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EXCLUDING INFINITE TREES

P. D. SEYMOUR AND ROBIN THOMAS

ABSTRACT. For each infinite cardinal k¥ we give several necessary and sufficient
conditions for a graph not to contain a minor isomorphic to the infinite -
branching tree in terms of a certain kind of a “tree-decomposition,” in terms
of a “path-decomposition,” and also in terms of a “cops-and-robber game.”
We also give necessary and sufficient conditions for a graph not to contain a
subgraph isomorphic to a subdivision of the same tree.

1. INTRODUCTION

In this paper graphs may be infinite, and may have loops and multiple edges.
Let G be a graph, let {G,}.ca be a collection of mutually vertex-disjoint con-
nected nonnull subgraphs of G, and let E be a set of edges of G such that
every member of E has both its endpoints in (J,., G., but does not belong to
Uaea Ga - The graph H with vertex-set A and edge-set E with the obvious
incidences is called a minor of G. The graphs G, will be called the nodes of
the minor. A graph G is a subdivision of a graph H if G can be obtained
from H by replacing the edges of H by internally disjoint paths joining the
same ends.

For a cardinal k¥ we define 7, to be the tree whose vertices are finite se-
quences (including the empty one) of ordinals < k¥ with (ay, ..., a,) and
(B1,..., Bm) being adjacent if [n —m| =1 and a; = B for i =1,...,
min(n, m). Thus, if x is infinite then 7, is a regular tree of valency x . (This
is false in the finite case; for instance, 75 is the tree with all vertices of valency
3 except for one of valency 2.)

In [1, 5] it was proved that every finite graph with no minor isomorphic to
a given finite tree admits a “path-decomposition” of bounded “width.” In this
paper we shall study some infinite extensions of this theorem, concerned with
excluding 7, either as a minor or as a subdivision. It turns out that there
are several relatively easy necessary and sufficient conditions, and we begin by
introducing them.

The following is an extension of the cops-and-robber game from [8] to infinite
cardinals. The game is played by two players on a graph G, with a fixed cardinal
k . One player controls the robber, and the other the cops. The cops attempt to
catch the robber, and the robber to survive uncaptured. The robber stands on a
vertex of the graph, and can at any time run at great speed to any other vertex
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along a path of the graph. He is not permitted to run through a cop, however.
At any time there are any number < kK cops, each of whom at any time either
stands on a vertex or is in a helicopter (that is, is temporarily removed from
the game). A move for the cop player consists either of having a set of cops
take off or of “creating” more cops (subject to the restriction that the total is
less than x) and landing them on the vertices of the graph. The objective of
the player controlling the movement of the cops is to land a cop via helicopter
on the vertex occupied by the robber, and the robber’s objective is to elude
capture. (The point of the helicopters is that cops are not constrained to move
along paths of the graph-—they move from vertex to vertex arbitrarily.) The
robber can see the helicopter approaching its landing spot and may run to a
new vertex before the helicopter actually lands. In our version of the game the
robber is visible and also can see the cops, so it is a full-knowledge game. It
is also important that the cops win only if they capture the robber in finitely
many steps. For extensions of this game see §6.

Let us make some definitions. We denote by G\ X the graph obtained from
G by deleting X (here X may be a vertex or an edge, or a set of vertices
or edges). If X C V(G), the vertex set of a component of G\X is called an
X-flap. We denote by [V']<* the set of all subsets of V' of cardinality < x .

Now we can state the game more precisely. A position is a pair (X, R), where
X € [V(G)]<* and R isan X-flap. (X is the set of vertices currently occupied
by cops, and R tells us where the robber is—since he can run arbitrarily fast, all
that matters is which component of G\ X contains him.) We set (Xp, Ro) to
an initial position. In the normal game, Xy, = @ and the robber chooses R, to
be some component of G ; however, in the analysis it will be useful to consider
other initial positions. Now step 1 of the game begins. In general, at the start
of the ith step we have a position (X;_;, R;—;). The cop player chooses a new
set X; € [V(G)]<* such that either X;_; C X; or X; C X;_;. Then the robber
player chooses (if possible) an X;-flap R; satisfying R; C R;_; or R, C R;
respectively. If this choice is impossible, that is, if V(R;—;) C X;, the cop
player has won, and otherwise the game continues with step i+ 1. The robber
player thus cannot win; his objective is to stop the cop player winning. If there
is a winning strategy for the cop player, we say that “ < ¥ cops can search the
graph.”

To describe a strategy for the robber, we need the following definition. Let
G be a graph and x a cardinal. An escape of order k¥ in G is a function o
which assigns to each X € [V(G)]<* the union of a set of X-flaps in such a
way that

(i) if X CY then o(Y)Co(X),

(i) if X C Y then every X-flap in o(X) intersects o(Y), and

(i) (@) # 2.
We speak of (i), (ii) and (iii) as the first, second, and third escape axioms.
We remark that if (i) and (ii) are satisfied, then either a(X) = @ for all
X e [V(G)]*, or (X)) # @ for all X € [V(G)]<*, and so the third ax-
iom ensures the latter. The relation to the cops-and-robber game is described
in the following.

(1.1) The graph G cannot be searched by < x cops if and only if there is an
escape of order k in G.
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Proof.. If there is an escape o of order x, the robber can remain uncaptured
by choosing R; C g(X;) at each step. Conversely, suppose that k¥ cops cannot
search the graph G. For each X € [V(G)]<¥, let o(X) be the union of all
X-flaps R such that the cop player cannot guarantee to win when the initial
position is set to be (X, R). Then o is an escape of order ¥ in G. O

So we see that escapes correspond to nonlosing strategies for the robber. In
contrast to escapes of finite order in finite graphs (see [8]), escapes of infinite
order in connected graphs are determined by trees, as follows. For ¥ > Ny, a
tree T is called x-balanced if |E(T)| > 1 and for every edge e of T, both
components of T\e have > x vertices, unless k¥ = Ry in which case T is also
permitted to be a one-way infinite path.

(1.2) Let G be a connected graph and k an infinite cardinal. If T is a subgraph
of G which is a k-balanced tree, then there exists a unique escape o in G of
order k such that

(%) for every X € [V(G)1<* and every X-flap C, C C a(X) ifand
only if |CnV(T)|>k.

Conversely, for every escape o of order k in G there exists a subgraph T of G
which is a k-balanced tree and such that (x) holds.

Our first equivalent condition will be in terms of escapes. The second will be
in terms of “tree-decompositions.” If T isatree and ¢, t, € V(T), we denote
by T[t1, t;] the set of vertices of T which lie on the path in T between f;
and f,. A tree-decomposition of a graph G is a pair (7, W), where T is a
tree and W = (W,:t € V(T)) is such that

(W1) U We=V(G), and every edge of G has both ends in some W;,
(W2) if ¢ € T[t, t"], then W,N Wy C W .

Let k be a cardinal. A tree-decomposition (7T, W) has width < k if |W| <k
for every ¢t € V(T) and |U;2, ﬂj>i W, | < k for every infinite path 7, 1, ...
in T. It has adhesion < k if |W, N Wy| < k for every {t, '} € E(T) and
liminf, o |W;,, N W,,,,| < k for every infinite path ¢, ¢,,... in T. Unfor-
tunately, we also need a more general type of “tree-decomposition,” but we
postpone its definition until it is needed.

The third equivalent condition will be in terms of an analogue of the “path-
decompositions” of [1, 5]. A well-ordered decomposition of a graph G is a pair
(A, W), where A is an ordinal and W = (W,: a < A) is such that

(WO1) U,<; Wa=V(G), and every edge of G has both ends in W, for some
a<i,

(WO2) if a< B <y<Ai,then W,nW, C Wp, and

(WO3) if o <2 is a limit ordinal, then for all 8 <a, (,s,55 Wy € Wa.

We say that (A, W) has width < k if |W,| < k for every a < A. It has
adhesion < k if for every ordinal a < A there exists a cardinal k¥’ < k¥ such
that for every B < a there exists y such that # <y <a and |W,NW, | <K',
and if a <A then |W,NW,1| <k'.
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A ray is a one-way infinite path and a graph is called rayless if it has no ray.
A tree-decomposition (7", W) is called rayless if T is rayless. Rayless trees
are easy to handle—they admit an “ordinal ranking.”

Now we can state our results in preliminary forms; full versions are stated
later.

(1.3) For a graph G and an uncountable cardinal x, the following conditions
are equivalent:

(1) G has no minor isomorphic to T, ,

(ii) G has no escape of order x,

(iii) < k cops can search G,

(iv) G admits a rayless tree-decomposition of width < k ,

(v) G admits a well-ordered decomposition of width < x and adhesion < k.

