq or
Ay < By. Since B; A, by (2.1), we deduce that either B, C Ay or B, C By .But since (A3, Ba)e P, B,
includes one of Ag, Bg by (2.1). Since neither of Ay, By includes the other we deduce that B, = A or B; =By, and
hence either (As, Bs)=(A4. Bg) or (sz, B;)= (By, Ag). The second is impossible by definition of ?, and so
(A,, By)=(Aq, By). Similarly (A, B;)={Aq. Bo) and hence By =B, © A4, C Ay, a coniradiction. Thus 7 is a

orientation. W

A cﬁssection D has order < x if each member of D has order < x. We deduce
(5.2) If'D is adissection and either D has width < X or ‘D has adhesion < X, then D has order < <
Proof. Let (A, Bo} e D; we shall show that | Ay N Byl <K Let? be'the orientation from (5.1).
(1} Ag By is included in the centre of 7.

For let (A, B) e P. Then either A c Ay or A C By, and so either By B or Ag € B by (2.1). In either case

Ag N By c B, and so Ag M By is included in the centre.

From (1) we deduce that if D has width < K then | Ao ™~ Bg|l < x. We may assume then that D has adhesion
< %. Choose (4, B) € P cutting off (44, By) from P, of order < x. Then Ay € A, but either A c Ay or A € By

since (A, B)e P,andso A=Ay and B=B,. Thus | Ag N Bp] <, as required. M

(5.3) Let D be a dissection of G of order < X, and let B be a haven in G of order x2 Ry. Then
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{(A, B)e D:BA N B)< B}
is an orientation of 'D.

Proof. LetP={(4, B)e D :B(A nB)c B}, andlet (4, B) e D. Since G| (A N B) is connected it follows that
either BANB)CA-B or PANB)cB—A, and so P contains one of (4, B), (B, A). Secondly, let

(A1, By), (A2, By) e . Since k2 Ry it follows that | (4; M B) U (A, M B,)| < x. Hence
D£P(A; "BV ANBY) CPA I NB)INBA; NB) (B —A)) N (By—Aj)
and so By & A,. Thus P is an orientation. M
Now we can prove the easy *‘if”” halves of (2.2) and (2.4).
{5.4) Forany x 2 Ry, if G has a dissection of width < x then no subgraph of G is a subdivision of K ..

Proof. Let D be a dissection of G of width < X, and suppose that G has a subgraph & which is isomorphic to a
subdivision of K. Let Z be the set of all vertices of H with valency x in H. For X € [V(G)]<¥, let B(X) be the

unique X-flap which intersects Z; then  is a haven of order x. By (5.2) and (5.3)
P={(A, Bye D: A NBYcB}

is an orientation of D. Now Z c B for all (4, B) € P, and so the centre of P includes Z, which is impossible since

its cardinality is < x. W

This completes the proof of (2.2), because the “‘only if”” half is a consequence of [7]. But the “‘only if”’ part for

K2 ¥ is also contained in (7.7).

(5.5) Forany x> R, if G has a dissection of width < ¥ and adhesion < X, then G has no haven of order X and

hence no K .-minor.

Proof. Let D be a dissection of G of width < ¥ and adhesion < x, and suppose that [§ is a haven in G of order k.
Let P be the orientation {(4, B) € @ : B{A N B) < B}, and let the centre of P be X. Choose ¥ < ¥ such that D has
adhesion < ¥’ at P, and let ¥ be regular such that | X| , ¥’ < ¥” £ x. By (3.3), B(X) contains a X”-major vertex v.
Since v € X it follows that v € B for some (A, B) e P. Since D has adhesion < ¥ at P, there exists (A", B e P
cutting off (A, B) of order <¥. Since |A'MB’| <x”, and v is x"-major, it follows that

ve A" NBYUPRBA NB). But B(A"n B c B since (A’, B") € P, and so v € B’ C B, a contradiction. Hence G
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has no haven of order x, and the result follows from (3.1). &

We shall need the following lemma.

(5.6) Let D be a dissection of G, let P be an orientation of D with centre W, and let T be a non-null finite

connected subgraph of G with V{(T) " W = (5. Then there exists (A, B)e PwithV(T)NnB =,

Proof. Choose te V(T). Since t& W, there exists (A, B)e P with te€ A—B. Choose (4, B)e P with
| V(T) m B] minimum (this is possible since T is finite). Suppose that V(T) "B # &. Since V(I & B and T is
connected, there exist u € V(T)~ B and v € V(T) N B, adjacent. Choose (A’, B'Ye # withv € B'. Now B& B’
since ve B—B’. Also, A& B’ since v € A (because v has a neighbour in A —B) and v¢ B’. Since P is a
orientation we deduce that B ¢ A’. Since (4, B), (4, B") do not cross it follows that A c A’ and B’ < B. This.

contradicts the minimality of | V(T) N B| sincev &€ B’. Hence V(IT) nB=C. W~
We use (5.6) to prove the easy parts of (2.6) and (2.7).
(5.7 If G has a dissection of width < R and adhesion < R then G has no half-grid minor.

Proof. Let D be a dissection of width and adhesion < R, and suppose that G has a half-grid minor. Let B be the
corresponding haven. Now from considering the *‘vertical’” and *‘horizontal”” paths of the miner, we deduce that
" there are connected subgralﬁhs Py, Py,...and @, O,,... of G, such that P, P,,... are mutually disjoint, @, @4,...
arc;. mutually disjoint, each P; ﬁleets each Q;, and for every finite X ¢ V(G), B(X) meets all of
VP, V(P2 s, V(Q1), V(Q3),... . Let P be the orientation {(A, B) e 9 : B(A nB)c B}. Let P have centre
W and hav:j, adhesion < d at P, where d is an integer. Since W is finite and P, P,,... are mutually disjoint, we may
assume that W N V(P)=©. Let T be a finite connected subgraph of P, meeting 2 ,..., @ys1. By (5.6) there
exists (4, B)e P with V(T)n B =4, Since D has adhesion £d at P, there exists (A", BY e P of order <d
cutting off (4, B), and hence with V(T) "B’ =<. Since | A’ B’| £d, one of @ ..., Qy41, say @, is disjoint
from A'nB’. Since @, meets T it follows that V{(Q)cA'-B’. But BA'nBY)cB, and

V(@) NB(A" " B") # &, a contradiction. The result follows. W

Thus, in (2.6), statement (ii) implies (i). A similar proof shows that (iii) implies (i); we omit the almost identical

details.
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(5.8) If G has a dissection D with adhesion < R, such that for every orientation P of D there is an integer k 20

such that ts(P) has no Ky-minor, then G has no K g -minor.
Proof. Let D be as above, and suppose that Cis a cluster in G with | €] = R(. Let B = Bc; then
P={(A, B)e D:PA nB)CB)

is an orientation of D, by (5.2) and (5.3). Let W be the centre of P, and let D have adhesion < d at /P, where d is an

integer.
(1) CnWzdforeachCe C

For suppose that C N W =J. Choose distinct Cy ,..., Cyqy € G different from C. For1<isd+1letv;e (
have a neighbour #; € C. Let T be a finite connected subgraph of G| C with uy ,..., tg4; € V(T). By (5.6) there
exists (A, B) e P with V(T) n B =, and since D has adhesion < d at P we may choose (4, B) of order <d, asin

(5.7). Then one of Cy ..., C441, say Cy, is disjoint from A m B, and since v; € C; is adjacent to u; € A — B and

hence v, € A, it follows that C; € A — B; and so B(A m B) C A, a contradiction. This proves (1).

(2) If Q is a finite path of G between u € W and v € W, and no internal vertex of Q belongs to W, then u, v are

adjacent in ts(P).

_Forif V(Q) = {u, v} then u, v are adjacent in G and hence in 5 (®). Otherwise, Q"= O\, v} is non-null, and
V(@) N W =, and so by (5.6) there exists (A, B) € P with V(@Y B=. Since u, ve W B and u, v have

neighbours in V{Q") it follows that #, v € A M B, and so «, v are adjacent in £5s (P), as required.

(3) Foreach C & C, ts(P)| (C n'W) is connected.

For let u,ve CW, and let Q be a path of G| C from u to v. Let the vertices of V(Q)N W be
H=Wp, Wg ,..., W =v in order. By (2) applied to the subpath of @ between w; and w;,;, we deduce that w;, w;,;

are adjacent in ts (P) for 1 <i <k — 1, and hence u, v are in the same component of ts(P)| (C N W), as required.

letC={CnW:Ce (}.
&) C is aclusterints (P).

For by (1) and (3), each C m W is non-null and 5 (P)| (C n W) is connected. Let C;, C, & Che distinct. Since

there is an edge of & between some vertex of C; and some vertex of Cy, it follows from (1) that there is a path @ of
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G with V(@) Cy W C,, with ends wy e Cy W, wye C; MW and with no internal vertex in W. By (2),

wy, wq are adjacent in #s5 (), and the claim follows.
But (4) contradicts our hypothesis. The result follows. M

Thus in (2.7), (ii) implies (i). A similar proof, which we omit, shows that (iii) implies (i}.

6. DIVISIONS

Now we turn to the proofs of the more difficult parts of our results. In each case our approach is the same;
assuming that there is no haven of the appropriate kind, as characterized in (3.4), (3.5) and (4.1) respectively, we
shall construct a dissection and prove that it satisfies our requirements. In each case it is convenient to construct the .

dissection by constructing first a ‘‘tangential set of divisions’’.

If G is a graph, X ¢ V(G) and F is an X-flap, we say that F'is a full X-flap if each %€ Xhasa neighbour in F. A
division in G is a triple (X, C, D)) where X ¢ V(G) and C, D are distinct full X-flaps. Its order is | X|. Two
divisions (X, C(, D), (X4, C5, D4} are tangential if X, € X5 F, for some X,-flap Fo and X, c X U Fy for

some X -flap F1; and otherwise they cross.

(6.1) IfF(X,, Cy, D), (X5, Cag, D) are divisions in G which cross, then X| N Fq = & for every full X;-flap F,

an_d Xzﬁ Fl * @for everyﬁdl X1 -flﬂp Fl'

Proof. Suppose that X, n F =@ for some full X,-flap F,. Then Fy ¢ F, for some X 1-fap Fq. Since every
vertex of X, has a neighbour in F5, it follows that X, < X; W F,. Since there are at least two full X -flaps, we may
choose a full X;-flap F; with F; # F,; then X, n F; =&. By the same argument with X, and X, exchanged, it
follows that Xy ¢ X, W F, for some X,-flap F,. But then (X, Cy, Dy), (X5, C5, D,) are tangential, contrary to

the hypothesis. The result follows. M

Throughout the remainder of the paper we shall assume that the graph G under consideration is equipped with a
fixed well-ordering of its vertex set. Thus, for every non-empty X < V(G), there is an element x € X which is least
in the well-ordering, and we call x the nicest element of X. Related terminology (*‘x is nicer than y” etc.) is defined

in the natural way.

Let (X, C, D) be a division in G, and let v be the nicest element of CUD. fve C, let A=V(G)~-D and
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B=XuUD, Ifve D, let B=V(G)—-C, A =X U . Ineither case (A, B} is a separation; we call it the separation
induced by (X, C, D). Weseethat ANB=X, CcAand D CB;and cne of A — X, B — X is a full X-flap and the

other contains the nicest element of C W D.

(6.2) Let (X4, Cy, D), (X4, Cq, D3) be tangential divisions, inducing separations (A, By), (A4, Bs). Then

(A4, By), (A, B;) do not cross.

Proof. Since (X;, D, C;) is a division inducing the separation (B, A,), and (¥, Dy, C1), (X3, Cq, ;) are
tangential, we may replace (X, C,, D) by (X;, D, Cy)}if we wish. Thus, we may assume that the nicest element
of C;uD, is vy€ Cy, and similarly that v, e C, 1is the nicest element of C,uwD,. Hence,

A;=V(G)-D;, B;=X,uD, (i=1,2).

Suppose first that Xy cA,. Then DynX; =@, and so D, is a subset of an X i-flap. Hence either
D,cA;—-X;or Dy cB)—X,. Since Dy =B, —X, is a full X,-flap, it follows thét either By c A or B, glél
respectively. In the first case, since B; —A| C A, —~ B, and since every vertex of B, either belongs to or has a
neighbour in B — A, it follows that B; — A,, and so (A), B,), (A3, B;) do not cross. In the second case, it

follows similarly that A| < A, and again (4, B;), (4, B,) do not cross.

We may assume, therefore, that X, & A,, and similarly that X, & A;. Thus X; M D, # J; and since X; meets
at-mos; rlonie X,-flap (because (X, C;, D} and (X,, C;, D) arc tangential) it follows that X, c X, U D, =B,.
Similarly, X, € By. Now v; € C; is the nicest element of C; U D;, and v; € C; ¢ A; (i = 1, 2). From the symmetry
we may assume that v; is at least as nice as v,. (Possibly v; =v,.) Since v, is nicer than every vertex of
D, =B; —X,, itfollows that v, & B, — X, and hence v, € A;. Since C, is a full X;-flap and X, & A, there is

path P of G between v and some vertexx € X) —A, with V(P) c V(C) U {x} c (A, —X) U {x}. Butthen
ViP)ynX; cA - XnXy oA, -X))nB, =0

and this contradicts that (A,, B,) is a separation; for one end of P is in A,, the other is in B,, and
V(P)NA; " By=@. This case (namely, X; £ A, and X, & A,) therefore cannot occur, and the proof is

complete. W

A geography in G is a set G of divisions, mutually tangential, such that if (X, C, D)e G then (X, D, O) e G.
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(6.3) Let G be a geography in G, and let D be the set of all separations induced by members of G. Then D is a

dissection.

Proof. Certainly if (A, B} e D then (B, A) € D, and by (6.2) no two members of D cross. Moreover, if (4, B) is
induced by (X, C, D) then @2 CcA-B and &% D cB-A, and so A, B#V(G). Finally, let (4;, B;) be
induced by (X;, C;, D;) (i =1, 2) and suppose that By =B,. Since every vertex of A; m B, has a neighbour in
o g'Al ~B;=A; —B,,itfollows that Ay "B, CA, andhence A; CA,. Similarly A, C A, andsoA; =A,, as

required. Thus, @ is a dissection. W

We call the dissection in (6.3) the dissection induced by G.

7. LONG DIVISIONS

If x is a cardinal, we say that v, v, € V(G) are k-separated if there is a separation (4, B) of order <k with
v, € A—Bandvy € B—A. Thus, if v, v, are adjacent they are not K-separated for any K. A division (X, C, D) is

long if no two members of X are k-separated, where ¥ = max(| X{, Ro).
(7.1) Every pair of long divisions are tangential.

Proof. Let (X,, Cy, D1), (X4, Cy, D;) be long divisions. From the symmetry we may assume that | X;| <] X,].
Let (A, B) be a separation with C; €A, D; € B, A B=X,. Then (A, B) has order | X,| <| X,}, and s0 one of
X, (A -B), X, n(B—-A)is empty since {X;, C,, D,) is long. Hence one of X; m Cy, X; N D is empty, and

the result follows from (6.1). W

(72) Let YEV(G) and let Fy, F, be distinct Y-flaps. Then there is a division (X, C, D) with

XQY, Flgcs Fz‘;D.

Proof. Let X’ < ¥ be the set of all vertices in ¥ with a neighbour in F;. Then F, is a full X"-flap, and F, is a
subset of some X'-flap D # F . Let X be the set of all vertices in X’ with a neighbour in D, Then D is a full X-flap,
and F, is a subset of some X-flap C # D. Since F is a full X’-flap and X < X" it follows that C is a full X-flap, and

hence (X, C, D) is the required division. Hl

(7.3) Let Xo € V(G) with | Xy| <x where X is an infinite cardinal, and let Cy be an Xo-flap. Let Z ¢ V(G) with

1Z ~Cqy| >« Then there is a long division (X, C, D) with | X| SxsuchthatCo cCandD NZ# D,
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Proof. We shall define inductively a sequence Xo € X € X, =... of subsets of V(G)} — Cy, as follows. Suppose
that i = 0 and X; is defined. For each pair x, vy of elements of X; which are w-separated, let N{x, y)=A n B - Cy,

where {A, B) is some separation of order Sx withx € A —Bandy e B—-A. Let
X=X, W UW(x, ¥):ix, y e X; are x—separated).

This completes the inductive definition, We see that since X is infinite, | X¢! <% and each | N(x, y)| <x, it

follows that each | X;| S«

Let X* = (X; : i 20): then | X*| <x, and Cg is a X*-flap. Since | Z—Cy| > x there is an X*-flap F, # C,

with F, N Z # @. Let Y be the set of vertices in X* with a neighbour in F.
(1) ¥fx, ye Ythenx, y are not K-separated.