For x = Ny, the analogue of (1.3) is the following. (The equivalence of (i)
and (iv) in (1.4) was proved by Halin [2].)
(1.4) For a graph G, the following conditions are equivalent:
(i) G is rayless,
(i1) G has no escape of order X .
(iii) < No cops can search G,
(iv) G admits a rayless tree-decomposition of width < X .

In order to characterize graphs with no minor isomorphic to Ty, , we need the
following definitions. Let o be an escape of order x in a graph G. A subset
Y € [V(G)I<* is said to be later than a subset X € [V(G)]<* if |Y| < |X]|,
Y C XUod(X), and o(Y) C o(X). A subset X € [V(G)]<* is said to be
terminal if there is no later Y C V(G) with Y # X . The escape o is said to
be massive if for every X € [V (G)]<¥ there is a later set Y which is terminal.

A tree T is called scattered if it contains no subgraph isomorphic to a sub-
division of 73, and a tree-decomposition (7, W) is called scattered if T is
scattered. Scattered trees are well understood—see (4.5) for a result of [4].

(1.5) For a graph G, the following conditions are equivalent:
(i) G contains no minor isomorphic to Ty, ,
(i1) G contains no minor isomorphic to T,
(iii) G contains no subgraph isomorphic to a subdivision of T,
(iv) G has no massive escape of order ¥,
(v) G admits a scattered tree-decomposition of width < Ny and adhesion
<R,
(vi) G admits a well-ordered decomposition of width < Ny and adhesion
< Np.

An escape o of order k in a graph G is called major if for every X €
[V(G)I* and every X-flap C C a(X) there exists a vertex v € C such that
veYuUa(Y) forevery Y € [V(G)]<*.

We state only a special case of our last result; the full version is presented in
§4. (For a definition of cf(x) see the end of this section.)

(1.6) For a graph G and an infinite cardinal x, the following conditions are
equivalent:
(i) G contains no subgraph isomorphic to a subdivision of T, ,
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(ii) G has no major escape of order « ,
(iii) G admits a well-ordered decomposition of width < k.

If cf(x) = w, then these conditions are moreover equivalent to
(iv) G admits a scattered tree-decomposition of width < k .

We remark that (iii) = (iv) of (1.6) is false in general. For example, let x
be a singular cardinal with cf(x) uncountable, let k¥ = sup{x,: a < cf(x)},
where every k, < x, and let G be the graph whose vertices are all pairs of
ordinals (a, f) such that o < cf(x) and B < k,, with (a, f) and (o, B')
being adjacent if and only if either « = o’ or # = B’. It can be verified that G
admits a well-ordered decomposition of width < x , but does not admit a tree-
decomposition of width < x . A condition similar to (iv) which is equivalent to
the other three conditions of (1.6) is formulated in §4. Let us also remark that if
K 1s a regular uncountable cardinal, then the conditions of (1.3) are equivalent
to those of (1.6) (because in that case (2.3)(ii) = (1.6)(1) = (2.3)(iii)).

All results presented so far hold in ZFC. In §7 we discuss a structure theorem
which is less interesting from the point of view of graph theory, but which is
undecidable in ZFC.

The paper is organized as follows. In §2 we prove (1.3); in §3 we prove (1.2),
(1.4), and (1.5); in §4 we prove (1.6); in §5 we investigate the structure of the set
of all escapes; in §6 we are concerned with modifications of the cops-and-robber
game; and finally §7 contains the undecidability result.

Our notation about ordinals and cardinals is standard. We identify each
ordinal with the set of all its predecessors, and each cardinal is also treated as
an ordinal. Let A be an ordinal. A set M C A is said to be cofinal in A if
for every a < A there exists f§ € M such that a < . The least ordinal type
of a set cofinal in A is called the cofinality of A and is denoted by cf(4). An
ordinal A is regular if cf(1) = A, and otherwise it is singular. For a cardinal
K , we denote by k't the least cardinal > k.

2. ESCAPES OF UNCOUNTABLE ORDER

In this section we prove (1.3), but before we do so we state and prove a result
about escapes of any infinite order.

(2.1) For a graph G and an infinite cardinal x, the following conditions are
equivalent.

(i) G has no escape of order i,
(i) G admits a rayless tree-decomposition of width < K,
(11i) < K cops can search G .

Proof. We prove that (i) = (ii) = (iii); (ii1) = (i) follows from (1.1). Assume
that G has no escape of order . For X € [V(G)]<* let g(X) be the union
of all X-flaps C such that the restriction of G to C does not have a rayless
tree-decomposition of width < k.

(1) Let X € [V(G)I<*, let X' C X, and let {F,},cn be a set of
X-flaps, each disjoint from o(X). Then the subgraph H of G
induced by X' UJ,cp Fo admits a rayless tree-decomposition of
width < k.
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For let X, X', {F,},en, and H be as stated, let (7>, W) be a rayless
tree-decomposition of width < x of the restriction of G to F, (a € A), and
let We = (We:teV(T?). Let tog € Uyea V(T*) and let T be a tree with
vertex set |J,ea V(T*)U{to} which contains every edge from E(7*) for every
a € A, and in which ¢, is adjacent to exactly one vertex of each 7¢ (a € A).
We put

{ X'uwe ifteV(T),
W, = .
X' if t = to,

and W = (W;:t € V(T)). It follows easily that (7', W) is a rayless tree-
decomposition of H of width < x, thus proving (1).

(2) g satisfies the first two escape axioms.

Forlet X CY with Y € [FV(G)]<*,let F bea Y-flap and let F C K, where
K is an X-flap, and assume that the restriction of G to K admits a rayless
tree-decomposition (7', W) of width < x, where W = (W;:t € V(T)). Let
W/=W,nF for teV(T),and let W' = (W/:t e V(T)). Then (T, W’) is
a rayless tree-decomposition of the restriction of G to F of width < k. Thus
o(Y) C g(X), which verifies the first axiom.

For the second axiom, let X C Y with Y € [V(G)]<* and let K be an
X-flap. Then K = (KNY)Ul,cp Fa, where F, (a € A) are Y-flaps. If
K C o(X) then by (1) (setting X' = K NY) there exists an a € A such that
F, C 6(Y), which verifies the second axiom and hence proves (2).

It follows from (2) that o does not satisfy the third escape axiom. Hence
every component of G admits a rayless tree-decomposition of width < x, and
so G itself admits such a decomposition by (1). Thus (i) = (ii).

To prove that (ii) = (i1i) let (7, W) be a rayless tree-decomposition of G
of width < k. Here is a winning strategy for the cop player. Choose a vertex
ti € V(T),and let X; = W, . For i > 2, let the position at the start of the ith
move be (X;_;, Rj_1). The set {t € V(T): Ri_1 N W, # @&} is the vertex set
of a subtree of T, since R;_; is the vertex set of a connected subgraph of G;
and so there is a vertex #; € V(T) such that R;_ 1N W, # @,and t; € T[t;, t]
for every ¢t € V(T) such that R,_; N W; # @. Choose X; = X;_ U W, . Then
R; (if it exists) is a subset of R;_;,and so ¢; € T[t;, t;+1]. Since this holds for
all ;i such that R; exists, we deduce that some R; does not exist, for otherwise
t1, t, t3, ... would all lie on some ray of T . Thus the cop player wins. 0O

A linear decomposition of a graph G is a pair (L, W), where L is a
(Dedekind) complete linearly ordered set and W = (W;: [/ € L) is such that

(L1) U W, = V(G), and every edge of G has both ends in some W},
leL
(L2) ifl<l'<!"”, then Wyn W, C W,
(L3) ﬂ Wi € Wingry N Waup(r) for every nonempty interval 7 C L.
iel
Let us remark that the requirement that L be complete is not restrictive, because

any “incomplete” decomposition can be completed in a natural way. Obviously,
linear decompositions generalize well-ordered decompositions, in the sense that
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if (A, W) is a well-ordered decomposition then (4+ 1, W) is a linear decom-
position. A linear decomposition (L, W) has width < k if |W}| < k for every
[ € L. We say that (L, W) has adhesion < k' at | € L if for every m € L
with m # [ there exist distinct /;, /; € L between !/ and m such that there
is no /3 € L strictly between /; and /;, and such that |W, N W, | < k'. We
say that (L, W) has adhesion < k if for every [ € L there exists ¥’ < k¥ such
that (L, W) has adhesion <k’ at /.