For since x, y € ¥, there exists i 20 such that x, y € X;. Since x, ¥ both have neighbours in F, and
Forn(XynywCp)=9, there is 1o separation (4, B} of G of order <k with x € A —B, ye B—A and

AN BcX;,, vy Bydefinition of X;,, it follows that x, y are not x-separated, as required.
Now F, is a Y-flap, and Cy is a subset of ancther Y-flap F;. The result follows from (1) and (7.2). ®

(7.4) Let X be an infinite cardinal, and let X1, X, < V(G), such that | X1}, | X2| >« and for i = 1, 2 no two
mqmbei‘s" of X; are X-separated. Suppose that there is no long division (X, C, D) with | X| <x and

XicXu( X, cXUD. Then no two members of Xy U X, are X-separated.

Proof  Suppose, for a contradiction, that there exists Xoc V(G) with |Xp] <x, such that

Fi X, #@#Fy "X, for some distinct Xo-flaps F, F,. We claim that
(1) There is a long division (X, C, D) with | X] S, CnX#DandD "X, #D.

Forif | X, ~Fy| >x this follows from (7.3), taking Z = X,, since X; N F| # @. Thus, we may assume that
| X, — Fy} €x and, similarly, | X; — F,| <x. It follows that | X; — F,| > X, since | X,] > x> Ry, and so by
(7.3) there is a long division (X, C, D) with | X| S, F,cC and DX, 2@, But X, " F, #J since

1 X, ~F;| sxand|X;| > x, and so X; N C 2. Thus, (X, C, D) satisfies (1),

Now since no two members of X are x-separated, it follows that X; € C U X, and similarly X, c DU X, a

contradiction. Thus there is no such Xy, and the result follows. W
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(7.5) Let G be a geography, and let D be the induced dissection. Let P be an orientation of D, and let W be the

centre of P. Thenthereisno(X, C,D)e GwithCnWzB#DnNW.

Proof. Let (X, C, D)e G, and let (A, B) be the separation induced by (X, C, D). Then either (4, B}e P or

(B, A) e P, and so cither W < B or W C A; hence, either WnN C= or W N D =, as required. H

Let {B;:ie I} be a set of havens in G, where J; has order x;. Let x=sup(x;:i e I). We say this set is
convergent if for all X cV(G) with |X| <k there is an X-flap B(X) and A with }X| <A <« such that

B;(X)=B(X) forall i € I with k; 2 A; and P is a limit of {B, : i & I}.
(7.6) If {B; : i € I} is convergent then the limit B is unigue and is a haven of order k.

Proof. With notation as above, suppose that 3, B’ are both limits and §# . Choose X e [V(G)}}** with
B(X) = B'(X). Choose A with | X| <A <« such that B,(X) = P(X) for all i € I with x; = A; and choose A’ similarly
for §’. Since A, A <x=sup(x;:ieI) there exists i € [ such that A, X' <x;. Then B(X)=[,(X)=p'X), a

contradiction. Thus the limit is unigue,

Now let X € ¥ e [V(G)]*. Choose A with | ¥] <A < % such that B;(X)=B(X) and B(Y)=p(¥) foralli e [
with k; = A. Choose i €' I with x; 2\ Then B(X) = (;(X) < B;(¥Y=B(Y). Hence, P is a haven of order x, as

. required. W

Now we complete the proof of (2.5) (and give a second proof of (2.2) in the uncountable case) with the

following.

(1.7) Let x> Ry If G has no dissection of width < x and adhesion < X then G has a K .-minor; and if G has no

dissection of width < X then G contains K . topologically.

Proof. Let G be the set of all long divisions of order < x; then G is a geography, by (7.1). Let D be the induced

dissection.
(1) IfD does not have width < x then G contains K topologically.

For let P be an orientation of D, with centre W, and suppose that | W{ 2 k. If no pair of vertices in W are ¥'-
separated for any ¥ < x then it follows easily that G contains K topologically. We suppose, for a contradiction,

that for some ¥’ < x some pair of vertices in W are W-separated. Since ¥ > Xy we may assume that ¥’ = ¥
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Choose Xy = V(G) with | Xo| <’ such that at least two X,-flaps intersect W, and let Cy be an X-flap with
Co N W =@, such that | W—Cy| 2% > k. By (7.3) there is a long division (X, C, D) with | X] £, such that

CocCandD W&, Then CnW £ =D n Weontrary to (7.5). This proves (1).

From (1}, the second assertion of the theorem follows. To prove the first assertion we may assume, in view of
(1), that D has width < x but does not have adhesion < K. Let P be an orientation of 2 such that for all cardinals
A <K, D does not have adhesion < A at . For each A with Rg <A <K choose (4,, B1) & P such that there is no

{A, B) € P of order € A cutting off (4, By). Let X, =A; N B,.
(2) 1X3| > A, and no two members of X, are | X, | -separated.

For (A, By) cuts off itself, and so | X;| > A; and the second assertion follows since (A, By) is induced by

some long division,
For each A and X € [V(G)1<* let P(X) be an X-flap which intersects X ; then By, is a haven of order A, by (2).
(3) Theset {Py : Rg €A < K] is convergent.

For let X € [V(G)]™* and let A =max(| X|, Rp). Let A;, A, satisfy A <A, A, < ¥, and suppose that there is a
long division (¥, C, D) with | Y| <A and X, cYUC, X, cYUD. Let (4, B) be the separation induced by
(Y, C, D); then (A, B) € D, and from the symmetry we may assume that (A, B) & P. Now (4, B) does not cut off

(A3, By) since |ANB| =|Y] £A. ButX; cYuCand |X,]| >|Y

, and so X <& B; and so B includes
neither A, nor B, . This contradicts that 2 is an orientation, and we deduce that there is no such (¥, C, D). By (2)

and (7.4) we deduce that no two members of X, U X3, are A-separated, and so B; (X) = B,,(X). This proves (3).

Then the limit of the set of (3) is a haven of order X, by (7.6). By (3.1), G has a K .-minor, as required. B

8. ROBUST DIVISIONS

Now we begin the proof of the harder parts of (2.6) and (2.7) (that is, (I) => (ii), in both cases). A division

(X, C, D)is robust if X is finite and for every separation {4, B) of finite order,
min(|AnX|, |BnX)smin(| ANBN(CUX), |[AnBnDuX)|).

A separation is robust if it is induced by a robust division.
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(8.1) If(A’, B) is a robust separation, and (A, B) is a separation of finite order, then one of (A nA’, B\ U B",

(BN A’, AU B") has order at most | A M B|.

Proof. Let(A’, B) be induced by (X, C, D). Since (X, C, D) is robust we may assume (by the symmetry between
A and B) that

|ARA"AB| =|ANX| S|ANBADUX)| <|ANBNBY].

Ay

Thus
[ANA NBUB) =1AnA nB| +|AnB-B) S|ANBNB| +|An(EB-BY =|AnB|.

The result follows. W

If X, Y c V(G) are finite, we say that X is nicer than Y if X # Y, | X| <| Y}, and if equality occurs then X
contains the nicest element of (X — ¥) U (¥ - X). A division (X, C, D) is nicely robust if X is finite and for evefy
separation (A, B) of finite order, one of AnX, BNX is at least as nice as both of A NB N (CUX),

A N B N {D wX). Thus, nicely robust divisions are robust,
(8.2) No two nicely robust divisions cross.

Proof. Let (X, C, D), (X', C’, D) be divisions of finite order, and suppose that theyl cross. By (6.1),
XN C; :X’-r\ D, X', XD’ are all non-empty, and mutually disjoint. From the symmetry we may assume
that the first is nicer than the other three, and so X" n(C W X) is nicer than X n(C' U XY and X m (D’ U X'). Let
(A, BY be a separation with AnB=X, C"cA and D'¢cB. Then Xn(C'UX)YcXnA and so
ANBN({CUX)=X N (CuUX)is nicer than X N A, and similarly nicer than X n B. Hence (X, C, D) is not

nicely robust, as required. M

(8.3} Let By, By be havens of order > %k where k 20 is an integer, and such that there exists X ¢ V(G) with '

| X| <k such that B,(X) # Bo(X). Choose such a set X as nice as possible. Then (X, By(X), Bo(X)) is a nicely

robust division.

Proof. Let X’ be the set of vertices in X with a neighbour in B, (X). Then B;(X")=B;(X), and §,(X") 2 ,(X), and
so B (X)) # B2(X"). By the choice of X, it follows that X =X’. Hence B,(X) is a full X-flap, and similarly so is

B, (X). Thus, (X, B;(X), B2(X)) is a division.
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Let (A, B) be'a separation of finite order and suppose that A ™ B N (B (X)W X) is nicer than both A N X and

BnX LetY=XuU (A NBnB X)) Nowsince
|[AnNBABXuUX)] s|AnX|, |BnX|

it follows that
1A ABAGE VD) s—é—|X| +% |AnBAX|
andso|A NBAB ()| <5 | X|. Thus
|71 =1X] +|AnB B0l <3 1X] s34,

and so B, (7), B2(¥) are defined. Now
Bu(Y) CBi(X) — ¥ =B (X) — (A N B) = (4 — B) A Bi(X)) U (B — A) 2 By (X))

Since no vertex in A—B is adjacent to any in B—A and G|B;(Y) -is connected, it follows that
BN -B)nBX) or BN c(B-A)NPBX), and by symmetry we may assume the former. Let
X=KXnA)VANBNBX). Now X' Y and no vertex in ¥Y—X" has a neighbour in B(¥), for
Y-X'cB-A and Bi(Y)cA-B Thus BX)=F(Y). But B,(X)=PB,(¥) since YN P(X)=, and
B.(1) c; bgéX’) since X'c¥; and so Bp(X) CcBy(X'). But Br(X) & B (XM, for B(X)=8(V)cBi(X) and
B2(X) & B (X). Since Bo(X) < B,(X") and [,(X) & B (X") it follows that B, (X"} # B,(X"). From the choice of X, we
deduce that X is at least as nice as X, Since X — B < X n X it follows that X —(X~B)=B nXis at least as nice
as X'-(X-By=AnBn B(X)uX). But this contradicts an earlier assumption. We deduce that

(X, B (X), B2(X)) is nicely robust, as required. M

Let X ¢ V(G) be finite. An X-flap F is complete if there is a cluster Cin G with | ¢ =| X[, such that each
Ce Csatisfies CcXUFand | C nX| =1. A division (X, C, D) is bicomplete if X is finite and C, D are both

complete X-flaps.

(8.4) Let By, By be clustered havens in G, both of order > 2k, where k 20 is an integer. Suppose that there exists
X cV(G) with | X| <k such that By(X)# By(X), and choose such a set X, as nice as possible. Then

(X, B1(X), Bo(X)) is a nicely robust, bicomplete division.
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Proof. By truncating we may assume that By, B, both have order 2¢r+1, where |X| =t By (8.3),
(X, B (X), B2(X)) is a nicely robust division. To show it is bicomplete it suffices, therefore, to show that $;(X) is a
complete X-flap. We claim that X is By-free. For let ¥ < V(G) with | Y] <[X|. Since @#P,(Xu¥)C
Bo(X)  Ba(Y), it follows that By(¥) & By(X). From the minimality of X, B;(¥)=Ba(¥) and so B, (¥) & By (X).

Since B; (X U Y)Y < B (X) it follows that B, (Y} # B (X U Y), andso X N [§ (Y) # {&. This proves that X is B, -free.

L'et B; = B¢ for some cluster Cwith | ¢ =2r+ 1. By (4.5) we may assume that Cis local. By (4.7) there exists
CcCwith | C} =1, and with X " C = for all C € C, and a comb 2 traversing C with | P| =¢, such that X is
the set of its tips. Let # ={P, ,..., P,} where P; hasitsrootin C; € C(1<i<¢). For1<i<s,let D;=C, U V(F),
and let D ={D;:15i<t}. Since XN C;=@ for 1 £{ <t and hence C; c §,(X), it follows that D; c X v §(X)

and that | D; n X| =1 (1 <i <1). Hence B;(X) is a complete X-flap, as required. M

(8.5) Let (X1, Cy, D), (X4, Cq, D3) be divisions of finite order with X, U C N X, WD) =X, nX,. Let
X cV(G) meet every path between X, and X,, and subject to that have minimum cardinality, Then
XnCi=XnDy=@; let C, D be the X-flaps including C1, D, respectively. Then (X, C, D} is a division.

Moreover

(B if (X, C1, D), (Xo, Co, Dy} are robust then so is (X, C, D)

(i) if X is chosen as nice as possible meeting every path between X and X, and (X,, C, D), (X;, C3, D3)

are nicely robust, then so is (X, C, D)

(iii) if (X1, Cq, D), (X, Cq, D) are bicomplete then so is (X, C, D).

Proof. Let|X| =k By Menger’s theorem there are k paths P ,..., P, of G between X, and X,, mutually vertex-
disjoint, each with only its first vertex in X; and only its last in X,; and hence each with exactly one vertex in X.
Let P, have ends 5; € X, ; € X5 and letx; € V(P;) nX (1 £i £k). Let the subpaths of P; between s; and x;, and
between x; and #;, be §; and T; respectively. Now every vertex of P; except s; is in the same X,-flap, and since
t; & Cy it follows that V(P;) n C) =&, and similarly V(P,) N D, =@. Thus X N Cy =X N D, =. This proves

the first claim of the theorem. Let C, D be defined as in the theorem.

(1y C=#D.
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For suppose that C=D. Then CnC; =&, CnD,y,= . Not both CnX,, CnX, are non-empty since
G| C is connected and X meets every path between X; and X,. Thus, we may assume from the symmetry that
CnX,=3. Hence Cis included in an X;-flap and so C=C,;. But C; m D, =& by hypothesis, a contradiction.

This proves (1).
(2) (X, C, D) is adivision.

It suffices to show that C is a full X-flap. Let 1<i <k. If 5; = x; then since s; has a neighbour in C; it follows
that x; has a neighbour in C. If s; # x; then x; has a neighbour y in V(5;} ~ {x;}, and y belongs to the same X-flap as

s;; but since s; has a neighbour in Cy ¢ Cand s; € X it follows that 5; € C, and so y € C. This proves (2).
(3} For any separation (A, B),

X=(X-AYWVWANX)VANBN{(CUX)~-(C, U.X_l)))
meets every path betwe'eﬁ X; and X 5.

For we claim that X’ meets every path from X, to X {and hence from X, to X,). For let P be such a path. We
may assumne that its ends (v € X;.v € X say) are not in X”; and so u € A and v € A. We may also assume that
VPYNX,={u}and V(P)NnX={vhandsoV(P)NnC, =@, and V(P) - {v} c C. Since u & A andv € A, there
is a vertex w € V(P) with we AN B. Sincew #u (because u € A} and V(P)n X, = {u} it follows that w € X,
andsowe AN BN (CuX)—(CywX;)cX' Hence X' nV(P) =@, This proves (3).

@) If(Xy, Cy, D). (X4, Ca, Dy) are robust then so is (X, C, D).
For let (A, B) be a separation of finite order. It suffices b_y the symmetry between X and X, to show that

min{|AnX|, | BNnX|)X|ANnBN(CUX) .

Since (X, Ci, D) is robust, we may assume by the symmetry between A and Bthat |A N X,| S|AnBn{(Ci v
X1)|. From (3), | X] £]X'| andso
lAnX| €| X =|X~4] SlANXDUE@AANBALCUX)—(CLuX))
SJANBN(CUXDUEANBN(CUX)-(CruX

=|AnBn(CuX)

as required.
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(5) If (X, Cq, D), (X3, Ca, D3) are nicely robust, and X is chosen as nice as possible meeting every path

between X, and X o, then (X, C, D) is nicely robust.
The argument is as for (4), comparing the “niceness’” of the sets instead of their cardinalities.
6) If(Xy, Cy, D). (X3, Ca, D) are bicomplete then so is (X, C, D).

For it suffices to show that C is a complete X-flap. Since C, is a complete X-flap, there is a cluster & with
| ¢;] =| X} such that each member Fe § satisfies FCC, VX, and |FNX;| =1 For 1<i<k let

s; € F; e Qs then {F; W V(S) : 1<i <k} is acluster satisfying our requirements.
This completes the proof. W

(8.6) Let G be a geography every member of which is robust, and let (X 1» C1, DY), X4, C3, D3) € G, where
(X, U Cn X, uDy)=X) NnX, Choose k minimum such that there exists X C V(G) with | X| <k meeting
every path between X and X. Then for some X c V(G)—(C; U Dy) with | X| =k there is a division (X, C, D),

withX, W C; € X U Cand X, U Dy € XV D, which crosses no member of G.
Proof. Let M be the set of all X < V(G) with | X| =k such that X meets every path between X, and X,.
(1) M is finite.