A linear ordering L is called scattered if the set of rational numbers cannot
be monotonely embedded into L. We say that a linear decomposition (L, W)
of a graph G is scattered linear if L is scattered. We remark that we are using
“scattered” in two different (but related) contexts: scattered trees and scattered
linear orderings.

Let x be an infinite cardinal. We recall that a tree T with E(T) # @ is
K-balanced if either for every edge e, both components of 7\e have > k
vertices, or k = 8y and 7T is a ray.

(2.2) Let T be a tree with E(T) # @ which is not aray. If k = Ry, T is
k-balanced if and only if for every e € E(T), both components of T\e have
a ray. For k > X, T is k-balanced if and only if for every e € E(T), both
components of T\e have a T,-minor.

Proof. “If” is clear for all x, and “only if” is clear for ¥ = Ry. For k¥ > N,
let T be x-balanced, let ey € E(T), and let R be a component of T\ey. We
shall construct a mapping # which assigns to each ¢ € V' (T,) a subset of V(R)
and to each e € E(T,) an edge of R in such a way that

(1) n(t) induces a tree in R for every ¢ € V(T,),
(2) if t,¢ eV(T,) and t#1¢, then n(t)Nn(t') =2,

(3) if t,¢ € V(T,) and e is an edge of T, with endpoints ¢, ¢
then #(e) has one endpoint in #(¢) and the other one in 7(#’).

Let k = sup(k,: a < cf(x)), where every k, is regular. We need the fact
that every tree of cardinality > k contains a vertex of valency > x, for every
a < cf(k) . The mapping n will be constructed in @ steps. In the first step we
choose a vertex ry € V(R) of valency > cf(x), and let {C*},<cf) be some
of the components of T\ry contained in R. In each C* choose a vertex r*
of valency > k,, let Ry be the smallest subtree of R containing rp and all
r® (a < cf(x)), and let 5 of the null sequence be the vertex set of Ry. For
a < cf(k) let E, C E(R) be a set of edges of cardinality x,, all incident
with r® but with no other vertex in Ry. Now if e is an edge of 7, incident
with the null sequence we define 7(e) € U, Eo arbitrarily subject to the
requirement that # be 1-1. This is clearly possible.

Now let n > 0 be an integer, let M, be the set of all ¢ € V(T,) of the
form ¢ = (o, ..., ar) for k < n, and assume that we have defined #(t) for
all ¢t € M, and all edges incident to vertices in M, in such a way that (1)-(3)
are satisfied for all ¢, ¢ € M, , and

(4) if e is an edge of T, with endpoints ¢ € M, and ¢ € M, —
M, , then n(e) has exactly one endpoint in #(¢), and V(B,) C
V(R), where B, is the component of 7\e which is disjoint
from n(¢).
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It follows that if ¢, ¢', e are asin (4) then V(B,)Nn(t") = @ forall t' € M, .
We must define #(¢) for all t € M,,; — M, and n(e) for all edges e incident

to vertices from M,,, — M, . To this end we fix ¢t = (ay, ..., a,) € M,,
and let ¢ be an edge of 7, with one endpoint ¢ and the other say ¢, =
(a1, ...,an, ) € My,y. Let B, be as in (4), and let r, € V(B,) be an

endpoint of #n(e). We select r, in B, of valency > cf(x), let {CZ}occx) be
some of the components of 7'\r, which are included in V'(R), and let r? be
a vertex of C2 of valency > x,. We define 7(z,) to be the vertex set of the
minimal subtree of R containing r, and all r¢ (a < cf(x)). Let E, be a set
of x edges with one endpoint some r? (a < cf(x)) and the other not in 7(z,).
If f is an edge of T, with one endpoint ¢, and the other in M, , — M,
we define n(f) € E, arbitrarily subject to the requirement that 5 be 1-1. This
completes the inductive definition. It is easily seen that conditions (1)-(4) are
satisfied. By (1)-(3) the sets #n(¢) form the nodes of a minor of R isomorphic
to T, as desired. O

A tree T is called a k-nova if it is k-balanced and every vertex has valency
< k, with strict inequality if x is singular. Obviously 7, is a x-nova for
every regular cardinal x , but k-novas exist even for infinite singular cardinals.
Indeed, if x is infinite singular we may choose cardinals {x,: a < cf(x)} with
Ko < K and sup{x,: a < cf(x)} = k and consider the subtree of 7, consisting
of all sequences (o, ..., a,), where o; < cf(x) if i is odd and «; < K,,_, if
[ is even. This tree is a x-nova.

The following is an expanded form of (1.3).

(2.3) For a graph G and an uncountable cardinal x, the following conditions
are equivalent:
(i) G has no minor isomorphic to T, ,
(ii) for every k-nova T, G contains no subgraph isomorphic to a subdivision
of T,
(iii) for some k-nova T, G contains no subgraph isomorphic to a subdivision
of T,
G has no escape of order x,
< K cops can search G,
G admits a rayless tree-decomposition of width < k,
G admits a scattered tree-decomposition of width < k and adhesion
<K,
(viii) G admits a well-ordered decomposition of width < x and adhesion < x,
(ix) G admits a scattered linear decomposition of width < k and adhesion
<K.

(iv

v
(vi
(vii

Implications (vi) = (vii) and (viii) = (ix) are trivial, (i) = (ii) follows from
(2.2), (ii) = (iii) follows since a x-nova exists, (iv) = (v) = (vi) follows from
(2.1), and (vii) = (viii) follows from (4.6). In the rest of this section we prove
that (iii) = (iv) and (ix) = (i).

We start with a lemma which will be used in this and a subsequent paper.
Let ¢ be an escape in a graph G of order k > ¥ and let k¥’ < k. We say that
a vertex v € V(G) is k’-major if v € X Ua(X) for every X € [V (G)]<*' and
we say that it is major if it is k-major.

(2.4) Let o be an escape of order k > X, in a graph G and let k' be a regular
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cardinal with Xg < k¥’ < k. Let X € [V(G)]<*', and let C be an X-flap with
C C a(X). Then there exists a k'-major vertex in C .

Proof. For each v € V(G) which is not x’-major, there exists by definition a
set X, € [V(G)]<"' with v ¢ X, Uo(X,). We construct a sequence X, C
X1 € X; C --- of subsets of V(G), each of cardinality < x’, as follows.
Let Xy C V(G) be any subset of V(G) of size < k' with XoN C # @ and
X C Xp. Assume that we have already constructed sets Xy C --- C X,,, and let
us construct X,,;. Let X,,;; = X, U|JX,, the union taken over all v € X,
which are not x’-major. We see that | X, | < k¥’ since k’ is regular.

Let Y =, Xn; then |Y| <k since k¥ > X;. Let us choose u € Cna(Y),
adjacent to a vertex v € CNY. (This is possible, for CNY # &, and
Cna(Y) # @ from the second escape axiom.) We claim that v is x’-major.
Forif not then v ¢ X,Ud(X,) and X, C Y, and therefore u € a(Y) C a(X,),
which is impossible since %, v are adjacent. O

We recall that an escape o of order k¥ in G is major if for every X €
[V(G)]I<* and for every X-flap C C g(X) there is a major vertex in C. From
(2.4) we deduce that if k¥ > X, , and is regular, then every escape of order x is
major.

(2.5) Let k be an infinite cardinal, and let T be a tree on k vertices. Then
there exists a well-ordering {t,}o<x Of the vertices of T of order type k such
that
(i) for a >0, t, is adjacent to exactly one tg with f < o, and
(ii) if t € V(T) has valency < k, then {a < k: t, is adjacent to t} is not
cofinal in K.

Proof. We may assume that the vertices of 7 are finite sequences of ordinals
such that
(a) (B1,...,Bn) € V(T) and (By, ..., B,) € V(T) are adjacent if and
onlyif [n—n'|=1and g, =/ for i=1,..., min(n, n')
(b) if (By, ..., Bn) € V(T) then B; >1i for 1 <i<n,and
(c¢) if (By,..., Bn) € V(T) where n > 1 then (B;,..., Bn—1) € V(T),
andif n < B < B, then (By, ..., Bu-1, B) e V(T).
Let #, be the empty sequence and assume that {f3: B < a} C V(T) have
already been defined. If V(T) = {t5: B < a}, we stop. Otherwise we choose
ta=(P1,..., Bn) in V(T)—{tg: B < a} such that

(1) max{f, ..., Bn} is as small as possible,
and, subject to (1),
(2) n is as small as possible.

Condition (i) now follows easily.

(3) If x is an infinite cardinal and B, ..., B, < x are ordinals,
and to= (B, ..., Pn) € V(T) then a < g.
For let 8 = max(f,, ..., B.). Since B < x, the set of finite sequences of

ordinals < # which belong to V' (T') has cardinality < y (using (b) if x = Rp).
The claim follows.
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We deduce that V(T) = {t,: a < k}, since the existence of #, would violate
(3). It remains to prove (ii), and we assume that x is singular, because (ii) is
clear when x is regular. Suppose that ¢t = (8, ..., B,) € V(T) has valency
u<k.Llet A=max(|fi], ..., |Bnl, #, Ro); then 4 <k, and so AT < k since
K is singular and hence not a successor cardinal. By (3), a < At for every
a < k such that ¢, is adjacent to ¢, and hence (ii) follows, as required. O

For a graph G, let P(G) denote the set of finite (possibly closed) paths in G,
containing at least one edge. A subgraph of G is isomorphic to a subdivision of
agraph H if and only if there exists a mapping 4: V(H)UE(H) — V(G)UP(G),
called a homeomorphic embedding of H into G, such that

(i) h(V(H)) CV(G), h(E(H)) C P(G),

(ii) & is injective,

(iii) if e € E(H) has end vertices u, v € V(H), then the path A(e) joins

h(u) and A(v) and uses no A(w) for w € V(H) —{u, v},
(iv) if e, e’ are distinct edges of H, then h(e) and h(e’) are internally
disjoint.

(2.6) Let G be a graph, and let k, u be infinite cardinals with u > R, and
1=k or k¥ and let o be an escape of order k in G such that for every
W<, every X € [VIGI* and every X-flap C C a(X) there exists a '
major vertex in C. Let T be a tree with |V (T)| = k and with every vertex of
valency < u, and let | be a function from V(T) to the set of cardinals < u.
Then there exists a homeomorphic embedding h of T into G such that h(t) is
[(t)-major for every t € V(T).
Proof. Since |V(T)| = Kk, every vertex of T has valency < x4 and u > ¥y, it
follows that if u = x then x is singular. Let {#,}a<x be the well ordering of
V(T) asin (2.5). Foreach t € V(T),if u=x* let A(t)=x,and if u =k let
A(t) < k be an infinite cardinal such that /(¢) < A(¢) and a < A(¢) for every
t, € V(T) adjacent to ¢. (This exists since x 1is singular and the well-ordering
satisfies (2.5ii).) If a < k is an ordinal, we denote by S, the subtree of T
consisting of all vertices t5 for f < a. A majority is a pair (a, h), where
a < k is an ordinal and 4 is a homeomorphic embedding of S, into G such
that

(1) for every t € V(S,), h(t) is A(t)-major.

If (a, h), (o, h') are two majorities, we put (a, k) < (¢/, /') if a < o
and A’ restricted to S, coincides with 4. It follows from Zorn’s Lemma that
there exists a maximal majority (a, #). We claim that @ = k, which will
complete the proof. So suppose for a contradiction that a < k¥ and let X be
the set of all vertices of the form h(¢) for t € V(S,) together with all vertices
of the paths 4(e) for e € E(S,). By (2.51), since a > 0 there exists f < a
such that ¢, is adjacent to tg, and it follows that |X| < A(zg) (because X is
finite if o is finite, and |X| < |a] < A(Zg) if « is infinite).

(2) There exists an X-flap C C a(X) such that h(tg) is adjacent
to a vertex in C.

For otherwise h(t5) ¢ o(X —{h(tg)}), a contradiction since h(tg) is A(tg)-
major by (1).
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Now take a A(Z,)-major vertex v € C, and take a path P joining v and
h(tg) such that P\h(tg) is contained in C. Put o/ =a + 1, and let

v ifx=t,,

{ h(x) if x € V(S,)UE(S,),
h(x)=
P if x is the edge of S, joining ¢, and 7.

Then (a, h) < (o/, I'), a contradiction. 0O

Let G beagraphand o an escape in G of order x . We say that a connected
subgraph H of G is majorif V(H)N(XUag (X)) # @ forevery X € [V(G)]<F.
The following corollary implies (iii) = (iv) in (2.3).

(2.7) Let G be a graph, let o be an escape in G of order k¥ > Xy, and let T be
a x-nova. Then there exists a subgraph § of G isomorphic to a subdivision of T
such that for every edge e of S, both components of S\e are major subgraphs.

Proof. Let u=«* if k is regular, and u = x otherwise. For each ¢t € V' (T),
let /(¢) be the valency of ¢ in 7. By (2.4) and (2.6), there is a subgraph
S of G isomorphic to a subdivision of T, such that for each ¢ € V(T), the
corresponding vertex s € V'(S) is /(¢)-major. For each regular cardinal x’ < «,
since for each edge f of T both components of T\ f have vertices of valency
> k', it follows that for each edge e of S both components of S\e have x’'-
major vertices; and hence both components of S\e are major, as required. O

In the next section we shall need the following variation of (2.7).

(2.8) Let G be a graph, let ¢ be an escape in G of order ¥k > Ny, let Z €
[V(G)<* and let H be a component of G\Z with V(H) C d(Z). Then there
exists a subgraph T of H, which is a k-nova, such that for every edge e of T,
both components of T\e are major.

Proof. We define 7(X) = a(XUZ)NV(H), for X € [V(H)]*. It is easily
seen that 7 is an escape of order ¥ in H and thus the result follows from
(2.7), for any subdivision of a x-nova is a k-nova. 0O

Now we begin the proof that (ix) = (i) in (2.3).

(2.9) Let (L, W) be a linear decomposition of a graph G, let H be a connected
subgraph of G and let 1,,1,, 13,1y € L be such that I, < I, < I3 <y, there
isnol €L withh <l <y, and VIHINW, # @ # V(H)NW,. Then
VIH) NW,NW, £ 2.

Proof. Suppose not. Then (using (L2)) there exist adjacent vertices u, v €
V(H) such that u € U;,, Wi — U5, Wi and v € Ujs, Wi — U<, Wi - By (L1)
there exists / € L with u, v € W}, and hence /;, </ < /5, a contradiction. 0O

(2.10) Let k be an infinite cardinal, let (L, W) be a linear decomposition of
width < k of a graph G, and let H be a minor of G. Assume furthermore that
either

(i) every node of the minor has < cf(x) vertices, or
(ii) K is a regular uncountable cardinal, or
(iii) (L, W) has adhesion < k.
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Then there exists a linear decomposition (L, U) (that is, using the same linear
ordering) of H of width < k.

Proof. We say that [ € L has a predecessor if there exists I’ </ such that there
isno !” € L with I’ < !” < [, and we say that it has a successor if it has a
predecessor in the inverse linear ordering. Let {G,},ca be the nodes of H.
For / € L, we define

Vi={a€A: V(G)NW #2},

U- { 2 if / has a predecessor,
! U11<1 ﬂli<lli<l I/}ll OtherWise,
U+ — { 2 if [ has a successor,
! U1/>[ ﬂll>lll>l V;" OtheI'Wise .

Uy=U"UVuU}.

Let U = (U;: 1 € L). We claim that (L, U) is a linear decomposition of
H . Condition (L1) follows easily from the fact that (L, W) satisfies (L1). To
prove (L2) let Iy, l,, ! € L satisfy [, </ < [l,,andlet a € U, NU}, . Then there
exist /j, l; € L such that /j </ </, and € VNV, and hence a € V; C U
by (2.9). To prove (L3) let c« € A andlet I ={l € L: o € U;}. By symmetry
it is enough to prove that inf(7/) € I. Suppose not and let /y = inf(/). Since
lo ¢ I it follows that /; has no successor. Choose /, € I. We claim that
a €V, forall [ €I with [ <I,. For since [ is not the successor of [y, there
exists /; € I with /; < /; then a € U, NU,, and as in the proof of (L2)
above it follows that a € V}, as claimed. We deduce that a € Ul: cyU,,a
contradiction. This completes the proof of our claim that (L, U) is a linear
decomposition of H . It remains to check its width. Clearly |V}| < |W)| < k.
We must show that |U~| < k and |U| < k. We prove the former, for the
latter follows by symmetry. Before we do so we need two definitions.

Let / € L. We say that a set M C L well-ordered by the ordering of L is
lower cofinal for | if m <[ for every m € M and for every I’ € L with I’ </
there exists an m € M such that I/ < m. It follows from Zorn’s lemma that
there exists a lower cofinal set for every / € L. We define the lower cofinality
of / € L to be the least ordinal a such that there exists a lower cofinal set for
[ of order type a. It follows from the standard proofs about cofinality that the
lower cofinality is always either 0 (if / = inf(L)) or 1 (if / has a predecessor)
or an infinite regular cardinal (otherwise).