_For there are k mutually vertex-disjoint paths Py ,..., Py of G between X; and X, by Menger's theorem, and

each P, is finite. Each X € M contains a vertex from each P; and so X < V(P ) u..u V(P,). This proves (1).

From (8.5), XN C, =@ =X ND, for each X & M. Let C(X), D(X) be the X-flaps including C; and D,

respectively; then by (8.5, (X, C(X), D(X))is a division. Let §(X) denote
(¥, C, Dye G: (X, C(X), D(X)) crosses (¥, C, Dy},

By (1), we may choose X e M with §(X) minimal. We shall show that S(X)=@. For suppose that

(Y, C, D)e S(X).
() Ifu,ve XU Yand (¥, C', DY e Gissuchthatu € C'andv € D', then (Y, C,DYe SX).

For if u,ve X this is clear. We may assume then that ueY-X Since C'nY=@ and

(Y, C, D), (¥, C', D’) are tangential, it follows that ¥ ¢ YuC. Hencev e ¥,sinceve D',andsove X-Y. In
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particular, ¥ n D’ =@, let F be the Y-flap including D’. Then D" ¥" & F U Y, since D’ is a full ¥'-flap. Choose
we X —(FuY) (this is possible since XN C, X nD #@). Then w € D’ U ¥, and so X meets two distinct ¥'-

flaps, as required.
(3) EitherX, nCz@orX,nC+D.

For suppose that X; N C=0 =X,nC. Let (A4, B) be a separation of G with C{X)c A, D(X)c B and
AN B=X By the symmetry between X; and X, we may assume, from the robustness of (¥, C, D), that
|[ANY]| S|ANBNCUY|. PuX'=ANTYIUANB-(CuUY)). Then X’ meets every path from X; to X
and hence to X,; for the first vertex of such a path in Bw C W Yis not in C (since Xy N € =) and so is either in
AnY or in AnB—-(CwY) Bu | X’| £1X|, and so X'eM. By (2), SX)YcS{X) (because
CNX' #@#D' nX for every (¥, C’, Dy e S(X') by (6.1)); but (¥, C, D) & S(X) since X’ C =@, This

contradicts the minimality of § (X), and proves (3).

From (3) we may assume that X; N C = Q. Since (X, Cy, D) and (¥, C, D) are tangential, it follows that
X;c¥ U C. By (3) it follows by the symmetry between C and D that one of X; M D, X; m D is non-empty. Since
¥, c YU C we deduce that X, n D =&, and s0 X; ¢ YU D. Let (A, B) be a separation as before, that is with
CXYcA DX)cB and AnB=X From the symmefry between X; and X, we may assume that

|AnY[ <|BAY|. Since (¥, C, D) is robust it follows that
|[AnY S|AnBNn(DuUY) .

let X=(ANNU@AnB—(DUY). Then X' meets every path from X; to X and hence to X,; for the first
vertex of such apathin B D W ¥isnotin D, since Xy, N D =, and soiseitherinA Nn¥YorinA mB-(DuUY).
Since | X’} £| X} it follows that X’ € M. By (2), S(X) < S(X). But (¥, C, D) & S(X’) since X’ D =@. This

contradicts the minimality of §(X). We deduce that § (X} =, as required. W

(8.7) Let B be a haven in G of order ¥q, and let W < V(G) be such that W  B(X) = O for every finite X < W.
Suppose that k = 0 is such that for every finite X ¢ W there exists Y < W with | Y| <ksuchthat X " B(Y)=D; and
there exists Xo © W with X finite such that Xo NP2 D for all Y c V(G) with | Y| <k —1. Then there is a

robust division (X, C, D)with X c WandwithCnW=@3#D NnW.
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Proof. LetZ={ve W:ve YU B(Y)forall finite ¥ ¢ W}.
W 2] <k

For suppose that there exists X < Z with | X| =k. Since W B(X) =D, we may choose x € W B(X).
Choose ¥ ¢ W with | ¥] <k such that XU {x})D B =D. Since X cZ < ¥ U B(Y) it follows that X c ¥, and

since | X] =k = | Y| we deduce that X =Y. Butx € B(X) and x & B(Y), a contradiction. This proves (1).
Choose Yo < Wwith | Y| € ksuchthat (Z v X)) N B(Yy) =9
) | Yol skand Yy is B-free, and Z C Y, and B(Yy) is a full Yo-flap.

For certainly | Yo| =%, from the choice of Xy, Since Z ¢ Yo U B(¥y) and Z n B(¥y) =& we deduce that
Z c ¥y. To see that Y, is P-free, let ¥ < V(G) with | Y] < | ¥p| =k. Certainly Xo N B(¥) = &, by the choice of
X0, and so B(Y) & B(Ye). Hence, Yo n B(Y) # &, and therefore Yy is B-free. Let Y be the set of vertices in ¥y with
a neighbour in B(¥). ’I;hen B(Y) = B(Y,), and since ¥y is free and Yy N B(Y) = &, it follows that | ¥| =k, that is,

Y =Yg and B(¥,) is a full Y,-flap.

(3) If X c V(G) is finite, G| X is connected, X " W= @ and X N Z =, then there exists Y ¢ W with | ¥] <%

suchthatZ o ¥, Y U B(Y) < BX), and B(Y) is a full Y-flap.
) Forlet Y, W be finite, such that v & ¥, U B(Y,), for each v € X m W. (This is possible since v & Z.) Let
X*=ZuXnWuy,:ve XnW).

Then X* < W and is finite. Choose ¥ < W with | ¥| £k such that X* n B(Y) = &, with Y minimal. Then B(Y) ris a
full Y-flap. SinceZc YU B(Y)and Z N B(I_’) = it follows tll_lat Z c Y. It remains to show tﬁat Yo B(b < BX).
Suppose that X n (Y U B(Y)) #D. Since X & B(Y} (because &= X nW < X*) and G| X is connected, we deduce
that there exists ve X Y. Since B(Y) is a full Y-flap, there exists u e (¥} adjacent to v. Now
veXnYcXnW and so Y, exists. Moreover, ue BY)=BYUX*) since X*nB¥)=9, and
B(Y U X*) c B(¥,) since ¥, c Y U X*. Hence 4 € f(Y,), and so v € ¥, U B(Y,), a contradiction. We deduce that
XnFuBY)=93. Since XNPI)=D it follows that B(Y)=PBX U Y¥)cPX); and since XNY=0,

B(Y) < B(X) and every vertex of Y has a neighbour in B(Y), we deduce that ¥ < (X). This proves (3).

We define a sequence Yg, X1, ¥y ooy Xpy1» Yesn of finite subsets of V(G) as follows, Let 1£i<k+1 and
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suppose that ¥;_; has been defined, and Z ¢ ¥;.; ¢ W, and B(¥;.;) is a full ¥;_;-flap. Choose X; < B(¥;_;), finite,
with X; "W =&, such that G|X; is connected and every vertex in ¥;_; has a neighbour in X,. Let
X =(¥;_; = Z) U X;; then X is finite and G| X is connected, and X " W 2, X N Z =, and so by (3) there exists
Y, c Wwith | ¥;| £k such that Z ¢ ¥;, ¥; U B(Y;) < B(X), and B(¥;) is a full ¥;-flap. This completes the inductive

definition.

We observe that each Y; includes Z and Y; N Y;_; =Z. Moreover, since ¥;_; mB(¥;) = it follows that
BY; o B(Y; V¥ )=8(Y;) for 1 <i<k+1. Since each member of ¥; has a neighbour in B(Y;} < B(¥;_), and
Yoy 0 Y;=Z, it follows that ¥; < Z '\ B(¥;;) for 1 €i <k + 1. In particular, since B(¥;) c B(¥;;) ... c B(¥y) it

follows that Xo N B(Y;)) =D and so | ¥;| =k
(4) There are major paths Ry ,..., Ry of G, mutually vertex-disjoint, such that R\ ,..., Ry each have an end in Y.

This follows from (4.2).

Letk —| Z| =r, thenr21by (1). Let Ry ,..., R; be numbered so that the end of R; in ¥, does not belong to Z
for1£j S r. Now for 1 < j <k, since R; is major it follows that V(R;) n (Y; U B(Y;)) = &, and since the first vertex
of V(R;) is not in B(Y;) we deduce that R; meets ¥; for 0 <i <k + 1. Since each | ¥;| =k, exactly one vertex of R;
belongs to ¥;. For 1£j <7 let S; be the restriction of R; to V(G)~ (¥ B(Yes)). For 1<i<k, since

YrN Yy =Zand V(R;) N Z = @ (because Z C Yop) it follows that V(S;) N (¥; - Z) # . Let

1=<j=r 1€igk+l

Then M is finite and G} M is connected, and M N Yy, =@. Let C be the ¥}, -flap including M. We claim that

(Yis1> Co B(¥r41)) is a division satisfying the theorem. Put D = f(¥4).
(5) (Yes, C, D) is a division.

For C# D since Xz, ¢ M = C and X N B(Ys) =<, By the construction, D = B(¥41) is a full ¥, -flap.
Lety € Y,y If y € Z, then y belongs to some R; (1 j £r) and hence has a neighbour in M ¢ C; whileif y € Z

then y € Y and has a neighbour in X; c M < C. Thus Cis a full ¥}, -flap. This proves (5).

(6) For every separation (A, B) of G of finite order,
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min({A N Yeul, | BNYnD)S|ANBAD UL .

Forlet X=(A NBnNnD)YUY,,. Then X is finite, and B(X) < B(¥;+1)=D. Moreover, since BX)c D and
(A N D, B D) is a separation of G| D, it follows that either B(X) A n D or B(X) € B N D, and we assume the
former without loss of generality. Since BX)NANB=@ it follows that BX)c(A-B)nD. Let
_ Y=(AN Y)W @ANBND). Then BX) is a Y-flap, and so B(X) =P(¥). Since Yo D= and BX)cD it

follows from (2) that | ¥| = k. Since | ¥;,;| =k we deduce that
1Y N@A =B +|AnBADUY)| =1Y] 2| Yyl = Yy nA~B)| +] Ty 0Bl .
This proves {6).
(7Y For every separation (A, B) of G,
min(l A N Y|, [ BT S [ANBNA(CUY) .

For suppose not. Since | Y| =4 it follows that |ANBN(CUY,y)| <k and hence for some
i(l <i<k+ DANBNA(CUY ) nX; =, thatis, AN BNX; =&, Since (AN C, B C)is a separation of
G| C, and G|X; is connected, we may assume without loss of generality that X; c (A ~B)n C; and hence
Y., €A " (C U Yy), since every vertex in ¥;_y has a neighbour in X;. Now every path from A N (C U 1) to Yiyy

intersects ¥ = ANY)V@nNBNC), and each R; meets both ¥, AN (CUY,) and ¥;,y; and hence

| ¥| = k. The claim follows as for (6).

From (5), (6) and (7) it follows that (¥} ,;, C, D) is a robust division; and ¥, cWand CnW, D n W= by |

the construction. This completes the proof. M

9. LIMITED DISSECTIONS

(9.1) Ler G be a geography in G and let D be the induced dissection. Ifu, v e V(G) and k = 0 is an integer, there

are only finitely many members (A, B)e D withue A—Bandv e B —A, oforder Sk

Proof. By a chain we mean a set C of members of 2, such that each (4, B)e C has order sk and

ue A-B, ve B—A. Suppose, for a contradiction, that there is an infinite chain. Choose an infinite chain Cwith

WO =(YANB:(A, BYe O
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maximal. (This is possible, since certainly | W(C)| < %.) We may assume that

(1) Foreach(A B)e CGA-Bisafull A n B-flap and there is a full A M B-flap B = B — A, and some vertex of B’

is nicer than every vertex of A — B.

For since each (4, B) € Cis induced by a division in § it follows that either (4, B) or (B, A) satisfies (1). By
exchanging 1 and v if necessary we may therefore assume that (1) holds for all {4, B} e C < Cwhere C is infinite;

and then W (O) € W(C), and so we may replace Cby . The claim follows.

Let O be the W(O)-flap containing u, and let #” be the nicest vertex in Q. Let P be a path between # and &’ with
V(P)c @. For each we V{P), w e A M B for only finitely many (4, B) € C, by the maximality of W({(); and so
ANBNV(P)#D for only finitely many (4, B) € C since P is finite. Thus, we may choose (A, B) € C with
ANBNV(Py= and hence withu' € V(P)C A —B. Let B" be as in (1). Some vertex v’ € B’ is nicer than &’ by
(1), and so v’ & Q by the definition of »’. Hence B'n Q =@. Since B’ is a full A N B-flap, it follows that
ANnBnQ=9. But by (1), A-B is a full A nB-flap, and s0 A c Q W W((. Hence AN B g W((). But
W(O) c A N B, and so0 equality holds. Since u € A ~ B it follows from (1) that A = Q0 v W({). We have shown
then that for all (4, B)e C except finitely many, A=0 UW(C) and B=V(G)-Q, and so C is finite, 2

contradiction. Thus, there is no infinite chain, as required. W

It Q’) i-s a dissection and (A, By), (A3, By} (A3, Byye D, we say that (A,, By) separates (A, B,) and

A3, B3)if A, includes one of A, B, and B, includes one of A3, B3, A dissection D is diffuse if
(i) A N B s finite for all (A, B) € D, and

(ii) there do not exist (4;, B;) e D (i=1, 2,...) such that for all k=1 and all i, j 2k, every member of D

separating (A;, B;) and (A;, B;) has order 2 k.

We recall that a dissection D is limired if for all 4, v € V(G) there are only finitely many (4, B) e D with

ueA—Bandve B—A.

(9.2) Let D be the dissection in G resulting from a geography S. If D is diffuse then it is limited and has adhesion

< NQ.

" Proof. Letu,ve V(G), and let Cbe the setof all (4, B)e D withue A—B, ve B—A. By (9.1) C contains
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only finitely many members of order <k, for any integer k. Suppose that Cis infinite. By an interval in Cwe mean
a subset C < C such that if (4, B), (A", B e C and (A", B”)e D separates (A, B} and (A’, B") (whence
(A”, B"Ye C and A CA” and B’ ¢ B”") then (A”, B”) € (. Define ;= C. Inductively, suppose that i =0 and G
is an infinite interval all members of which have order =i. Since only finitely many members of ; have order i,
there is an infinite interval G; © C all members of which have order =i + 1. By this inductive definition we have
constructed intervals C= G2 G2 Go.. - Let{A, B)e G(i=1,2,..). Fork=1and i, j2k, both (4;, B;),
and (4;, B;) belong to G, and so does every member of D separating (A;, B;) and (A;, B;). Hence, every such

member has order 2 k, contradicting that 27 is diffuse. We deduce that Cis finite. This proves that 2 is lmited,

Now suppose that P is an orientation of 7%, such that for each integer { = 0, D does not have adhesion </ at P,
For each i 2 1, let (4;, B;) € P be such that there is no (4, B)ie P of order <i withA; cAand BCB;. Forkz21
and i, j 2k, suppose that (A, B) separates {A;, B;) and (4;, B;). From the symmetry we may assume that
(A, BYe P. Then 4; r;;é and B ¢ B;; for it is not the case that B; c A and B € A; since P is an corientation. Hence
(A, B) hgs order > i 2 k. This contradicts that D is diffuse. We deduce that there is no such P, and so D has

adhesion < 8g. W

If P is an orientation of P, we say that (A, B) € P is incident with P if there is no (A", B) € P cutting off

(A, B) with (A", B") = (4, B).

(9.3) If P is an orientation of ‘D and (A, B) is incident with P then A N B C W, where W is the centre of P. If in

addition D has adhesion < d at P where d =0 is an integer then | A " B} £d.

“Proof letve ANB. If v W, there exists (A’, B) e P with v & B’. Since v e A N B, it follows that B’
includes neither A nor B. Since 2 is an orientation we deduce that (4°, B} cuts off (A, B), and hence
(A", B)Y=(A, B). Butv e B —B’, a contradiction. Thusv € W, and so A n B c W. Now if 2 has adhesion <4 at

P, choose (A’, B’) € P cutting off (4, B), of order <d. Then (A", B)=(A, B)andso|A N B| <4 W

(9.4) Let D be a limired dissection, and let ‘P be an orientation of ‘D with centre W, and let D have adhesion < d at
P, where d 20 is an integer. Then for every (A, Bg) e T there exists (A, B)e P of order =d, cutting off

{Ap, Byp), such that either W < A N B, or (A, B) is incident with /P.

Proof. Let C={(A, B)e P:AgcA}. If (A, B) € P then there exists (A", B) € P cutting off (4, B) of order
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<d, since D has adhesion <d at P, and so |A N W| <4, since ANWcA'NnWcA nB’. Moreover, if

(A, By), (Aq, By) & Ctheneither A, c A, orA; © A, It follows that, if

X=UAnNW:{A B}e O
then | X| <d and there exists (A, By} e C of order <d with XcA, nB,. If X=W then WgA; "B, as
required. If not, choose v € W — X, and choose u € Ag —Bg. Then Cis finite, sinceu e A ~Bandv e B—A for

all (4, B)e Cand D is limited, and so we may choose (4, B) € € such that A" c A for all (4", B)e C. Then

(A, B)is incident with P, as required. Wl

10. EXCLUDING THE HALF-GRID

In this section we shall prove the remaining implications of (2.6). We shall need the following. Let us say that

Z c V(G) is coherent if Z is finite and for every separation (4, B),
min(lZNA|,|ZnB|)S|ANnB|.
We remark that if (X, C, D} is a robust division then X is coherent.

(10.1) Let Z < V(G) be coherent, and let k = f—;—l Z|1. For each X c V(G) with | X| <k there is a unique X-
~ flap B(X) such that | B(X) 0 Z| 2| Z| - | X| ; and B thus defined is a haven of order k.
Proof LetX c V(G)with | X| <k, and letthe X-flapsbe C; (i € I). Let| C;nZ| =¢; (f € I).

(1) ForeveryJ cl either ¥, ;S| X—-Z| or 3 ¢;2|Z} —|X|.
’ ied ief

ForletA=Xu\ C, B=V(G)~ C;. Then(4, B) isa separatién. Since Zis coh;rent,
ielJ iel

min{| ZNA|,{ZnBl)S|AnB| =|X|.
IF1ZAA| £|X| then ¥ ¢;+|XnZ| <]|X|, while if | ZAB| <|X| then ¥, ¢;=|Z-B| 2|Z| -|X].
Y fed

This proves (1).

Now 2]X| €3|X| <]Z|, and so 2| Z] ~|X|)>|Z|. Hence there is at most one iel with

¢; 2| Z| —| X} . Suppose, for a contradiction, that there is none. By (1), taking | J| = I, we deduce
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2) ¢;<|X-2Z| foralliel.
Choose J < I minimal such that ¥, ¢; > | X -Z|. (This is possible since ¥, ¢;= |Z-X| 2{Z| - | X| >
et iel

|X| 2| X-2l) By (), ¥ ;2 |Z] —|X|. Now J#; choose je J. By the minimality of J, Y ¢ <
iet ieJ-{j}
{X~Z|,and by (2),c; <| X -Z|. Thus

1Z] -1 X S T ¢ = [ > CJ te<|X-z| +]1x-27] .
ielf ieJ-{i}

Hence | Z] €| X] +2| X -Z] £3| X| and so | X| 2 £, a contradiction.
Thus B(X) is defined for all X ¢ V(G) with | X| < k. LetX ¢ Y where | Y| < k. Then
|BEONZ| +| B nZY 2| Z] -{X] +1Z| -7 > 1Z],

and so B(X) N B(Y) # . Since B(Y) is a subset of some X-flap it follows that B(¥) < B(X). Hence B is a haven of

order R, as required. o
We call B, defined as in (10.1), the cohérence haven derived from Z.
A dissection D is linked if
(i) every member of D has finite order, and

(ii) for all (A, B), (A3, B;) € D and every integer k =0, either there are k paths of G between A; M B,

and A, M B, mutually vertex-disjoint, or there exists (4, B) € D of order < k separating (A, By) and (A5, B3).
The main result of this section is the following, which immediately yields the implication (i) => (ii} of {2.6). -
(10.2) If G has no half-grid minor, then G admits a linked, limited dissection of width < R and adhesion < R.

Proof. By (8.2) there is a geography containing all nicely robust divisions, every member of which is robust. By

Zom’s lemma, we may choose a maximal such geography G. Thus,

(1) G contains every nicely robust division, every member of G is robust, and every robust division not in G

crosses some member of G.

Let D be the induced dissection. We claim that 2 satisfies the theorem.
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(2) D isdiffuse.

For suppose that there exist (4;, B;)) € D (i 21) such that for all k=1 and all i, j 2 k, every member of D
separating (4;, B;) and (4;, B;) has order 2 k. For each i 2 1, let f3; be the coberence haven derived from 4; N B;.

(This set is coherent since (A;, B;) is induced by some robust separation.) Thus, B; has order k; say, where

k= I_%-(A,- NB)| = -;— i. Let i, j=0. Suppose that there is a nicely robust division (X, B;(X), B;(X)) with

| X| I< % min(, j). Then (X, B,(X), B;X)) & G; let it induce (4, BYe D. Now By(X) N (A; N B) # @, and so
A; " B; & B. Since (4;, B;) and (4, B) do not cross it follows that A includes one of A;, B;; and similarly B includes
one of A;, B;. But then (4, B) € D separates (4;, B;) and (4;, B), and its order is | X] < -;— min(i, j). This
contradicts the choice of the sequence (A, B1), (A2, B3),... . Hence there is no such X. By (8.3), B;(X) = B;(X)
for all X ¢ V(G) with i, j > %| X} ; for then k;, k; > %| X|. Thus the set {B; :i =1} is convergent; let B be its
lirnit. We claim that fqr all k20 there exists a finite X < V(G) such that X B(f) £ for all ¥ ¢ V{(G) with
|Y| <k For let X=A;nB; for some i> -g-k. Then if | Y| <k it follows that B(¥)=pB;(¥); but
Bi(¥) N (A; N B) =D, and so X N B(Y) # @, as required. By (3.5) P is a half-grid haven, and so G has a half-grid
minor, contrary to hypothesis. This proves (2).

(3) D is limited and has qdhesion < K.

- This follows from (2) and (9.2).

(4) D is linked.

For let (A1, B1), (A3, B3)e D, and let =0 be an integer such that no k paths of G between A1 M 31 and
A M B, are mutually vertex-disjoint. Since (Ay, B1), (A,, By) do not cross, we may assume that A; €A, and
B, c B,. We must show that there exists (4, B)e D of order <k separating {4y, B1) and (A, Ba). If
|A; nB;| <k we may take (A, B)=(A;, By}, and so we may assume that | A; N B{| 2k and similarly

|A2 ﬁBzI 2k Let (Al, Bl): (Az, Bz) be induced by (Xi, Cl) D]), (Xz, Cz, Dz)E g Then
K vlpNX,ubD)cA NByclArNB)NA2NB)=X NX;.

Choose k' < k& minimum such that there is a set of k" vertices meeting every path between X, and X, (this is

possible by Menger’s theorem). By (8.6) there is a division (X, C, D) with | X| =4&’, X, uC, c XU C and
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X, D, cX D, which crosses no member of G. By (8.5} (i), (X, C, D)isrcbust. By (1), (X, C, D)€ G. Let
it induce (4, BYe D. Now X, c X w CcAand X; & X=A N B (because | X;| > |X|)and so X; & B. Hence
B includes neither A; nor B;. Since (A, B), (A, B) € D it follows that A includes one of Ay, By; and similarly B
includes one of A,, B,. Thus (A, B) separates (A, By} and (A4, B,), and its order is | A " B| = | X| =k’ <k, as

required.

To complete the proof it remains to show that D has width < Ry. Let 2 be an orientation of D with centre W,

and suppose for a contradiction that W is infinite.
(5} For any finite X € V(G), only finitely many X-flaps intersect W.

For if possible, choose a counterexample X with | X| minimum. For each v € X there are only finitely many X-
flaps meeting W which contain no neighbour of v, by the minimality of W; and so there are infinitely many full X-
flaps meeting W. Let C, D be two of them. By (7.5), (X, C, D)€ G. By (1) there exists (X', C’, D) € § crossing

(X, C, D). By (6.1), X" meets every full X-flap; yet X’ is finite, a contradiction.
(6) For any finite X  V(G), there is a unique X-flap F with F " W infinite.

For, if possible, choose a counterexample X, as nice as possible. By (5} C m W is infinite for some X-flap C,
and hence there is.another X-flap, D say, with D N W infinite. For each v € X both C and D contain neighbours of
v, -for otherwise X — {v} would be a nicer counterexample. Hence (X, C, D) is a division. We claim that it is nicely
robust. Let (4, B) be a separation of G of finite order; it suffices, by the symmetry between C and D, to show that
oneof A MX, B Xis at least as nice as A N B n(C W X). Now since C n W is infinite it follows that one of
A m CnW, B NCNWis inﬁ—nite, and we may assume the former, -bj-( the symmetry between A and B. Let
Y=(AnX)U{ANBNC). Then Y contains every vertex not in (A — B} C with a neighbour in C. Since
(A -B)n Cis a union of ¥-flaps and (4 —B) N C N W is infinite (because A M B is finite and AN CNWis
infinite), it follows from (5) that some Y-flap included in (A — B) m C has infinite intersection with W. But D is

included in another Y-flap which has infinite intersection with W, and so from the choice of X, X is at least as nice as

Y. Since X — B c ¥, it follows that B m X is at least as nice as
Y- X-BYy=AnNnBnX)UANBNC)=AnBn(CuX).

This proves our claim that (X, C, D) is nicely robust. By (1), (X, C, D) € G, contrary to (7.5). This proves (6).
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For each finite X € V(G) let B(X} be the unique X-flap F with F m W infinite. By (6), B is a haven of order Rg.
Since B is not a half-grid haven, by (3.5) there exists an integer k& = 0 such that for every finite X < V(G) there

exists Y € V(G) with | ¥] <ksuchthatX nB(Y)=©. In particula;r

(7) Forevery finite X = W there exists Y ¢ V(G) with | Y| <k such that X n\ p(¥) = @.
L;t us choose k 2 0 minimum such that (7) helds. It follows that

(8) There exists Xq W, finite, such that Xy NPV = D forall Y c V(G) with | ¥| <k - 1.
We shall show that

(9) Forevery finite X W there exists Y ¢ Wwith | ¥| <k suchthatX nB(Y)= .

For choose Y as in (7), with | ¥ ~ W| minimum. Suppose that y € Y~ W. By (9.4) there exists (A, BYe P
with y € A’— B’ and A’ N B’ ¢ W (because A’ N B’ is finite, and so the first alternative in (9.4) does not.apply).
Let A = V(G) - BT, B=Yu B(Y); then (4, B) is a separation with ANB=Y. Let Y, =AnNB n(BUAY,
Y,=BnNB n(AUA"). Now by (5) and (6), (A — B) n W is finite and so B(¥,) & A m B’; and since ¥ contains
every vertex of A M B’ with a neighbour in V(G)—A n B, it follows that B(Y;) "nANB'=J. Bt X cA N B,
and so X N B(Y,)=@. Moreover, since Y, € B=Y U B(¥), it follows that B(Y,) =p(Y U ¥,) c B(Y), and so
T XAB(Yy)=D. But ¥, —W, Y, =W Y—(Wu{y)), since A'NB W and y € ¥y, ¥, ; and so from the
ch;)ice of ¥,| ¥{| > kand | Y,] >k But(4’, B")is robust, and so from (8.1), min(| Y|, | Y2} )< | A n B| -S k a

contradiction. This proves (9).

From (), (9) and (8.7), there is a robust division (X, C, D) with X c Wand with CnW, DnW=3. By
(1.5), (X, C, D) & G. By (1), there exists (X', C, D) e G crossing (X, C, D). By (6.1, X nC'#@#X D"

Since X ¢ Wit follows that W C" # @ # W n D', contrary to (7.5).

It follows that W is not infinite, and so D has width < ¥y, as required. W
11. EXCLUDING K,

In this section we prove the implication (i) => (ii) of (2.7). We begin with

(11.1) Let (X, C, D) be a bicomplete division. Then (X, C, D) is robust, and the coherence haven derived from X is

clustered.
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Proof. First let us show that (X, C, D) is robust. Let (A, B) be a separation of G of finite order. It suffices to

prove that
min{lA nX|,| BNX])<|AnBn({CuUX)| .

Let Cbe a cluster with | ¢ =| X|, such that each F € C satisfies F ¢ C and | FnX| =1. Now not both A - B
and B — A include members of C since no vertex in A — B has a neighbour in B — A. - We assume then that A - B
includes no member of C. Since A N X intersects |A N X| members of C it follows that A N B intersects
>|AnX| members of C and since they are disjoint and each is included in C it follows that

|[ANBNC| 2|AnX|. Hence (X, C, D) is robust.

Thus X is coherent; let [ be its coherence haven, of order & = ['—;—| X|1. We claim that B is the k-truncation of

Be. Forlet Y c V(G) with | ¥| <k. Since B(Y) includes a member of G it follows that every memntber of Ceither
intersects ¥ or is included in BAY); and thus at least | € —| ¥} members of C are included in B(Y). Hence

| B X| 2| X| -] ¥| and so B(¥)=P(Y). Hence B is the k-truncation of B¢ and so is clustered, as in (4.1).

|
The main result of this section is the following.

© (11.2) _If G has no K g -minor, then G admits a linked, limited dissection D of adhesion < Ry, such that for every

orientation P of D there is an integer k = 0 such that ts(F) has no Ki-minor.

Proof. Let G be the set of all nicely robust bicomplete divisions. By (8.2), G is a geography. Let D be the

induced dissection. We shall show that D satisfies the theorem.

(1) D islinked.

For let (A4, B1), (A4, By) € D, and let k=0 be such that there do not exist & disjoint paths in G between
A, Bj and A, N B,. We may assume that Ay CA, and By C By, and that [A; nBy|,|A; N By| 2k Let
(A1, By (A,, By) be derived from (X, Cy, D), (X,, Cp, Dj) tespectively; then (X3 U C )N X, wDy)=
X, "X, By (85) (i) and (iii) there is a division (X, C, D) of order <k with X, W cX v,
X, WD,y cXUD, such that (X, C, D) is nicely robust and bicomplete. Hence, (X, C, D) e G; let it induce

(A, B) e D. Then as in the proof of (4) in (10.2), (4, B) separates (A, B ) and (A,, B,) as required.
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(2} D is diffuse.

For suppose that there exist (4;, B;) € 22 (i 1) such that for all k=1 and all i, j = k, every member of D

separating (4;, B;) and (4;, B;) has order 2 k. For i 2 1 let B; be the coherence haven derived from A; N B;. Since
| A; ~ B;| =iit follows that B; has order = ['% i} . We claim that {B; : i 2 1} is convergent. For let X < V(G) be

finite, and let i, j > 3| X|. Suppose for a contradiction that B(X)#B;(X). Let (A, B) be a separation with

ANB=X, B{X)cA, B;X)cB.
LetA’=AU(A;NB;NB),B =B U(A;nB;nA). Then (A", B") is a separation of order
<|X| +|AnBNB| +|A;nB;nA| S| X| +| A B ~-Bi(X)| +]|A; nB; - B <3| X .

But A; N B; gA’_. and A; N B; < B’, and so there do not exist 3| X| +1 disjoint paths of G between A; m B; and
Aj M B;. By (1), there exists (A, Bp) € D of order <3| X| separating (4;, B;) and. (4}, B;). From our choice of
the sequence (A, Bl),-(AZ, Bj), ... it follows that 3] X| 2min(i, j), contrary to the choice of i, j. Hence,
B:(X) =PB;(X), and so {p; : { = 1} is convergent. Let its limit be B; then B is a haven of order X(. Moreover, for any
k 20 the k-truncation of P is the k-truncation of By, and hence is clustered, by (11.1). By 4.1), ﬁ is clustered,

and so G has a K g -minor, a contradiction. This proves (2).
From (9.2},
(3) D is limited and has adhesion < K.

Now let 2 be an orientation of D; to complete the proof it suffices to show that for some integer k£ 20, t5(P)
has no K -minor. Let P have centre W. If W is finite we may take k= | W| +1, and so we may assume that W is
infinite. Let D have adhesion <d at P. Let {(A;. B;) : { € I} be the set of all (A, B} € P which are incident with
. Then A; ¢ B; for all distinct i, j € /, and for each (A, B) € P there exists i € I such that (4;, B;) cuts off (A, B),
by (9.4). For each i € I let G be a cluster in G such that | G| =| A; n B;| , and each F e  satisfies F C A; and

| F~A;n B;| =1. (This is possible since (4;, B;) is induced by a bicomplete division.) For each v € W, let

N={vlu U (CeG:ve O).

iel

(4) Fordistinctv,v' e W, N, "N, =,
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For suppose that u € N, m N,-~. We may assume that i # v. Thus, there exists i € Jand C e G withu, ve C.
Since | CAW| =1 and v e C W it follows that u € W. Hence u #v’, and so similarly there exists i" e T and
C'e G suchthatu, v'e C'. Nowue CnC' cA; mAy, and u & By, since Ay By c W. Hence A; & By, and
soi=i" Then C, C’e Gand CNC' 2, and so C=C", But CnW={v}and C'nW={v'},and vy, a

contradiction. This proves (4).
Suppose, for a contradiction, that for all k 2 0 there is a cluster C, in £s(®) with | C| =k. Let

G={y N,:Ce C}c};
ve C

then G is a cluster in G of cardinality &, as is easily seen. Moreover, each member of G intersects W. For each

kz1let Bk= BCk'
(5) The set {By : k 21} is convergent.