Let / € L. We may assume that U~ # @, and so / # inf(L) and / has no
predecessor.

(1) If the lower cofinality of | € L is smaller than cf(x), then
U7 <k.

For let M C L be a lower cofinal set for / of cardinality < cf(x). Then
U~ € Upem Vm, and hence U | <k.
In view of (1), we assume from now on that / € L is such that

(2) The lower cofinality of | is at least cf(x).
(3) If (i) holds then U~ C V;.
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For let a € U . Since |V (G,)| < cf(k) it follows from (2) that there exists
v € V(G,) such that for each m € L with m < [ there exists s € L with
m<s <[ and v € W;. By (L2), since [/ # inf(L), there exists my € L with
mo < | such that v € W,, for every m € L with my < m < [. Hence v € W,
by (L3), since / has no predecessor, and thus o € V;, as desired.

(4)  If(ii) holds then U C V;.

For suppose that a € U™ — V;. Choose mp € L with mg < / such that
W, N V(G,) # 2 forall m € L with my < m <[, and assume that we have
already constructed mq, ..., m,_y € L with mog<m; <---<mu_1 <![. By
(2), since cf(x) = k and |W,,,_,| < ¥ and / has no predecessor, there exists
m, € L such that m,_; < m, <[ and W, _, NV(G,) N W,, = @. This
completes the construction of an infinite sequence my < m; < --- of elements
of L. We deduce from (2.9) that the sets W, NV (G,) are mutually disjoint.
Let m = sup{m,: n > 0}, the supremum being taken in L. By (2), since
cf(x) > Vo it follows that m </ and hence « € V,,. Let P be a path in G,
from W, ,NnV(G,) to W,,nV(G,). Then P meets each W,,, NV (G,), which
is impossible because there are infinitely many such sets and they are mutually
disjoint. This contradiction implies that « does not exist, as required.

We deduce from (3) and (4) that in the first two cases the width of (L, U)
is indeed < k. For the third case we may therefore assume that x is not a
successor cardinal, that is, if 4 < x is a cardinal, then u* < k. Let u <k be
such that (L, U) has adhesion < u at /; then for every /' € L with I’ </
there exist /;, [, € L suchthat I'<l; <, <[, |W;, NnW,| < u and there is no
["e L with [, <!”" <[,. Then [, #1, since [ has no predecessor, and for the
same reason we may choose the pair /;, /, with /; #1’. By (2.9),

ﬂ Vi

<<l

< Ha € A: V(Go) N W, N W, # 2} < 1,

and therefore |U;"| < u* <k, because U, is a monotone union of sets, each
of cardinality < u. Hence (L, U) has width < k in the third case as well. O

The following corollary of (2.10) will be needed in §4.

(2.11) Let k be an infinite cardinal and let (L, W) be a linear decomposition
of width < k of a graph G, and let a subdivision of a tree T be isomorphic to
a subgraph of G. Then there exists a linear decomposition (L, U) (using the
same linear ordering) of T of width < k.

Proof. Under the assumption, T is isomorphic to a minor of G in which every
node is finite, and therefore the result follows from (2.10). O

We denote by 2<” the set of all sequences of 0’s and 1’s of length < n, and
let 29 =J,502<".

(2.12) A complete linear ordering (L, <) is not scattered if and only if there
exists a mapping F from 2<% into the set of nonempty closed intervals of L
such that

(i) if s' € 2<% is an extension of s, then F(s') C F(s), and

(ii) if s, s’ € 2<? have the same length and s # s', then F(s)NF(s')=o.
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Proof. The “only if” part is easy (and is not used here). We prove the “if” part
as follows. For s € 2<% let sy, 5, € 2<® be the two 1-term extensions of s,
where sup(F(s;)) < sup(F(sy)). We define f(s) = sup(F(sy)). It is easy to
see that f is an injection. Let Ly = {f(s): s € 2<?}. We claim that for all
f(s), f(s') € Ly with f(s) < f(s'), there exists [ € Ly with f(s) <[ < f(s').
For let sy, s, be as before, and define si, s; similarly for s'. If s is not an
extension of s then f(s) < f(s2) < f(s’), while if s is an extension of s’ then
f(s) < f(s1) < f(s'). The claim follows. This is well-known to imply that Ly
(and hence L) is not scattered. O

(2.13) For each infinite cardinal x , T, does not admit a scattered linear decom-
position of width < k.

Proof. Let (L, W) be a linear decomposition of T, of width < k. We put,
for t € V(Tx), I, ={l € L: t € W;}. By (L1), (L2), and (L3), each I, is a
nonempty closed interval of L. We shall construct a mapping f: 2<% — V(Ty)
such that

(i) if s’ € 2< is an extension of s, then Iy C Iy,
(i) if 5, " € 2<“ have the same length and s # 5, then Iy NIpy = 2.

Define f of the null sequence to be itself and let us assume that we have
already defined f on 2<" such that it satisfies (i) and (ii). Let s € 2<7 —2<n~1
let N be the set of all neighbours of f(s) in T, and let a = inf(Iyy)), b =
sup(/s)). Since |W, U W,| < k it follows that there exists a set N/ C N
with |N’| = k such that a,b ¢ I, and hence I, C I, forall t € N'. If
l e N{I;:t € N'}, then N' C W, contrary to the fact that (L, W) has width
< k. Hence ({I;: t € N'} = @ and thus (by completeness) there exist vertices
fo, t1 € N’ such that I, nI;, = @. Let s; be the concatenation of s and (i),
and let f(s;) =t; (i =0, 1). This completes the inductive definition of f. It
follows from the construction that f satisfies (i) and (ii).

Now we put F(s) = Iy and it follows that F thus defined satisfies (i) and
(i1) of (2.12). Hence L is not scattered, as desired. O

The implication (ix) = (i) of (2.3) now follows by combining (2.1)(iii) and
(2.13).

3. ESCAPES OF COUNTABLE ORDER

In this section we prove (1.2), (1.4), and (1.5). To complete the proof of
(1.4) it is enough, by (2.1), to prove the following.

(3.1) A graph is rayless if and only if < Rg cops can search it.

Proof. 1f the graph contains a ray P then the robber can remain uncaptured by
staying in a component which contains infinitely many vertices of P. For the
converse assume that G is rayless. We must describe a winning strategy for the
cop player. Let Xy = @ and let R, be the robber’s response, and assume that
Xo, ..., X, have already been chosen in such a way that X; = {vy, ..., v;},
where v, ..., v; isa pathin G, and v; is adjacent to a vertex in R;, where
Ry, ..., R, are the robber’s responses. Choose a vertex v,,; € R, adjacent to
v, (if n =0 choose v, € Ry arbitrarily) and put X,,; ={v;, ..., Uy, Uns1}.
It follows that if R, € X, , then v, is adjacent to a vertex in R, . Since
G is rayless there is an n such that R, C X,,,, that is, the cop player wins. O
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Our next objective is to prove the full version of (1.5), the following.

(3.2) For a graph G, the following conditions are equivalent:
(1) G contains no minor isomorphic to Ty, ,
(1) G contains no minor isomorphic to T,,
(iii) G contains no subgraph isomorphic to a subdivision of T,,
(iv) G has no massive escape of order ¥y,
(v) G admits a scattered tree-decomposition of width < Ry and adhesion
< Ny,
(vi) G admits a well-ordered decomposition of width < ¥y and adhesion
<Ny,
(vil) G admits a linear decomposition of width < Xo and adhesion < ¥ .

Implications (i) = (ii) = (iii) and (vi) = (vii) are easily seen, and (v) = (vi)
follows from (4.6). In this section we prove (iii) = (iv) = (v) and (vii) = (1).
We start with five lemmas.

(3.3) Let o be an escape of order ¥k > Ny ina graph G, let X,Y € [V(G)]<*
and let C Cao(X) bean X-flap. Then C Ca(Y) ifandonlyif CNY =o.
Proof. If CNY # @ then clearly C ¢ o(Y). So assume that CNY = &.
Then C isa (XUY)-flap; and hence C Ca(XUY) C g(Y) by the second and
first escape axiom. 0O

Let us recall that if H is a connected subgraph of a graph G and ¢ is an
escape in G of order x, then H is said to be majorif V(H)N(XUd(X)) # @
for every X € [V (G)]<*.