For let X ¢ V(G) be finite and let &, k" > 2| X| . If Bi(X) 2 Bp(X) then by (8.4) there exists ¥  V(G) with
| Y] £|X| such that (¥, Bu(Y), Bp(¥)) is a nicely robust, bicomplete division. By definition of &,
(Y,. Br(Y), B € G; but Br(Y) and Py (¥) include members of G, and G respectively, and hence both intersect

W, contrary to (7.5). We deduce that B (X) = By (X). This proves (5).

Let B be the limit of {B, : k= 1}. Since each By is clustered, so is B, by (4.1). Hence G has a K %, -Ininor,
contrary to hypothesis. We deduce that our assumption about P was incorrect, and that for some integer k£ 20 no
cluster C}c in ¢s {(P) exists. The result follows, M

12. DISSECTIONS AND TREE-DECOMPOSITIONS

Our next objective is to recast (30.2) and (11.2} in terms of tree-decompositions instead of dissections. Let

(T, W) be a tree-decomposition of G. Fore € E(T), let Ty, T, be the components of T\e, and let
A=W te VI (i=1,2).
Then (A, A4)is a separation of G, and we call (A, A,) and (A, A,) the separations arising from e.

We say that (T, W) is proper if
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(D foralle e E(T), if (A, A,) arises from e € E(T) then A # V(G), and
(i) foralle, fe E(T),if (A, A;) and (B, B;) arise from e and frespectively, and A, =B, then A, = B,.

If (T, W) is proper, the set 2 of all separations arising from edges of T is clearly a dissection, which we call the

resultant dissection.
(12.1)} If(T, W) is proper, the resultant dissection is limited.

Proof. letu,ve V(G) and let u e W, ve W, where 5, 1€ V(I). Let P be the path of T between s and ¢
Suppose that (A, A)e Dandue A —Ay, ve Ay —~Aj, where (A1, 4;) arises from some edge e € E(T) with
trees T, T as before. Now u & A, and 50 5 & V(T',), and similarly ¢ € V(T,); and so e € E(P). Since.E(P) is

finite it follows that there are only ﬁnifely many such (A, Ay) € D, asrequired. W

To find the orientations of 2 we need the following lemma. A confluence of a tree T is an assignment of a
direction to each edge of T in such a way that no two edges are directed away from each other. Two example's of

confluences are
(1) vertex confluences: for some v e V(T), every edge is directed towards v

(2) end confluences: for some end II of 7, every edge e is directed towards the members of I1 not using e.

(12.2) Every confluence in a tree T is either a vertex confluence or an end confluence.

Proof. Suppose that for some v € V(T), every edge of T incident with T is directed towards v. For any edge

e € E(T) let fbe the first edge of the path of T from v to e. Since fis directed towards v and e and f are not directed

away from one another, it follows that e is directed towards v. Hence, this is a vertex confluence.

Now suppose that there is no such vertex. Then there is a ray R with vertices v, v,, ... such that forall i >1
the edge ¢; € E(R) with ends v;, v;, is directed towards v;,;. For any ¢ € E(T) choose { 2 1 such that v; and ¢
belong to the same component of T\e;. Since ¢; and e are not directed away from one another it follows that e is

directed towards v;, V.3, Viyg, ... - Hence, this is an end confluence. M

We deduce

(12.3) Let (T, W) be a proper tree-decomposition and let D be the resultant dissection. For any cardinal x, (T, W)

has width < X if and only if D has width <X, and (T, W) has adhesion < x if and only if ‘D has adhesion < x.
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Moreover, if (T, W) has adhesion < Rg, then the following are equivalent:
(i) for every t € V(T') there is an integer k 2 0 such that ts (t) has no K-minor
(ii) for every orientation P of D there is an integer k = 0 such that ts{*'P) has no K,-minor.

Proof. There is clearly a bijection between the confluences of T and the orientations of P, and so the first two

assertions follow from (12.2). For the third, that (ii) => (i} is clear, since 15 (¢) = s (‘P) where P is the orientation

corresponding to the vertex confluence defined by ¢ To see (i) => (ii), let P be an orientation of . If P
corresponds to a vertex confluence defined by ¢ € V(T then ts (P) = ts (¢), and so we may assume that P is defined
by an end confluence. Since O has adhesion £ 4 at %, for some integer 4, it follows from (12.1) and (9.4) that P

has centre of cardinality < d, and hence (ii) holds for P withk=d+ 1. R

Thus, proper tree-decompositions yield limited dissections. The converse is less obvious, and is the main topic

of this section. Let D be a dissection, and let (A, Bo) € D. By (5.1},
[(A, BYe D : (A, BY#(Bp, Ap) and either A c A, or A < By}
is an orientation of @. We call it the head of (A, By), and denote it by P(A,, By).

(12.4) If D is a dissection, P is an orientation of D, and (Ay, By) € T, then (A, By) is incident with P if and

only if P is the head of (Ag, By).

Proof. Suppose that (44, By) is the head of P, and (A, By) is not incident with . Choose (A, B) e P cuiting off
(Ag, Bg) with (A, B)# (A, Bg). Then Ay €4 and B € By, and since (A, B) € P it follows that A includes one of

Ag, Bg. Since Ay & B we deduce that A = A, and hence B = By, a contradiction.

For the converse, let (Ag, Bple P be incident with P and let (A, B)e . We must show that
(A, BY# (B, Ay) and A is included in one of Ay, By. Certainly (4, B) % (B, Ag) because (Bg, Ag) € P. Since P
is an orientation, either A C Ag, or A © By, or Ap = A. In the third case Ay = A since (Ag, By) is incident with P,

and so either A ¢ A or A = By as required.

Let D be a dissection. We define 5(D) to be the directed graph with vertex set the set of heads of members of
D, and edge set D, in which (A, B) € D has head as already defined, and has tail the head of (B, A). Thus, if

(A, B) € D then (A, B) and (B, A) are oppositely di_rected parallel edges of §(2). Let T(D) be the graph obtained
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from S{D) by replacing each pair of oppositely directed parallel edges (A, B), (B, A), by one edge, which we
denote by e{A, B). Thus e(4, B)=¢(B, A). If P is an orientation of D, it consists of & choice of one edge of
S(D) from each opposite pair (A, B), (B, A), and hence corresponds to a directing o (P) of the edges of T{D) in

the natural way.

(12.5) For each orientation P of D, no two edges of S (D) in P have a common tail.

Proof. If (A, B\), (A2, B)e P, and P(B,A|})=P(B;, A;), then (By, A }e P (B,, A3), and so either
B,cB, or BycA,; and similarly either B, B, or B, cA,. But B, A, and B, A; since

(Ay, B1), (A3, By)e P,andso By =B;,and hence A, = A, as required. W

(12.6) S{D) has no circuits.

Proof. For each t € V(S(2)) there corresponds a directing o (¢) of the edges of S(D) as we have seen; and if
1, 13 € V(S(D)) are adjacent, that is, t; = P{4, B) and t; = P(B, A) for some (4, Bj € D, then o(2;), o(t,) differ
only on the edge e(A, B). If Py, P, are paths of S(2) both between ¢, t,, then it follows (by reversing the
directions of the edges of P one at a time) that o (t,) and o (z,} differ precisely on the edges of P, and similarly on

P4, and so P; = P,. Thus (D) has no circuits. M
(12.7) IF D is limited and non-empty then T(D) is a tree.

Pr:oof. For (A, B1), (A3, B,) € D we denote by d((A 1, By), (A2, B»)) the number of tA, B) € 1D which separate
(A, B1), (As, B5). (Since P is limited this number is finite) We prove that every two edges
e(Aq, B1), e(As, B;) of T(D) belong to the same component of T'(7), by'induction on d((A, B), (4,, Ba)).
We may assume thatz;il C A, and B, c By. If this number is 1 then (A, B{)=(4,, B,) and we are done. Ifitis
2, then (4, B1) is incident with P(B,, A,)and so e (A, B,), (A, B;) have a common end-vertex. Thus we may
assume that 4{(A, B1), {43, B;))=3. Choose (A3, By) € D separating (A4,, B,) and (A,, B,), and different from
them both. Thus A A3 <A, and B, By B. If (A, B)e D separates (A, By} and (A, Bi) then
AicAcAscA, and BBy BBy, and so (A, B) separates (4, B) and (A4, B;); moreover, (A3, B;)
separates the latter pair and not (Aj, By), (A3, B3), for B, includes neither A; nor B;. Hence
d((Ay, By), (A3, B3)) < d((A1, B1), (Aq, By)), and so from the inductive hypothesis e(A;, B;), e(As, B3),

belong to the same component of T(D). Similarly so do e(43, B3), e{d,, B;) and hence so do
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e(Ay, B1), e(A,, By), as required.
Since every vertex of T(4) is incident with some edge of T(D), the result follows. &

(12.8) If D is limited and non-empty then a directing of E(T (D)) is o (F) for some orientation F of ‘D if and only

if it is a confluence of T (D).

Proof. By (12.5) and (12.7), 0 (P) is a confluence for every orientation . Conversely, the members of D

corresponding to any given confluence form an orientation of 7. W
For each t € V{T(D)), let W, be the centre of 7 at the orientation P. Let W = (W, : t € V(T(D))).
(12.9) If D is limited and non-empty, then (T(:D), W) is a tree-decomposition of G.

Proof. Letv e V(G). We must show thatv € W, for some ¢t € V(T{D)). Ifv € A n B for some (4, B) € D, then
v e W, where t = P(A, B) by (9.3). Suppose not. Since D is limited there exists (4, 'B) e Dwithve B-—-A, suéh
that there is no (A’ B’)r e P with (A", BY# (4, Byand A c A" and v € B’ (for we ma;I( assume that O = &). Let
t=P(A, B). We claim thatv € W,. Forlet (A", B") € P(A, B), and suppose that v e A" —B’. Then A & B by the

choice of (4, B), and A’ & Asincev € A”, and yet (A’, B’y € P(A, B), a contradiction. Thus, v € W,, as required.

Now let vy, v3 € V(G) be adjacent in G. If there exists (A, B) € D with vy, v, € A "\ B then we are done. If
not, we _may choose (4, B) € D with A maximal such that v, v, € B, as before; and then vy, v, € W, where

t = P(A, B), as before.

Now let #1, 15, 13 € V(T(D)) where t, lies on the path between ¢, and t5. Let v € V(G) with v & W,,. We
must show that v & W, n W,,. Choose (A, B) € t; with v &€ B. From the symmetry we may assﬂme that e (4, B)

does not lie in the path of T(D) between ¢, and ¢;. Since o(¢;) and o(¢,) differ only on edges of this path; it

follows that (A, B) € ¢y, andsov & W, .
This completes the proof. W

(12.100 If D is limited and non-empty then (T (D), W) is a proper tree-decomposition, and D is the resultant

dissection.

Proof. Let (A, B)e D, and let Ty, T, be the two components of T(D)N\e(A, B), where T, contains the head of

(A, B). Let
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A=W, re VT (i=1,2).

We claim that (A1, A,)=(4, B). Forlett € V(T;)}). Then (B, A)€ ¢, and so W, C A; hence A; < A, and similarly,
A, c B, But A nBc W, where t =P(B, A), by (9.3), and so A "B cA,; and similarly A "B cA,. Since
AicA Ay B, ANBcA;NnA;and AUB=A; UA,, it follows that (4, B)=(A;, A;). Both claims of the

theorem follow. M

In view of these results we can prove strengthened forms of (2.6) and (2.7). Let us say a tree-decomposition

(T, W) is linked if
(i) for each e & E(T), the separations arising from ¢ have finite order, and

(ii) for all 1, ¢, € E(T) and all integers k 20, if (A, B,) and (A,, B,) arise from e, ¢ respectively, then
either there are & paths of G between A; N B; and A; N B, mutually disjoint, or fo; some edge ¢35 € E(T) on the

path between e, ¢4, the separation arising from e has order < k.

Then from (5.7), (10.2), (12.3), (12.9) and {12.10), we have
(12.11) For a graph G, the following are equivalent:

(i) G has no half-grid minor

{ u) G admits a dissection ofwidth < Ry and adhesion < Rg

(ifi) G admits a proper linked tree-decomposition of width < Ry and adhesion < R.

From (5.8), (11.2), (12.3), (12.9} and (12.10) we ha_ve

(12.12y For a graph G, the following are equivalent:

(i) G has no K g -minor

(ii) G admits a dissection D of adhesion < Ry, such that for every orientation ‘P there is an integer k 20 such

that ts (°P) has no Ki-minor

{iit) G admits a proper linked tree-decomposition (T, W) of adhesion < 8 such that for every t € V(T) there

is an integer k > Q such that ts(t) has no K-minor.
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13. TOPOLOGICAL TREES

Cur final objective is to prove a strengthening of (2.5) in terms of ‘‘well-founded tree-decompositions™. Our
method is indirect with an intermediate step. In this section we introduce ‘‘topological trees” and prove that if a
graph has a dissection of width < x and adhesion < X, then it has a ‘topological tree-decomposition’” of width < k
and adhesion < x. In the next section we prove a lemma, that every ‘‘topological tree’” has a kind of well-founded
decomposition, called a ‘‘tree-labelling’”. In the final section, we use this to show that if a graph has a “‘topological
tree-decomposition’’ of width < x and adhesion < X, then it has a *“‘well-founded tree-decomposition’” of width < x
-and adhesion < k; and we also show that if a graph has a “‘well-founded tree-decomposition’” of width < x and

adhesion < «x, then it has no K . minor, thereby completing the cycle of implications.

A topological tree is a pair X =(V(X), X', -]), where V(X) is a non-empty set and X[-, -} is a mapping from

V{X) x V(X) to subsets of V{X) such that for any three elements x;, x5, x5 € V(X)

@) {x1, x2} € X [xy, x2] =X[x2, %11

(i) if x5 € X[xy, xa} then X [x, x3] =X[xy, x2] U X[x5, x3], and

(iii) the set X [xq, x2} M X[lxz, x3] N X [x3, x] has exactly one element, called the centroid of x1, x5, x3.
(13.1) _.{.et_X be a topological tree and let x, x, X, € V(X). Ifx; € [x, x] and x5 € [x, x] thenxy =x,.
P.';oof Since x, X9 € X[xy, x2]1 N X[x4, x] "X [xq, x], we deduce from (iii) that x, =x,. W

We now prove a proposition which gives some insight into the definition of a topological tree and also explains

the relation to well-founded trees to be introduced in the next section. . -

(13.2) Let X be a topological tree and let xg € X. For x, x" € X we define x <x” if x € X[xy, x’}. Then (V(X), <)

is a partially ordered set such that
@) the set {x" € V(X): x’ S x} is linearly ordered for every x € X, and
(ii) every two elements x, x’ € V(X) have an infimum.

Proof 'The relation < is clearly reflexive. To prove the tramsitivity let x; £x, and x; <x3. Then
xy € X[xg, X2] © X[xg, x3], and hence x| £x3. I x <x" and x" <x then x =x" by (13.1). Thus < is a partial

ordering.
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To prove (i) let x e V{X), and let xi, x5 € [xg, x]. Suppose for a contradiction that x; € X[xg, x5} and
X, & X[xg, x1]- Since X{xg, x] =X [xg, ;] W X{[x;, x] (i =1, 2) we deduce that x; € X[x;, x] and x; € X[x, x;].

Hence x; = x, by (13.1), a contradiction.

To prove (i) let xy, x, & V(X) and let x be the centroid of x4, X1, x2. We claim that x is the infimum of x; and

%5, Indeed, x € x, and x < x, from the definition of a centroid. Lety € V(X)be such thaty £x; and y <x,. Then

Y& X{xo, xl] ﬁX[-’COs x2]=(X[x0s X] UX[x’xl])m(X[xﬂs x] UX[xs x2])

=X[xg, x] W Xx, x1] N X[x, 23]} X [xg0 ]V K[xg, 11 I N Xfxg, x2] M X[xg, x31) =X xg. x],
and hence y < x. Thus x is the infimum of x; and x;. W
The partial ordering from (13.2) will be called the x,-domination relation.

(13.3) Let X be a topological tree, let xg, x, y, 2 € V(X), let < be the xy-domination relation, and assume that

x<z Thenx 2y Lzifandonly ify e Xix, z].