(3.4) Let G be a connected graph, let o be an escape in G of order ¥y, let
P be a connected subgraph of G, and let X,, X,, ... be a sequence of finite
subsets of V(G) such that

(i) Xiy1 CX;U0(X;) and o(Xip1) Co(X,) forall i>1,

(ii) every vertex in X;N X;, is major, forall i > 1,

(iii) P intersects every X; (i=1,2,...).
Then P is a major subgraph of G .
Proof. We first prove the following.

(1) If ue s, 0(X;) is adjacent to v € V(G) — ;> 0(X;), then
v is major. N

For v ¢ ag(X;) for some i > 1; hence v ¢ d(X,;), by (i), and therefore
v € X;N X4, because it is adjacent to u € d(X,)No(X;,). Hence v is major
by (ii).

Suppose, for a contradiction, that P is not major. In particular, no vertex
of P is major and so P is infinite by (i1) and (ii1). There exists a finite subset
Y’ of V(G) such that V(P) C Y U C for some Y’-flap C which is disjoint
from a(Y’). It follows that V(P)N C # @ because P 1is infinite. Let Y be
the set of all v € Y’ which are adjacent to a vertex in C. Then C isa Y-flap,
and is disjoint from o(Y) by (3.3). Since C is not a subset of ()5, o(X,) by
(iii), and no vertex of C is major, it follows from (1) that YN;5, a(X,) = &.
Since Y is finite, (i) implies that there exists # such that YNo(X,) = @. Then
it follows from (3.3) that o(X,) C d(Y) and so CNa(X,) = 2. Hence, by (i),

V(P)N Xni1 C C N (X UG (X)) N Xns1 € X N Xg1
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and so, by (ii) and (iii), P intersects X,.; in a major vertex, and hence P is
major, a contradictionto s(Y)NC =2. 0O

(3.5) Let G be a graph, let a be an escape in G of order k > Xy, and let ¥’ <k
be a regular cardinal. Then for every X € [V (G)]<*' there exists Y € [V (G)]<*'
such that Y C XUa(X), a(Y) C a(X) and every vertex in XNY is k'-major.

Proof. For each v € X, let X, € [V(G)]<*' be such that v ¢ X, Ud(X,) if
v is not x’-major and let X, = @ otherwise. Let X' = X U|J,cy Xo; then
|X’| < k' since k' is regular. Let Y be the set of all v € X’ which are adjacent
to a vertex in a(X’).

(1)  YCXUa(X).

Forlet y € Y — X . Since y is adjacent to a vertex in a(X’), it follows that
y€o(X' —{»y}) Cao(X) by (3.3) and the first escape axiom.

2  ao¥)cao(X).

For every Y-flap C C a(Y) intersects g(X’), by the second escape axiom,
and hence C is an X’'-flap. Thus (YY) = a(X’). But ag(X’) C g(X) by the
first escape axiom.

(3) Every vertex in X NY is k' -major.

Forlet v € XNY. Since v has a neighbour in g(X’) C a(X,) it follows
that v € X, Ua(X,), and so v is x’-major by definition of X, .
The result now follows from (1), (2) and (3). O

Let o be an escape of order Ry in a graph G andlet X, Y be finite subsets
of V(G). Recall that Y is later than X if |Y| < |X|, Y C X Ud(X), and
ag(Y) C g(X). This relation is transitive, as is easily seen.

(3.6) Let G be a graph and let o be an escape in G of order Xy. Let X, Y be
finite subsets of V(G) such that Y C XUa(X) and o(Y) C a(X), and assume
that there is no set X' C V(G) later than X with |X'| < |X|. Then there exist
|X| disjoint paths between X and Y .

Proof. Suppose not. Then by Menger’s theorem there exists a set Z C V(G)
with |Z| < |X| which intersects every path between X and Y. Choose such
aset Z W1th |Z| m1n1mum Then Z C XUoa(X), and since Z is not later
than X it follows that a(X) € ag(X). By (3.3) there existsa Z-flap C C 0(Z)
which intersects X . Since Z separates X and Y we deduce that CNY =
@, and hence C C a(Y) by (3.3). But g(Y) Co(X),and CNX # @, a
contradiction. 0O

(3.7) Let o be a massive escape of order Xy in a graph G, let Z be a finite
subset of V(G), andlet D C a(Z) bea Z-flap. Let T be a tree with |V (T)| =
Ro. Then G has a minor isomorphic to T whose nodes are major subgraphs
contained in D .

Proof. Let the vertices of T be numbered ¢, #,, ... in such a way that for
every n > 1, exactly one of ¢, ¢, ..., t, is adjacent to #,,;. (Such a num-
bering exists; for let V(T) = {v;, v2, ...}, let ¢t; = v;, and inductively for
i >1,let t;y; = v; where j is minimum such that v; # #;, ..., and v;
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is adjacent to one of #;,...,¢;.) Let kK > 0 be an integer. A pair (%, X) is
called a k-minority if
(i) € = (Cy, ..., Cy) is a sequence of k disjoint finite connected sub-

graphs of G with V(C;))C D for 1<i<k,

(i) XCZUag(Z),and a(X) Ca(Z),and X is terminal,

(i) V(C))NnX #@ and V(C))no(X)=2 for 1 <i<k,

(iv) for 1 <i< j<k,if t; and ¢; are adjacent in T, then some edge of
G has one end in V(C;) and the other in V(Cj).

Let Z’' be a terminal set later than Z . Obviously,
(1) (2, Z") is a O-minority.

A k’-minority (%', X') is said to extend a k-minority (¢, X) if (writing
& =(C,...,C¢) and &' =(C{,...,C)), k <k', C; is a subgraph of C/
for 1<i<k, XCXUd(X),and o(X’') Co(X). A k'-minority (%', X’)
is said to properly extend a k-minority (¢, X) if it extends (%, X) and every
vertex in X N X’ is major.

(2) Let k > 0 be an integer, and let (¢, X) be a k-minority. Then
there exists a (k + 1)-minority (¢', X') which properly extends
(%, X).

Forlet # = {C,, ..., C,} andlet i besuchthat 1 < i<k and ¢; and #;,,
are adjacent. Choose u € V(C;)N X and let v € o(X) be a neighbour of u,
which exists, because otherwise X — {u} is later than X by (3.3), contrary to
the fact that X is terminal. Since u € D and v ¢ Z we deduce that v € D.
(If Kk =0 we choose v € a(X)ND arbitrarily.) Let ¥ = XU{v} and let Cy,,
be the subgraph of G with V(Cy,,) = {v}, E(Ci;1) = @. From (3.5) there
exists a finite set Y’ C V(G) such that Y/ C Y Uo(Y), a(Y’) C a(Y) and
every vertex in Y’ NY is major. Let X’ be a terminal set later than Y’. We
have d(Y) C g(X) from the first escape axiom, and hence

X' CcYUe(Y)CYUa(Y)CXUd(X)CZUa(Z),
o(X')Ca(Y')Ca(Y)Co(X)Ca(Z).
To finish the proof of (2) we need two more claims.
(3) Every path joining Z and X' intersects X .

For let C be an X-flap. If CN X' # @ then C C a(X) because X' C
XUo(X),andif CNZ # @ then C ¢ ag(X) by (ii). Thus no X-flap intersects
both Z and X', and (3) follows.

(4) There exist |Y| disjoint paths between Y and X'.

For there is no U later than Y with |U| < |X|+ 1 = |Y]|, because X 1is
terminal. Hence (4) follows from (3.6).

Choose paths as in (4), minimal. Choose v; € YNV (Cj) for j=1,...,k+
1, and let P; be that of the paths from (4) which uses v;. Since X’ C YUa(Y)
it follows that V' (P;) C Y Uo(Y). It also follows that each P; is contained
in D (for v; € V(Cj) € D, and no other vertex of P; belongs to X ; and
so V(Pj)NnZ = @ by (3), and hence V(P;) C D) and P; is disjoint from
a(X') (for otherwise by the minimality of P;, some X’-flap included in o(X’)
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would intersect Y). Let C; = C;UP; and let &' = {C{, ..., C; }.
J, 7 €{l, ..., k+1} aredistinct then V(C})NV(Cj,) =2 because V(P;) C
X)U{v;} and V(C})no(X) = @. It follows that (¢’, X') isa (k + 1)-
minority which properly extends (%, X), thus proving (2).
From (1) and (2) there exist disjoint connected subgraphs C;, C;, ... con-
tained in D, and finite subsets X;, X5, ... of V(G) such that

(a) Xi41 € X;Uo(X;) and each vertex in X; N X;,; is major,

(b) a(Xiv1) Co(Xi),

(c) C; intersects every X; for j=i,i+1,

(d) for 1 <i< ] if #; and ¢; are adjacent in T, then some edge of G
has one end in V' (C;) and the other in V(Cj).