Proof. Assume first that xe X{xg,z] and ye X[x,z]. Thern ye X[x z]cXxg, z], and
xe Xxg, z2]1=X[xg. y] W X[y, z]. Nowx & X[y, z]~{y} by (13.1), and s0 x € X[xq, y], and hence x <y <z,

as desired.

- NOW assume that x <y <z, thatisx, y € X[xo, z] and x € X[xo, ¥]. Theny € X[xg, 2] =X[xg, x] W Xix, z],

and if y € X [xq, x] then x =y by (13.1). Thusy € X|x, z], as desired. W

Let X be a topological tree. A transfinite sequence {Xy}q <) Of elements of V(X) is said to be monotone if it is

(non-strictly) increasing in the xp-domination relation. If it has a supremum {in the same partial ordering), we

denote this supremum by lin;1 Xa» and say that {xg}qcn has a limit. We say that X 1s complete if every monotone
o<

transfinite sequence has a limit. It follows from (13.1) that if a sequence {xy}y.3 is monotone if and only if

xp € X[xy, x4l foralla<f<y<

13.4) Let D be a non-empty dissection of a graph G. Let V(X) be the set of all orientations of D, and for
Py, Pp e V(X) let X[Py, P, be the set of all orientations F of D with Py NP, CP. Then X is a complete

topological tree.
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Proof. We need to verify the axioms. Certainly V(X) # &, and clearly {Py, P,} < X[P,, P3] =X[P,, ], for
all P, P, e V(X). Let Py, Py, Pae V(X), and let P; € X[F;, P3]. Cleally X[P, Pr]VX[P;, P3]
c X[Py, P3]. To prove the converse inclusion let £ € X[Py, P3] - X [P, P2]. Then P, NP3 =P, NP, and
PyNPy & P. We must show that P, NP3 cP. Let (4, B)e Py NP, —F,; then (B, A) € Py, because
otherwise (A, B)e P, NP3 cP. Let (C, D) e Py N P3. We shall show that (C, D)e P. If (C, D) e P, then
(C,DYe P,"PyC P, as desired, and so we may assume that (D, C)e P;. Now A& C because
(B, A), (C, Dye Py, B C because (A, B), (C, D) P,, and B<&L D because (A, B), (D, C)e ). Since
(A, B), (C, D) do not cross it follows that A < D, and hence (C, D) € P, because (B, Aye P. Thus P, NPy C P,

as desired. This verifies the second axiom.

For the centroid axiom let P4, P,, P53 € V(X), and let 2 be the set of all (4, B) € D such that (4, B) belongs
to at least two of P, P,, #5. Then P is an orientation of 2, and it is the only element of X[, P31 N X [P;, P5]

N X[P,, P3], as desired.

Thus X is a topological tree. To prove completeness let {F,}, . be a monotone transfinite sequence of
orientation, and let £ be the Py-domination relatiqn. We define P to be the set of all (4, B) € D such that there
exists A’ < A with (4, B) € P, for every o with A <o < A. Since P NP, ¢ Pp forall a <P <y <A by (13.3),
we dec_ich that P is an -orientation. Let (4, B)e P NPy, and let oo <A be such that (A, B)e P,. Then
(A, Bye Py, " Py Py for every B < o. Thus ? n Py < P, for every o < A, and so P, < P for every 0. < A. Let
P* = V(X) be such that P, < P’ for every o < A. Then P’ n Py = P, for every oo < A, and so P' N Py < P. Thus

7 is the supremum of {Py}y<y. W

Let G be a graph. A topological tree-decomposition of G is a pair (X, @), where X is a complete topological

tree and @ = (@, : x € V(X)) is such that

(i)  P,=V(G), and every edge of G bas both endpoints in some &,,
xe V(X)

(iiyif x, x’, x” € V(X) and x" € X[x, x”], then @, " ®,» @, and

(i) if {x4}q < is 2 monotone transfinite sequence in X with limit x € V(X), then

(N &, cd,.

o:k;)l asP<r
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Let X be a cardinal. We say that a topological tree-decomposition (X, ®) has width < x if | ®,| < x for every
xe V(X). We say that (X, ®) has adhesion £x at x € V(X) if for every 2" € V(X) - {x} there exist distinct
X3, X3 € X[x, x'] with {x, x5} = X[xy, x,) and such that | @, N tl)le <x., We say that (X, @) has adhesion < x

if for every x € V(X) there exists a cardinal ¥’ < « such that (X, ®) has adhesion < ¥’ at x.

(13.5) Ler D be a dissection of a graph G of width < x and adhesion < x, and let X be as in (13.4). Forx e V(X)

let ‘15,, be the centre of x, and let ®=(D, : x € V(X}). Then (X, ©) is a topological tree-decomposition of G of

width < ¥ and adhesion < x

Proof. We know from (13.4) that X is a complete topological tree. It remains to show that @ satisfies the above
three axioms. For the first let V < V(G) such that either | V] =1, or V= {u, v}, where u, v are adjacent in G. If
V c A n B for some (A, B) € D, then V is contained in the centre of fP(;&, Byby 93)and (124). T VEANBE
for every (A, B)e D, let P be the set of all (A4, B)e D such that Vc B. Then % is an orientation and V'is

contained in its centre. This proves the first axiom.

For the second axiom let x, x’, x” € V{X) with x" & X[x, x”], and let v V(G)—-P,. Then ve A —B for

some (4, B) e x". Tt follows that either (A, B)Y e xor (A, B) € x”. Hence v € ®, N ®,~, as desired.

For the third axiom, let {x,}4 < be a monotone transfinite sequence with limit x, and let v Q N CIDxﬁ for
.. " [+ 2934

some . < A. Let (A, B) & x; then (A, B) € xp for some B with <P <}, and so v € B. Thus v € ®,, as desired.

Hence (X, @) is a topological tree-decomposition.

The statement about width follows immediately, and it remains to prove the one about adhesion. Letx e V(X);
then @ has adhesion < ¥ at x, for some cardinal ¥ < k. We claim that (X, ®) has adhesion £ ¥ at x as well.
Indeed, let x" e V(X)-{x)} and choose (4, B)ex—x". Let (A, BYex cut off (4, B) from x with
| A" B’| £x’; then (B', A") € x’, because (B, A)e x"and A c A’. Let x; be P(A’, B') and let x, be P(B’, A").
Then | @, N®,,] < |A’MB’| <, and {xy, x2} = X[x, x3], because | (x; ~x5) U (x2 ~x;)] =1. We claim
that.xl, x, € X[x, x7). Indeed, let (C, Dye x mx". Then D & A’ because (A’, BY), (C, D.) ex, and D& B
because (B, A", (C, DY e x’. Thus (C, D) e x; mnx,, and hence x nx' Cxy N x,. Thus xp, x5 € X[x, x7], as

claimed. This proves that (X, @) has adhesion <x. W
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{13.6) Let X be a topological tree and let S < V(X). We define a relation ~ on V(X)— S by saying that x ~y if

XIx, v1 S =, Then ~is an equivalence relation.

Proof Reflexivity and symmetry are clear. For the transitivity let x; ~ x, and x5 ~ x4, and Iet ¢ be the centroid of
X3, X2, 3. Then X[x, x3]=Xx;, c]ule, x3] S X ey, 23] W X[xs, x3] c V(X) - 8, and so x, ~ x5, as required.

]
The equivalence classes of the equivalence relation from (13.6) will be called S-flaps.

Let G be a graph, let (X, @) be a topological tree-decomposition of G, and let ¥ be a cardinal. We say that
(X, ®) has strong adhesion S$x at x € V(X) if for every x" € V(X)~ {x} there exists x” € X[x, x"] — {x} with
| ®.~| £x. We say that (X, ®) has strong adhesion < x if for every x € V(X) there exists a cardinal ¥’ < X such
that (¥, @) has strong adhesion < «" at x. We say that (X, ®) is conservative i’lf for every monotone transﬁnite

sequence {xy }oea in X with limit x,

I(I)x‘ < (lim inf 5@1 !)+
o<k ¢

[Ef 1t is a cardinal, then W is the least cardinal > p}. The following is the main result of this section.

(13.7) Let G be a graph and let ¥ be an infinite cardinal. If G has a dissection of width < x and adhesion < K, then

G has a conservative topological tree-decomposition of width < ¥ and strong adhesion <K

Proof. By (13.5) G has a topological tree-decomposition (X, ®) of width < ¥ and adhesion < k. We modify

(X, ®) so that it will be conservative and will have strong adhesion < x.

Let (X} be the set of all pairs (5. §), where s e V(X) and § is an {s}-flap. For x,y € V(X) we put
ox, V=1{0 e SX):se X[x,yL. S {x,y}# D}, and for x, y € V(X) and S ¢ V(X) we define {x}1,.5to

be {x} if y € S and @ otherwise. We define V(¥)=V(X) U §(X) and

Y[x, y]1=Xx ¥yl wolx, ¥) (x.ye VX)),
Yi(s, S% x1=Yix,(s, N =X[s5, x] - {5} Lies) VO %) (xe V(S), (s, e S,

Yi(s1, §2), (52, §2)1 = (X541, 52] = {51} L5y 5, — {52} L5 e 5,0 W O(s1, 52) ({51, 51), (51, 52 S(X)).

It is straightforward but tedious to verify that ¥ is a topological tree. We omit the details.




-56-

Now we prove that ¥ is complete. Fory € V(Y) we define y € V(X) as follows. If y € V(X) we puty =y, and
ify=(s, $)e S(X) we puty =s. Let {y,laca be a monotone transfinite sequence in Y. We may assume that it is
not eventually constant. The sequence {¥, ]}y« is a monotone sequence in X; let s denote its limit, and let S be the
{s}-flap in X containing ¥, (ot < A). It follows that (5, S) is the limit of {yy}q<) in ¥, as desired. Thus Y is

complete.

Fory € V(X) we put y, = ®,, and for y = (s, S} € S(X) we define

Ve =0; g (Y [Py 2" e X[s, 2] —{s5}},

rxe§
and put y = (y, 1y € V(¥)). We shall show that (¥, y} is the desired topological tree-decomposition.

We begin by verifying the axioms of a topological tree-decomposition. The first axiom is clear. For the second
let yy, y2, y3 € V(I), and let y; € Yyy, yal— {y1, y3}. Since g, Ny, € &5 N5, < D5, and @5, =, if

y, € V(X), we may assume that y, € §(X), say y» = (s, S). From the symmetry we may assume that ¥; € S. Then

Dy, "Dy, DN {Dy 1y € X1, 51— {5} S W, 5y and 50 Yy, Ny, Sy, as desired.

For the third axiom let {y,}y< be a monotone transfinite sequence in Y. We may assume that it is not

- eventually constant; let (s, S} e V(Y) be the limit. We have

J A W}lggu M q)iggq)snu m{@yi)’eX[)’wS]—{S}};\I!{s.S),

oed PSE<h o<p Bso<d a<h

as desired. Thus (¥, W) is a topological tree-decomposition,

Since y, @y for every y € V(Y), it follows that (Y, ) has width < x. We now prove that it has strong
adhesion < k. Let yg € V(¥), let ¥’ < ¥ be such that | &5 | <« and such that (X, ®) has adhesion < X" at g, and
let y; € VI¥)— {yo}. If Yo=Y then |y, | <[Py | = | ®5,| <¥/, and so we may assume that o #5¥,. Let
x € ¥lyg, y11 0 V{X) if such an x exists, and otherwise let x =¥,. These exist distinct x,, x, € X[¥q, x] such that
{x, X2} =X[x}, x5) and such that | &, N ®, | <¥. We may assume that x; € X[y, X.2]. Let S be the {x,}-flap
containing x, (and hence containing yg); then | Wy, 55| = | @, N @} S, as desired. This proves that (¥, )

has strong adhesion < x” at y,, and since yy was arbitrary it proves that (¥, y} has strong adhesion < k.




-57-

It remains to show that (¥, ) is conservative. Let {¥,}q <2 be a monotone transfinite sequence in ¥. We may
assume that it is not eventually constant. Let (5, S) € V(¥) be the limit, and let v € Y, 5). Then thereisanx e §

such that v € @, for every x" € X[s, x] — {s}. Let ¢ be the centroid of s, x, yo; then ¢ € S. There exists ot < A

> o, and : ,
such that yg € Y[c, (s, S)] for every B2, and so v e us([l)‘ Yy, Thus Y, 5 o}é)}; agﬁ\d iy, and hence

W, 53] < (lig1<anf | wy,1)7, as desired. W

14. WELL-FOUNDED TREES

In this section we prove a lemma which will be used in the next section to convert dissections to ‘‘well-founded
tree-decompositions””. It states, roughly, that every topological tree has a kind of “well-founded tree-

decomposition’” into pieces of cardinality < 3.

We begin with several lemmas about topological trees. Let X be a topological tree. If F ¢ V(X), an element
s € V(X)—F is an atiachment of F if X[s, u] € F w {s} for some u € F. Let us say that F ¢ V(X) is convex if

X[x ylcFforallx, ye F.

(14.1) Let X be a topological tree, let F cV(X) be convex, and let s be an attachment of F. Then

X[s, x]gFu{s)foreveryx € F.

Proof. _"Let ue F be such that X[s, u]cFw{s}, and let x € F. Let ¢ be the centroid of x, u, s. Then
X[x, clcXlx, u]lcF, since F is convex and x ueF, and Xlc s]cX[u, sjcFu {s};  and

X[x s]=X[x, c]UX[c, s]since ¢ € X[x, s]. Consequently, X[x, s1¢ F U {5}, as required. W

(142) Let X be a topological tree, let %y, x5 € V(X) be distinct, and let K < V(X) be conve, such that both x, x,

are attachments of K. Then @ #X [x1, xo] — {x;, x3} <k

Proof. Take x € K and let ¢ be the centroid of x, xy, x5. Since X{x, x;1— {x,} € K and X[x, x5) — {x3} €K by
(14.1), and ¢ belongs to at least one of these sets (since x; #x,), we deduce that c & {x;, x;}. Thus
CEX[x],xz]—{xg, xZ} and CEX[Xi,x]—{xl}gK. Let yEX[xl,):z]—{Il, XZ}. Then

ye (X[x;, c]-{x DwXle, x2] — {x2}) C K, as desired. W

(14.3) Let X be a topological tree, and let K, S, 8’ € V(X) be such that K is an S-flapand S §'. Then K - 5" isa

union of S’-flaps.
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Proof. Since every x € K — §' belongs to an S’-flap, it is enough to show that if K" is an §"-flap with K "K' # &

then X' cK. Letxe KnK andlety e K'. Then@=X[x, y] S’ 2X[x,y] NS, and soy € K, as desired. W

(14.4) Let X be a topological tree, let § C V(X), let K be an S-flap, and let s € S. If s is not an attachment of K

then K is an (§ - {s})-flap.

Proof. Suppose that K is not a (S—{s})-flap. Then there exist x ¢ X and ye V(X)—K such that
X[x, yInS={s}. Foranyze X[x, s1-{s}, X[x, z]"S=D by (13.1), and s0 X[x, z} c K, sincex € Kand X

is an S-flap. In particular, z € K, and so X[x, 5] c K v {s}. Hence s is an attachment of K, as required. M

Let X be a topological tree, and let {Ty}q <2 be a transfinite sequence of subsets of V(X). We say thatx e Xisa
limit point of {Ty}e<y if there exists A c A, cofinal in A, and there exists x,, € T, for all cte A, such that the
sequence {xg}qe 4 is monotone with limit x; and we denote the set of all limit pdints of {Tala<a by Hm{Ty}y e

"The sequence {Tq o< is said to be monotone if T N X[x, x”]# @ for all o< 0(.' Sa;’ <A and all x € 1, and .

x” € Ty». We shall need some lemmas about limit points of monotone sequences, as follows.

(14.5) Let {Ty}u<) be a monotone sequence of finite subsets of a topological tree X, and let x € Hm{ Ty }g -

Then there exists Oy < h and xo € Ty for all  with oy < 0 < X, such that {xg } o < <a i5 monotone with limit x.

Proof. Choose A € A, cofinal in A and y € T, for each o€ A, such that {ys}qe 4 is monotone with limit x. Then
Az ; let op € A be minimum. Since {Yo}aea 15 monotone with limit x, it follows that y, € X[y, x] for all

oe A LetL=Xlyq, x].
(1) Foralloy, 0 withog S0y £0p-<Aandallzy € Ty ML, there exists 2, € Ty, N Lwithz; e X{zy, x].

For since {yy}qea has limit x, there exists 03 € A such that o3 = 0, and such that y,, € X[z, x]. Since
{Te}a<n is monotone, and o) S0y S0y and 2; € Ty, and Yo, € Ty,, there exists z; € X[zy, yo,] M Tg,. Since

X[z, Yo, € X[z1, x] < L, the claim follows.

For each o < A with o 2 0, it follows (by (1)) that T, N L # &, Since 1, is finite, there exists x, € T, such that
X[xg x]1 O Ty =1{xy}. For op <oy 0p <A it follows from (1) that x,, € X{xy, x], and so the sequence

{xq Yoy <e <2 is monotone; and it has limit x, since xy € X[y, x] forall e A, as required. W
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From (14.5) we have immediately (we omit the proof):

(14.6) Let {ty}acr be a monotone sequence of finite subsets of V(X), and let A\ be cofinal. Then
lm{Tg o< = im{Ty }ee a-
(14.7) If {14} is a monotone sequence of finite subsets of V(X), and lim i{lf | To| is finite, then

o<

| lim {Ty}a<a] SHminfl Ty .
o<h

Proof. Letk= limil{lf | 7| . By (14.6) we may assume that | 74| <k for all o < A. Suppose that v, vE T are
<

distinct limit points of {Tg}g<a. By (14.5), for 1 <i <k + 1 there exists o < & and x!, € T, (& <& < }) such that
{x}, }ol caen is monotone with limit v/, For 1 <i < j<k+1, the set
{oe:od, o So<h and x, =xi )

is not cofinal in A, for otherwise the sequences {x% Jaicq<a and (%), Yo/ ca <. have a common cofinal subsequence,
and hence have the same limit, contradicting v/ #v/. Thus we may choose B < A such that ¢ < B for 1 <i <k and

k+1

alli, jwith1<i<j<k+1,xh=xb. Yetx},.., x5 € 13, and | 13} <k, a contradiction. The result follows. W
J B B B B f

(14.8) Let X be a topological tree, and for all o <X let T, © V(X) be finite, and let K € V{(X) be such that

Ky- *c(; is @ union of To-flaps. Suppose thatfora<B <A Kg C Ky — Ty and g CKq U T, Then:

@ {T& b < BS Monotone
(i lim{Tglger & Y (Ko U Ty), and
o<k T

(iii) if for each o < A, Ty, contains every attachment of K, then im{Ty}, <2 contains every attachment of

M K.

o<k

Proof. Let aososo <A, let x ey and x” € 1,7, and suppose that X[x, x"I N Ty =@. In particular,

o< <o and x” & Ty, and 50 X7 € Ty — Ty T Ky — T, Since X [x, x”"] M Ty =& and Ky — T is a union of

To-flaps, it follows that x € Ky — Ty © Ko € K = Ty» a contradiction. Thus {74} < is monotone, and (i) holds.
To prove (ii), let v € lim{T,}y<x, and suppose that v &€ K, T, for some 0y < A. Choose o <A and

Xy € Ty for oy o< A, such that {xg}y, <o 1S monotone with limit v. We may assume that ¢ = 0. Since
o (o4 1 Y 1 -
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vé Ky —Tg,andxg € Tg & Ko, — To,e and K, — Ty, is a union of Ty, -flaps, it follows that X [x,,, v] N Tg, # .
Choose y € X[xq, VI Ty, with X{y, v] minimal. (This is possible since 1, is finite.) Since v is the limit of
{*a}oyca<a and y #v (since v € t,) and x4 € X[xy, v] for oy S <A, it follows that there exists o, with
oy S0z <A such that x5, € X[y, v]1-{y}. Since x4, € T, ST, U K, and v € 1, U K, and K, — Ty, is 2

union of Ty, -flaps, there exists y’ € X [xg,, ¥] M Ty, But then
Xy vleXixy,, vicXly, v]
contrary to the choice of y. Hence (i} holds.
To prove (iii), let y be an attachment of OQ;L K,. Choose_x € Ql K, sothat X[x, y]e( @ K w {y}. There

exists Og < A so that y & K , since y & ﬁqu. Let o satisfy 0 € ot <. Then y & K,, since K, C Ky, But
[+ X4 .

X[x y]-{y} cKg and so y is an attachment of K, Consequently y € Ty, for op So<A, and hence

y € lim{Tty}q<s. Hence (iii) holds. W

(14.9) Let X be a complete ropological tree, and for all o < A let 1, € V(X) be finite, and let K, < V(X)) be such

that Ko —7Ty is a union of Ty-flaps. Suppose that for a<P<t Kz CKy—1, and (g CKy,UT,. Let

t=lm{T,}e<p and K = QKG. Then K — T is a union of T-flaps.
i o<

Proof, letxe K—7and y e V(X)-(K W1y we must show that X[x, y]mt=#&. Since y € K, there exists
O < A such that y & K. For cg <o <A, since y € K, DK, and x € K, and K, — T, is a union of T,-flaps, it
" follows that X[x, y] Nty #8. Choose x4 € X[x, y] N1, with X[x,, x] minimal (this is possible since T, is
finite). For <P <A, since xo € Ko —T 2Ky and x e Kp, it follows that X[xq, x]1N 132D, and so
xp € X[xq, x], by the choice of xg. Consequently, {X4}q 2 is monotone. Since X is complete, this sequence has a
timit x* say. Then x* € 1 by definition of 7, and yet x* € X[x, y] since x, € X[x, y] for oy S0 < A; and s0

TN X[x, y]# D, as required. W

Let X be a topological tree. A triad (in X) is a set T < V(X) with | T| <3 such that if x, y, z € T then either

xe X[y, zlorye X[x, z],orz e X[x, ¥}

(14.10) Let X be a topological tree, let 1 < V(X)) be a triad, and let F < V{(X) — 1 be convex. Then F has at most
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two attachments in <.

Proof, We may assume that | 1| =3;let T={x, y, z}, where y € X{x, z]. Then not both x, z are attachments of F

by {14.2), as desired. B

A well-founded tree is a non-empty partially ordered set T = (V(7T), <), such that for every two elements
t1, 1y € V(T) their infimum inf (¢, t5) exists, and such that {#'e V(T): ¢ <t} is well-ordered by < for every
te VkT). A trunk of T is a non-empty subset X ¢ V(T such that K is linearly ordered by <, and X contains every
t' € V(T) such that ¢ <t for some ¢ € V(7). There are three kinds of trunks: unbounded trunks, those for which

' sup K does not exist; bounded open trunks, those for which sup K exists and sup K ¢ K; and closed trunks, those

withsup K € K. Htq, 1 € V(T}, we define

T(ty, t))={te V(T):t <ty or 1 <t,, and ¢t 2inf (¢1,¢5)} .

Let X be a topological tree. A tree-labeling of X is a pair (T, ), where T is a well-founded tree and

1={(1, : t € V(T)) is such that

(Deacht isatriadinXand y T,=VX)
te V(T)

Giiyforalls, ¢, t”" e V(I and allx € ¢, x” € 1, if t' € T[t, "] then X [x, x"} N 1 # &, and

(i) for every bounded open trunk K of T, Hm{T,},« x = Tupx-

We say that v=(Wx):x e V(X)) is a weighting of a topological tree X if each v(x) is a cardinal, and

v(x) < (lirr:}L inf v{x))* for every monotone sequence {xy}q.; with limit x. If ¥ is an infinite cardinal, we say that
a<
a weighting v has adhesion < x if for every x € V{X) there is a cardinal ¥* < ¥ such that
1) v(x) £ ¥ and

(i) for every x" e V(X) — {x} there exists x” € X[x, x] - {x} withv(x") < ¥.
We say that a tree-labeling (7, 1} of X has v-adhesion < x if for every trunk X of T there exists a cardinal ¥’ < K

such that for every f € K there exists t’ & K with ' 2 ¢ such that v(x") < ¥’ for every x" € 1,

Now we prove the main result of this section, the following.
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(14.11) Let X be a complete topological tree, and let v be a weighting of X of adhesion < x, where X is an infinite

cardinal. Then there exists a tree-labelling of X of v-adhesion < ©

Proof. For each ordinal o, we shall construct, inductively, a set Z4, a set &, and for each K € X, a triad ©(K, o)

of X, and they will satisfy (1)-(4) below.
(1) Zy=U0K, B):B <o, Ke Kp), and K, is the set of all Zy-flaps in X.

(2 IfKe Ky then ©K, )c KU Zy, K—UK, 0) is a union of ¥(K, o)-flaps, and ©(K, o) contains every

attachment of K.
(3) Foroa<B ifK € Ku, K e Kpand K c K, then UK, Pre K WK, o).

(4) Forevery o, ifK' € K, K € Ky and K € K, then WK, 0.+ 1), ©K’, o} are different and one includes the

other.

The inductive definition is as follows. V(X). is non-empty, and so we may choose xp € V(X). We define
Ko={VXD}, Zo =@ and 7V (X), 0) = {xy}. Inductively, we assume that for some ordinal y > 0, we have defined
Zo» K, and the ©(K, o) for all o < ¥, and we have verified that (1)-(4) hold whenever they are meaningful. We
define Z, and X to satisfy (1); and in order to complete the inductive definition we must define (X, 7y) for each
Ke ‘.7(7,—'and verify that (1);(4) are still satisfied whenever they are meaningful. First, let K € X, and let us define

(K, v). There are two cases, depending whether 7y is a successor ordinal or a limit ordinal.

Suppose first that y= o+ 1. Since Z, € Zy and K is a Zy-flap, there is a Z,-flap K" with K ¢ K’. Now every
attachment of X’ is in 7(K’, o) by (2). Moreover, for each K" € K, with K” # K”, ‘-C(K", oy K" U Z, by (2),7and
since K m K’ =@, it follows that ©(K”, o) N K"=. Consequently, Z, " K" C (K", ot). Let A be the set of
attachments of K; then A € Z,. Every element of A is either an attachment of K’ or belongs 10 Z*{ M K’, and so
A (K, o). Since t(K’, o) is a triad it follows that so is A. But X is convex since it is a Z,-flap, and so by

(1410, | A| €2. IfA = (K’, o) we define ©(K, ) =A. If A = (K’ 01), we choose x € K as follows:

({yIf |A| =2, A={a;, a;} say, then x is chosen with v(x) minimum subject to x € X[a1, a2] — {@1, a2}.

(This is possible by (14.2).)

(i) If | A| <1 (and hence | A} =1), then x is chosen with v(x) minimum subject to x € K.
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We define (X, 7) =A W {x}. This completes the inductive definition when yis a successor. Let us verify that (1)-
(4) remain satisfied. (1) and (4) are clear. For (2),let K € X, and let o, K’, A be as above. Then oK, ) cA UK
.and A ¢ (X", &) € Z,, and so UK, Yy o KW Z,. Now we show that X — (K, v) is a union of 1(K, y)-flaps. For
E'—v(K’, o) is a union of T(K’, oo)-flaps, by (2) applied to K’, 0. But for x€ K and y € X' — (¢(X’, )
UK), X[x, y]nZy#Q since K is a Z,flap, and yet X[x, yl€K!, and Z,n K ct(K’, 0); and hence
Xlx, Iy] N TK, o) = @D. It follows that K is a union of ©(K’, o)-flaps, since K ¢ K'— (X', o). By (144}, Kis a
union of A-flaps. By (14.3), K — (X, 7) is a union of ©(X, 7)-flaps, as required. This proves (2), for the third
assertion of (2) is obvious. For (3), let o, X', A be as above. Let f <, and let K” € Kj such that K c K”. We
must show that 7(K, ¥) c K7 U K", B). But =K, V) c K" U t(K’, o), and K’ c K”, and o(K’, o) c K" U ®(K”, B)
(by (3) applied to B, o if B < o, since K* ¢ K”, and trivially if f = ). Thus T(K, "!') c K" w (K", B). This proves

(3). Hence (1)-(4) still hold.

Now suppose that Y is a limit ordinal, and again let us define (K, y) where K € K. For each o<, let

Ey e K, such that K € K; and define ©(K, ¥) =1lim 1(K, o). This completes the inductive definition, but we
o<y

must show that (X, 7} is a triad, and that (1)-(4) remain satisfied. For brevity, let us write &, for T(K,, ). Now
for o< B <, Kg © Ky — Gq, and 0 € Ky U Gy by (2) applied to @, B. Consequently, {Gq}q<y is monotone by

(14.8)(1); Butlim inf | 64| =2 by (4) applied to o, and so | (X, ¥)| <2 by (14.7). Hence T(K, 7) is a triad.
; a<y

It remains to verify (1)-(4). Now (1) and (4) are obviously still satisfied. For (2), let X, Ky(@ <), G5 be as

before. Then

UK, ) =lim {Cy}ycy & MK uo)c MK, A
a<y <y

o<y

by (14.8)(ii). But () K, is convex since each K, is convex, and (M K, ¢ V(X) ~ Z,, and so () K, is a subset of
Ge<y a<y

a Z,flap. Since K is a Z,-flap and K < " K, it follows that K = (M K; and so (K, Y) € K W Z,. This verifies

o<y o<y
the first assertion of (2). The second assertion follows from {14.9}, and the third from (14.8)(iii). Hence, (2) still
holds. For (3), let K, K {00 <) O4(0 < ) be as before, and let of <. We must show that ©(K, V) € Ky U G-

But this follows from (14.8)(i1), and so (3} still holds. Thus, (1)-(4) all still hold.
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We observe from the construction that Z, cZg for o<, and if Z, # V(X) then either Zy #2Z,,, or
Zost #Zasn. Consequently, if Z, # V(X) then o< | V(X)|*. Hence there is a (least) ordinal A such that

Zy,=V(X); and then XK,=@ for all a2k We define V(=Y K o):Ke X}, and for

a<h
(K, o), (X', &) € V(T), we define (K, o) S(K', &) if a <o’ and K" € K. We put T=(V(T), <); then it is easy to
see that T'is a well-founded tree (we omit the details). Fort € V(T), let z = (K, 0) say; we denote T(K, o) by 1,, and

lett=(t,:te V().
(8) (T, 1) is a tree-labeling of X.

We must verify the axioms for a tree-labeling. The first holds since Z; = V(X), and the third is immediate from
the construction. For the second, let t=(K, o), t'=(K’, ), t"=(&K, o) e V(D), let t'€ T[t, t"'], and let
x e T, x" e T We mustshow that X [x, x"1N 1Ty 2 @. We show this first in the special case when ¢ <# <",
We may assume that x, x" & 1, for otherwise we are done. Consequently #' s, t”. Thus, a <o’ <o and
K'cK' cK By@B),t-cK' Ut andsox” e K'. But K’ is a Z-flap, and T, € Z, and so K’ n T, =, and
consequently x € K’. Since x” € K’ and x € K’, and K’ — 1, is a union of t.-flaps by (2), it follows from that

Xix, x”") N 1p = &, as required.

Now we turn to the general case. Let ty be the infimurn of 7 and ¢”; we may assume that 2y & {z, t”}, for
otl_lerwfs':e we are in the previous case. Letto=(Lg, PyandletL, L” e Kp41 include K and K ”, respectively. Then

L#L"”. Weclaimthat X[x, x"]1 N1, #d. Hxe 1, or x"e Ty, then our claim is true, and so we may assume that
x,x"#7,. Then xe L and x” e L” by (3), and thus X[x, x"] 1, #&J, which proves our claim. Let
xp e X[x, x"1M1,,. Now either " & T'[tg, t], ort’ € Tit, "], and from the symmetry we may assume the former.

Then X {x, xp] N T # & by the first part of this proof, and so
D= X[x, xp] Nty e X[x x"1 N
This proves (5).
It remains to prove that (T, 1) has v-adhesion < x. For that we shall use the following lemma.

(6) Let I be a non-empty ordinal interval {(so if 2B S yand o, ye Ithen Be [). Foroe I let K e K, so that

Ky C Ky for B< o Write 6y = UK, o) for 0. € I, and suppose that | 65| 22 for all o I with o.# sup(I). Then
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there exists a, b € V(X) so that 6, < Xla, b]forall . e I. Moreover, for every cardinal |1, either

(i) there exists o with o, 0+1el so that |6, =2, ox={x, y} say, and v(z)>p for ail

ze€ X[x, y]1—{x, y}, andop cX[x, ylforallBzawithfe I or
(i) there exists x € q Oy with v(x) > u*, or
. e

(iil) there exists e I such that v(x) <y’ forallx € G,

For choose o € 1, minimum, and choose @, b € 0 so that 6, € X[a, b]. Then it follows easily by transfinite

induction (we omit the details) that 6, € X[a, b] for all o e I, because | 65| 22 forall e 1.