It follows that C;, C,, ... form the nodes of a minor isomorphic to 7', and
every C; is major by (3.4). O
The implication (iii) = (iv) of (3.2) follows from the next result.

(3.8) Let o be a massive escape of order Yo in a graph G, let Z be a finite
subset of V(G) andlet C Ca(Z) be a Z-flap. Then there exists a subgraph T
of G contained in C isomorphic to a subdivision of T, such that every ray of
T is a major subgraph.

Proof. By (3.7) we may choose a minor H of G isomorphic to 75 in which
every node is major. Then it is easy to produce a subgraph 7 of G isomorphic
to a subdivision of 7, in such a way that every ray of T intersects infinitely
many nodes of H. Hence every ray of T is major. O

The following corollary will be used in a later paper.

(3.9) Let 0 be a massive escape of order Ry in a graph G. Then there exist
infinitely many pairwise disjoint major rays in G.

Now we begin the proof of the implication (iv) = (v) of (3.2).

(3.10) Let k be an infinite cardinal, and let ¢ be an escape of order k in a
graph G. Let A be an ordinal and let {X,}..; be a sequence of subsets of V (G)
such that

(i) Xp S XoU0o(X,) for a < p <A, and

(ii) o(Xg) Co(Xs) for a< B < 4.
Let S =(\,.;0(X.). Then there exists a well-ordered decomposition (4, W) of
G\S with W = (W,: a < 1) such that

(a) W, ﬂWa+1 X, forall a< A,
(b) 0(Xa) =S =Uscpcs Wp— Wa forall a <2, and

(c) Wy = Um Na<par Xp -
Proof. We put H=G\S, and for 0 <a <4,
Wo = [)[XsUa(Xp)]N[V(H) - 0(Xa)]
B<a

with the convention that ¢(X;) = @. We must verify that (1, W) satisfies
(WO1)-(WO0O3), and (a), (b), and (c).
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We first verify (WO2). Let 0 < a < f <y <4;then
Wo N W, C ([ Xs Ua(X5)IN[V (H) — 0(Xa)]

o<y
C X Va(Xs)IN[V(H) - a(Xp)] = W,
i<p

by (ii).
To verify (WO3) let a < A be a limit ordinal, and let 8 < a. Then

N W= NXUaX)INV(H) - a(X,))
a>y>p a>y>B o<y
C (X5 Ua(X)I NV (H) — 0(Xa)] = Wa.
o<a

To verify (WO1) we first observe that for v € V(H), if a < 4 is the least
ordinal such that v ¢ o(X,), then v € W,. Therefore {J,_, W, = V(H).
Now let u, v € V(H) be adjacent and suppose that there is no « < 4 such that
u,v € W,. By (WO2) we may assume that a < # for every o, f < 4 such
that u € W,, v € Wp. Choose B <A with v € Wy, and let

a=sup{y <iA:ue W,}.

Then u € W, by (WO3), v ¢ W, and a < f. It follows that ¥ ¢ X,Uc(X,)
(since u ¢ W,,; and v € g(X,), a contradiction, since u, v are adjacent.
This proves (WO1).

To verify (a) we have

Wa O\ Wart = (| [Xp Ua(Xp)] NV (H) - 0(Xa)]
B<a
N [Xa U G(Xa)] N [V(H) - G(Xa+l)]
= Xaa
by (1), (ii).
To verify (b) let first v € o(X,) —S. Then v ¢ o(Xp) for some S with

A > B > a, and we may assume that f is the smallest such ordinal. Then
v € Wg — W, . Conversely, for A > g > a,

W/i’ - W, C [(Xa U G(Xa)) n V(H)] — Xy = G(Xa) -S.

To verify (c) we have

Wy = ([XgUa(Xp)]- ) o(Xp)

B<i B<A
=J |N&Xpuaxp)n ) Xl = ) Xs.
a<i | f<a a<p<i a<ida<f<i

by (i) and (i1). O

(3.11) Let o be a nonmassive escape of order X, in a graph G. Then there exist
afniteset Y CV(G), aset S C a(Y) which is the union of some (possibly none)



616 P. D. SEYMOUR AND ROBIN THOMAS

but not all Y-flaps in a(Y), an integer k > 0, and a well-ordered decomposition
(w, W) of G\S such that:
(a) Y C X, |Xi| =k, and there exist k disjoint paths in G\S between X;
and Xiy1 (i=0,1,...), where X;=W;nW;, (i=0,1,...),
d) o( X)) -S=U;s; W;-W; (i=0,1,...),

(c) Wp=Y.
Proof. Let us choose a finite set Xy C V(G) with |Xp| minimum such that
there is no later terminal set. There exists a sequence Xy, X, ... of distinct

subsets of V' (G) such that X;,, is later than X; forevery i=0,1,....
(1) There is no Y later than Xy with |Y| < |Xy|.

For otherwise Y would contradict the choice of Xj.
It follows that

(2) | Xi| = | Xiza| fori=0,1,....

Let k£ be such that |X;|=k for i=0,1,....Let Y =U,>0;>, Xi; then
there exists an n > 0 such that ¥ C X; for every i > n, and we may assume
that n =0. Let S =();5(0(X;); it follows that Y NS = & and thatif v € S is
adjacentto u € V(G), then u € YUS (because if u ¢ d(Xj,) then u ¢ o(X;)
for every j > jo, and hence u € Y). Hence S is a union of Y-flaps.

(3) o(Y)— S includes a Y -flap .

Since @ # X;—Xp and X; C XqUa(Xp), there exists an Xy-flap C’ C a(Xp)
not contained in S. Then C’' C C for some Y-flap C C a(Y) by the first
escape axiom. Since C ¢ S it follows that C NS = &, as desired.

(4) There are k disjoint paths in G between X; and X;y fori =0, 1, ....

For there is no Z later than X; with |Z| < |X;|, because such a Z would
be later than Xj, contrary to (1). Hence (4) follows from (3.6).
Since S is a union of Y-flapsand Y C X; N X,,,, we deduce

(5) There are k disjoint paths in G\S between X; and X;., for
i=0,1,....
The existence of the desired well-ordered decomposition now follows from
(3.10) with k =Ng, A=w. O
The following is (iv) = (v) of (3.2).
(3.12) If G has no massive escape of order Ry, then G admits a scattered
tree-decomposition of width < Xy and adhesion < N.

Proof. For the purpose of this proof let us call a tree-decomposition rnormal, if
it is scattered and has width < Ry and adhesion < Rg. As in the proof of (2.1)
we deduce that

(1) If X C V(G) is finite and every component of G\X has a normal
tree-decomposition, then the whole graph does.

Suppose for a contradiction that G is a graph with no massive escape which
does not admit a normal tree-decomposition. For each finite set X C V'(G), let
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us define o(X) to be the union of all X-flaps C such that the restriction of G
to C does not admit a normal tree-decomposition.

(2) o is an escape of order Ry .

For the first two escape axioms can be verified as in the proof of (2.1), and
the third escape axiom follows from the assumption that G does not have a
normal tree-decomposition and from (1).

By assumption, ¢ is not massive and therefore there exist a finite set ¥ C
V(G),aset S C V(G), and a well-ordered decomposition (w, W) of H = G\S
asin (3.11). Since V' (H) contains at least one Y-flap from ¢(Y) and subgraphs
of graphs with normal tree-decompositions also have such decompositions, we
deduce

(3) H does not admit a normal tree-decomposition.

For i > 0, let H; be the subgraph of H induced by W, and let X; =
WinWi.

(4) Every H; admits a normal tree-decompositionfor i =0,1,2, ...

For V(H;) = W; CV(G)—0a(X;) by (3.11b), and hence (4) follows from (1).

Now let (77, W) be a normal tree-decomposition of H;. Let T be the tree
obtained by taking the disjoint unionof 7% (i =0, 1, 2, ...) and joining some
vertex of T to some vertex of T“+! for each i > 0; and for each ¢t € V(T let
U =W/UX;_,UX;, where i is such that ¢ € V(T?) (and where X_, means
@),andlet U= (U,;:teV(T)).
(T, U) is a normal tree-decomposition of H .