Let Z be the set of all z € X[a, b] such that there exists e Jwith o+ 1 e Fso that z € Ggpq — On. It Tollows
from (4) that G, C Gysq and | 6,] <2; and consequently, | 64 =2, 6y = {x, 3;} say. By the same transfinite
induction argument, 65 < X[x, y] for all P2 o with Be . Moreover, it follows from the construction that
z€ Xx, y1—{x, ¥}, and v(z)sv(z) for all z’e X[x, y1~-{x, y}. If vi@d)>p then v(z)>p for all

2z e X[x, y]—{x, ¥}, and so (i) holds. We may therefore assume that v{z) <, for-all z & Z. Let

Z'= 1 64—(ZV0y).

uel

From the cénstruction, it follows easily that every element of Z’ is the limit of a monotone sequence of members of
Z, since 6, < X [a, b] for all e I. Butv is a weighting; and so v{z) < 1* for every z € Z’, and hence v(z) < p* for

every z € { | ) Op) — Gy, Choose ate I with Oy M G, minimal. We may assume that there exists x € o, with
el

v.(x)> p*, for otherwise (iii) holds. Consequently, x € G, and from the minimality of o N Gy, and the

monotonicity of {Gy }y s . it Tollows that x & OI Oy, and (i1} holds. This proves (6).
o e

Now let us show that (T, ©) has v-adhesion < X. Let {(K, O) : & < ¥} be a trunk of 7, and let 6, = UK, o) for
o < Y. We must show that there .is a cardinai ¥’ < x such that for every o, < 7y there exists  with < P < 1.(such that
V(x) Sk’ for every x € op. If ¥ is a successor cardinal, say Kk =p*, then v, S| for all x & V(X) since v has
adhesion < x, and we may therefore set K'=p. We assume then that X is not a successor cardinal. If yis a
successor ordinal, say Y= f§ + 1, there exists a cardinal |t < x such that v(x) S p forall x € Ops éince v has adhesion

< k and oy is finite; and then we may set "= 1. Thus we may assume that 7y is a limit ordinal.




Since v has adhesion < , there is an infinite cardinal |t < ¥ such that
(a) v(x) £pfor all x € lim{oy )}y s, and

(b} for all x € im{C, }yey and y € V{X) — {x} there exists x" € X[x, y] - {x} such that v(x") < 1.
Set ¥’ = u*. We shall show that k’ satisfies our requirements. Now.certajnly ¥ < x, since L <k and ¥ is not a

successor cardinal. It remains to show the following.
(7) For every Py < Y there exists P with By < B <y such that v(x) < 1" for every x € cp.

Suppose first that for some <Y, | 0| 22 for all o with S <y. Let I={o: <ot <y}. By (6), one of

three possible cases must occur:

(i) There exists o with o, c+1e] so that |0y =2, Oy={x, ¥y} say, and v(z)>pn for all
ze X[x, y1-{x y}. Let z € lim{Gy } o<y (such an element exists since X is complete). Then z € X[x, y], since
by (6), 6 < X[x, y]lforall o with o <o’ <. By (a) above, v(z) <, and so z &€ X[x, y] - {x, ¥}, and so we may
assume that z = x, that is, v(x) £ and x € im{Gy }or <y Since X[x, y] = {x, y} by (14.2), it follows from (b} that
there exists x" € X[x, y] - {x, y} with v(x") £ 1, a contradiction.

(ii) There exists x € ﬁf O With V(x) > 1. But then x & lim{Gy,}¢ <y, contrary to (a).
e

(iii) There exists ot & I such that v(x) < u* for all x € G, but then (7) holds, as required.

We may assume, therefore, that A <y is cofinal in 7y, where A={ct: o<y, |0y =1}. For ae A, let
Oy = {xq}. By (14.8)(i), {Gy}e <y is monotone, and hence so is {xq}q<y. Since X is complete, {xy}q <y has a limit

xsay, and x € im{G }q<y. Moreover, xp € X[xy, xJfora<Pand o, B e A.

Now let By < v; we must show that it satisfies (7). Since A is cofinal in ¥, there exists B; € A with By <B;. I
V(xpg ) < u* then (7) is satisfied by choosing § = 3;; and so we assume that v(x B> . Then xp, #xsince v(x) S
by {2). By (b), there exists z € X [xp,, x] ~ {x} with v(z) . Let Bs € A be minimum such that xg, € X{z, x]. If
V(xp,) S " we are done as before, and so we may assume that v(xp,) > i, and in particular, xp, #z. Let
B, =sup{P e A: P <Pq}. Since Py € A and B; < By, it follows that By < B;. We claim that B; € A and B, < B4.
For if B, # sup(A N B;) then certainly B, € A and B, < -[?;4. If B, = sup(A ™ By}, then B, is a limit ordinal, and so

op, = lim{Cp}g<p,; but ligr}:iﬁrzlf[csgl =1 since B, =sup(A N Bs), and so by (14.7), | og,| <1, that is, B, € A..
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Moreover, xg € X[xp,, z] forall B e A with B < B4, by definition of B4, and so the limit of {xg}g. o~p, belongs to
X[xp,, z), that is, x, € X[xp,, z], and so B, #B4. This proves our claim that B; € A and By < By. Thus
Bo < By < B2 < By, and z € X[xp,, xp,]. Moreover, there is no B € A with B, < B < B, from the definition of Bs.
As before, we may assume that v(xp,) > 1", and in particular xp, #2z. Since xg, & Op,, there exists a minimum Bs
with B, < B3 <B4 such that xp, & o, Then By <Bs; let I={a:Pa+15a<P;}. Then |G,| 22 for all we ]
with ‘ot 2 sup(I} = B3 (and also for o= f; unless B3 =B4). Since I #J, we deduce from (6) that there are three
possibilities:

(i) There exists o with o, 0+1el so that |G| =2,6,=1{x, ¥y} say, and v(z)>p for all
7’ € X[x, y]—{x, y}. Since o+ 1€ Iit follows that o < B3 and s0 xg, € G4. But since | o] 22 for B, < B <Py
it follows f;om (6) that xp, € X[x, y]. But xp, € 6y ={x, y}, and so X[xp,, xp,] € X[x, y]. and hence

z€ X{x, y]—{x, y},since z # xp,, xp,. This is impossible since v(z) < .

(ii) There exists y € l"\r O, with v(y) > 1", In particular, y € Op,.y N Og,. Since | 6| = 1, it follows from
oe

the construction that ©p,.; = {xp,. y} and y € K,y and v(y) V() for all y" € Kp,,;. Since xp, € Kg,41, and

hence
z € X[xp,, xp,] € Kppup W {xp, }

it follows that z € Kp ). From one of the properties of y, we deduce that v(y) <v(z). But v(z)<p, and so

v(y) £ 1, a contradiction.
(iii) There exists ot € I such that v(y) £ ¥ for all y € G,. This is the desired tonclusion, and (7) holds.
This completes the proof of (7).

From (7), we deduce that (T, ) has v-adhesion < , and the proof is complete. B

15. WELL-FOUNDED TREE-DECOMPOSITION

If T = (V(T), <) is a well-founded tree, and ¢, t' € V(T), we say that ¢’ is a successor of t and ¢ is a predecessor
of ' ift <t and there isno t” € V(T)— {1, ¢’} witht St <. We define E (T), the set of edges of T, to be the set

of all pairs (¢, ), where t, t' € V(T) and ¢’ is a successcr of t. A well-founded tree-decomposition of a graph Gis a




-68 -

pair (T, W), where T is a well-founded tree and W = (W, : r € V(7)) satisfies

) \ W,=V(T), and every edge of G has both endpoints in some W,,
te V(I

() if ¢’ € TIt, ¢’ then W, " W < Wy, and

(iii) if K < V(T is a bounded open trunk, then lili{n Wy € Wapo-

Here'lilr(n W=y {Wy:te K, t'2t}. We say that (T, W) has width < x if | lirr{n W,| < x for every trunk
teK

K ¢ V(T). 1t follows if (7, W) has width < x then | W,| < k for every ¢ € V(T) (apply the width definition to
closed trunks). We say it has adhesion < x if for every trunk X < V(T) there exists a cardinal k¥’ < K such that for
every to € K with 7, # sup K, there exists £, ¢’ € K such that £, ' 21y, ¢’ is a successor of £, and | W, " Wy| <X
We say it has strong adhesion < x if for every trunk K ¢ V(T) there exists a cardinal ¥ < x such that for every
to € K with 7o # sup K, there exists # & K such that 1 2 £y,  # £y and | W,| <¥’. Itis easy to see that if (7, W) has

strong adhesion < K then it has adhesion < k. The following is the desired generalization of (2.5).
(15.1) For a graph G and an uncountable cardinal X, the following are equivalent:

(i} G has no minor isomorphic to K .,

(11) G has a dissection of width < X and adhesion < X,

(iii) G has a well-founded tree-decomposition of width < K and adhesion < x.

(iv) G has a well-founded tree-decomposition of width < x and strong adhesion < .

We have already seen in (7.7) that (i) and (ii) are equivalent and that (iv) implies (ili). We first show, in (15.3),
that (iil) implies (i) and then, in (15.5), that (ii} implies (iv). Let T be a well-founded tree and let e} = (1, £1),
€2 =(f2, 1) be two distinct edges of T. Then either t; <1} S<t;<# or ty <ty <ty 1) or ) €15 ££;. Now
assume that both e, €, are assigned a direction in such a way that if ; <#; <7, <15 then e, is directed toward 1,
and e, is directed toward 3, if 12 €25 <1y <f; then ey is directed toward ¢, and e, is directed toward ¢, and if

1y €15 €1, then ¢; is directed toward £;(i = 1, 2). We say that e;, e, are directed away from each other.

A confluence of a well-founded tree T is an assignment of a direction to each edge of T in such a way that no

two edges are directed away from each other. Let K < V(7)) be a trunk, such that if K is closed then either sup(X}
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has a predecessor or | K| = 1. For (¢, t) € E(T), ift’ € K we direct (¢, t") towards ¢’, and otherwise towards z. This

defines a confluence, called the confluence derived from K. The following generalizes (12.2).
(15.2) Every confluence of a weil-founded tree T &rises from some trunk.

Proof. Let K contain inf(V{(7)), and all ¢ € V(T) such that ¢ € {#4, t5} for some edge (¢, 1,) € E(T) directed
towards £,. Then it is easy to check that K is a trunk, and if X is closed then either sup K has a predecessor or

| K| =1; and the given confluence arises from K. W

Ife = (1, t) € V(T) we define T tobe the setof all 1" € V(T)such that " <¢”,and T, =V (T) - T*. Let (T, W)

be a well-founded tree-decomposition, let e € E(T) and let A=y W, and A, = W,. Then (A%,A,) isa

teTe teT,

separation of Gand A® NA, =W, nW,.

(15.3) Let G be a graph and ¥ an uncountable cardinal. If G contains a minor isomorphic to K «, then G has no

well-founded tree-decomposition of width < x and adhesion < x.

Proof. if G contains a minor isomorphic o X 1c,%t:hen G has a haven B, say of order x, by (3.1). Suppese for a
contradiction that G has a well-founded trce—dacorimposition (T, W) of width < x and adhesion < x. We direct each
edge e = (1, 1) € E(T) as follows. If B(W; N W,')I‘ c A® we direct e toward ¢’, and if B{W, ~ W) c A, we direct ¢
towarcf z Th1s aséignment is a confluence, as is eésily seen, and hence by (15.2) it arises from some trunk X, such

that if K is closed then either sup K has a predecessor or | K| = 1. Let X be lién W, if K does not have a supremum

and W, if k = sup K. Choose ¥’ < x as in the definition of adhesion, with the trunk K. Let x¥” be regular such that
_max(l X, x)Y<¥x’<x By t3-.3), BX) contains a ¥’ ’-majo; vertex v. Let zyp € V(T) be such tﬁat ve W,. We
claim that ¢ € ¢, for some ¢ € K. For otherwise K has a supremum, say &, and &£ $t,. Since v € W), it follows that
k <ty Let &’ be the successor of k with k<k'<ty. Then ve W,, cA%**, but (since v is ¥”-major and

| Wen We| s Wil <x)
ve PWenWelcAgm - Wen Wy,
a contradiction which proves our claim that ¢ < ¢4 for some ¢ € K.

Choose ¢, € K with t; 91g, and let t5 = inf{to, ¢1). Thent, € K, and ¢, < 7y, and so ¢, < t;. Let E be the set of

all (¢, )€ E(T) with ¢, t"€ Kand 15, <t <1, and let (¢, t') € E. Since 1 # sup K, there exists e = (s, s") € E with
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t <5 such that | W, nW,| <x”. Then ty € T,, and hence ve W, cA,. But e is directed towards ¢, and so
ve A, NA° =W, W,. In patticular v e W,. Since t, '€ T[ty, 5], and ve W, and v & W, it follows that

ve W, and v € W,.. We have shown, then, that v e W, for all z € Z, where
Z= e, '} :(t, e E}.

But | K| =2, and so if sup (K) exists and belongs to K then it has a predecessor in Z, and every other element of

{t e K:t=1t,) hasasuccessor in Z. Consequently, Z={te K:t2¢;},andsove li‘én W,, a contradiction. W

We shalil need the following.

(15.4) Let X be a topological tree, let {1} q <2, be a monotone sequence of finite subsets of V(X), and let Z ¢ V(X),
such that Z is convex and {ot <\ : Z Ty # D) is cofinal in \. Then there exists \g <A andxq € ZN 1y for all o

with b € 0 < A, such that {xq}a, s« <2 15 monotone.

Proof. We may assume that Z N1 #&; ch{)ose ze ZNn1y. For each ve V(X) with v =2z, we define

X'= {xé V{X):ve X[z x]}. Wesaythatve Y?’(X)— {z} is big if

[a<?€u:X“mZn1u¢®}
is cofinal in A. Let P be the set of all pairs (v, ¢) such thatv € V(X) ~ {z} isbig,a <X andv € ZN Tq.
(1-) For each (v, o) € P and each o with 0. <o’ <\, there exists (v', ') € P such that v’ € X°.

Forlet A= {B<A:X"NZ N1y} then Aiscofinal inA. Let X" NZ N Ty = {y ..., Y} where k is finite.

Forl<i<klet

AM=B<M X nZnt=T}.

We claim that Aco’u Aju.UA, For let Be A with B>a, and choose ue X" nZ N1, then
Xu, vl Ty # <, by monotonicity, and X[, vl Z by (i), and so we may assume that y; € X [u, v]. Since

ve X[z, ulandy; € X[u, v] it follows that y; € X [z, u], that is, u € X*. Consequently, B € A;. This proves our

claim that A c o UA; U..u A, Hence some A;, say Ap, is cofinal in A, since A is cofinal in A and o’ <A

Consequently y, is big, and so (y;, @) € P,andy; € X”. This proves (1).

But from (1), the result follows easily by transfinite induction. W
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Now we complete the proof of (15.1) by provihg the following.

(15.5) Let G be a graph and let x be an infinite cairdinal. If G has a dissection of width < ¥ and adhesion < X, then

G has a well-founded tree-decomposition of width < X and strong adhesion < K.

Proof. By (13.7) G has a conservative topological tree-decomposition (X, ®) of width < x and strong adhesion
<k Forxe VX)) letv,=| ®,], and let v=(v,: x € V(X)). Then v is a weighting of adhesion < k. Now X is
complete, since (X, @) is a topological tree-decomposition. By (14.11) there exists a tree-labeling (7, ) of X of v-

adhesion < x. For t € V(T) let W, = () D,, and let W= (W, :t € V(T)). We shall show that (T, W) is a well-

XET,

founded trec-decomposition of G of width < x and strong adhesion < .

The first axiom is clearly satisfied. For the second let ¢, ¢/, t” € V(T) with "€ T[#, 1"}, and let v € W, N Wy,
Let x, x” be such that x € 1,,x" € T and v € &, N P,~. From the second tree-labeling axiom there exists

x'eX[x, x"1n 1. Thenve &, NP oy W, as desired.

For the third axiom let K cV(T) be a boun?ded open trunk of T, with sup K=k letve ligl W;, and let
Z={ze V(X):v e ®,). Then there exists {y € ksuch that Z M1, =@ forall r € K with t = ¢, since v € liII;I'l W..
But Z is convex, from the second axiom for topblogical decompositions. From (15.4) applied 10 {1,},c g, there

exists t; € K and x, € Z " T, for all ¢ € K with ¢ > ¢, such that {x,},c &, 5, is monotone. Let x be its limit; then

x € T,. Now v € @,, from the third axiom for topological tree-decompositions, but @, < W, since x € T, and so

v € W,. Thus the third axiom holds.

This completes the proof that (T, W) is a well-founded tree-decomposition. To show that it has width < x, let

K cV(T)beatrunk, and let Z = lim{1t,},c x. Asabove we deduce that lilr(n W, ¢ \ ®.,and hence

zeZ

HmWit < |y &l <x,

xeZ

because | Z| <3 by (14.7), and | @,| < x for cifery x € V{X). Finally, the strong adhesion condition follows

immediately since (T, T) has v-adhesion <x. M
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