We first verify that (7", U) satisfies (W1) and (W2). We have

U uvalU U w=Uvay=Uw=vu

tev(T) i>0 eV (T i>0 i>0

where the last equality uses the fact that W, C W,, which follows from (a)
and (c) of (3.11). Now let u, v € V(H) be the endpoints of an edge of H.
Then u, v € W; for some i > 0; hence u, v € W/} for some i € V(T') and
thus u, v € U,. Hence (T, U) satisfies (W1). To verify that it satisfies (W2)
let ty,t,t3€ V(T),let t; € V(TH) (j=1,2,3) and let #, lie on the path
between #; and 73 in 7. By symmetry we may assume that 7; < i3, and so
i1 <iy<i3.If iy =i; then iy =i, = i3 =i say and

Uy NUy =W UXi i UX)N (W UXi o UX) CWLUXi UK = Uy,
and if i; < i3 then
UyNU, =W UX;,o1UX;) N (WP UX;,_ 1 UXy)
cw,nNnw,cX;nX,gun---NnX;,_1 CU,.
Thus, (7, U) satisfies (W2). It follows directly from the construction that 7°
is scattered and that |U,| < Ry for every ¢t € V(T). Now let #,?,... be
an infinite path of 7. If there exist integers m, n > 0 such that ¢; € V(T")

for every i > m, then ||J, N> Uyl < Ro and liminf;e |Uy, N Uy, | < Ro
because (7", W") is a normal tree-decomposition. If such integers m, n do
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not exist then there exist infinitely many integers i > 0 with the property that
t; € V(T’) and t;;y € V(T/*!) for some integer j > 0. Then

Ulz ﬂ U11+l g W/J n W}+1 = X]

and hence liminf;_,|U, NU,,,| < k < Ry and |7, Nj>: Ul < k < R,
where k = |Xy| = |X;|=---. This completes the proof of (5).

Now (3) and (5) contradict each other. Thus our assumption that G is a
graph with no massive escape which does not admit a normal tree-decomposition
is false, and hence no such graph exists. 0O

Next we turn to the implication (vii) = (i) of (3.2).

(3.13) Ty, does not admit a linear decomposition of width < Xy .

Proof. Suppose for a contradiction that (L, W) is a linear decomposition of
width < Ry of T = Ty,. Foreach t € V(T), let I(t) ={l € L:t € W}}.
Thus each I(z) is a closed interval in L. Let # be the null sequence, and
suppose that we have already defined a path of T with vertices ¢y, ¢y, ..., ¢, In
order, such that I(¢) 2 I(t;) D --- 2 I(t,). Let x,y be inf(I(¢,)), sup({(z,))
respectively. Now for each neighbour ¢ of ¢, in T, I(¢)NI(t,) # @ by (L1),
and yet I(¢)n{x, y} # @ for only finitely many such ¢, since W,UW, is finite.
Thus there is a neighbour ¢,,; of ¢, (distinct from ¢,_, if n > 1) such that
I(ty41) C I(t,) . This completes the inductive definition of ¢, #;, #;, ... . Since
L is complete and 1(ty) 2 I(¢;) 2 ..., there exists / € L such that / € I(z,)
for all » > 0, thatis, ¢, € W, for all » > 0. But this is impossible since W,
is finite, and so there is no such (L, W), as required. O

The last implication of (3.2), namely (vii) = (i), now follows from (2.10) and
(3.13).

Our next objective is to prove (1.2). We start with a lemma which is a
strengthening of (i) = (ii) of (1.4). If ¢ is an escape of order Ry in G, a ray
P in G is o-balanced if every subray of P is major.

(3.14) Let G be a graph and o an escape in G of order Ny. Let Xy be a
finite subset of V(G) and let C C o(Xo) be an Xy-flap. Then there exists a
o-balanced ray P of G such that V(P)C C.

Proof. There are two cases.

Case 1. For every finite X C C, every (XoUX)flap C' C o(XoUX)NC
contains a major vertex.

Choose a major vertex vy € C and let Ry be the 0-edge path with V(Ry) =
{vo}. Inductively. suppose that we have defined distinct major vertices vp,
vi,...,V, € C and a path R, from vy to v, with V(R,) C C, passing
through all of vy, v, ..., v, in order. Since v, is major, it has a neighbour in
a(XoUV(R,)), for otherwise v, ¢ X Uag(X) where X = XoU V(R,) — {vn}.
Let C, be an (Xo U V(R,))-flap in o(Xo U V(R,)) containing a neighbour
of v,. Since C, N Xo = @ and C, has a neighbour in C (namely v,) it
follows that C,, C C. Thus there is a major vertex v,,1 € Cy; let R,,; be the
concatenation of R, and a path from v, to v,,; contained within C,U{v,}.
This completes the inductive definition. Now R = RyUR{UR, U--- 1is a ray
passing through infinitely many major vertices, and hence R is o-balanced; and
V(R) C C, as required.
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Case 1. There exists a finite X C C, and an (XoUX)-flap C’' C a(XoUX)NC
which contains no major vertex.

Let H be the subgraph of G induced by C’; for a finite set Y C V(H)
we define 7(Y) = o(XoUX UY)N C'. Then 7 is an escape of order Xg
in H with no major vertex. Let Y; be a nonempty subset of V(H); from
(3.5) there exists a sequence Yy, Y, ... of finite subsets of V(H) such that
YiriUt(Yis1) Ct(Y;) for i =0,1,.... If v €Y; is adjacent to a vertex in
o(Y;), then there exists a path Q joining v to a vertex of Y;.;, adjacent to
o(Yi+1), such that V(Q)—{v} C a(Y;)—0(Yi+1). (This follows by examining a
minimal path within {v}Ua(Y;) from v to a(Y;,;).) It follows that there exists
aray P, intersecting every Y; (i=0,1,...). By (3.4), P is g-balanced. O

Now we can prove (1.2), which we restate.

(3.15) Let G be a connected graph and x an infinite cardinal. If T is a subgraph
of G which is a k-balanced tree, then there exists a unique escape o in G of
order k such that
(%) for every X € [V (G)]<* and every X-flap C, C C o(X) if and

only if |CnV(T)|>k.
Conversely, for every escape o of order k in G there exists a subgraph T of G
which is a x-balanced tree and such that (x) holds.

Proof. If T is as stated, then it is easy to verify that ¢ defined by () satisfies
the escape axioms. Conversely, let o be an escape in G of order x . A subgraph
T of G which is a tree is called o-balanced if |E(T)| > 1 and for every edge
e of T, both components of 7'\e have at least x vertices and are both major
subgraphs, unless ¥ = X, in which case T is also permitted to be a g-balanced
ray (defined earlier). From (2.8) if k¥ > 8¢, or from (3.14) if k = 8y, we deduce

(1) There exists a g-balanced tree.

If T\, T, are o-balanced trees, we write 73 < T, if T, is not a ray, and
either 7 is a proper subgraph of 75, or 7T; is a ray with an infinite subray
contained in 7, . By Zorn’s Lemma there exists a maximal g-balanced tree 7 .
We claim that T is as desired. Let X € [V(G)]<* and let C C g(X) be an
X-flap.

(2) If |V(T)NC| > k then there exists an edge e of T such that
an infinite component of T\e is contained in C .

This follows easily when 7 is a ray because then k¥ = Ng. So assume that T
is not a ray and suppose that (2) fails. Then for every edge ¢ of T with at least
one endpoint in C there exists a path P, in T containing e with endpoints
u,v such that u, v € X, u,v belong to different components of 7\e and
P\{u, v} is contained in C. Let M, = {u, v}. Since there exist x edges as
above and |X| < k, there exist cf(x) edges for which M, is the same, and
hence there exist two edges, ¢ and ¢’ say such that M, = M, and P, # P, .
This is impossible, because T is a tree.

(3) If V(T)NC| >k then C Ca(X).

For let ¢ be as in (2). Every infinite component of 7'\e is major, and hence
C Cao(X).
4) If CCa(X) then [V(T)NC|>k.
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For suppose that C Cg(X) and |V(T)NC|<kx.Let Y =XUWV(T)NnC);
then there exists a Y-flap C' Ca(Y)NC. If k¥ > Ny then there is a k-nova §
in C’ asin (2.8), and if k¥ = 8( then there is a g-balanced ray S contained in
C’ by (3.14). Let P be a path joining a vertex ¢ € V(T) to a vertex s € V(S)
and otherwise disjoint from 7 US. If S is a ray we define S’ to be the path
obtained from .S by deleting the finite component of S\s, and we define S’ =.§
otherwise. We define 7’ analogously. Let 7”7 = T"U P U S’ ; it is easily seen
that 7" is a o-balanced tree, contrary to the maximality of 7 under <.

The theorem now follows from (3) and (4). O

We give a characterization of massive escapes of order Ry in the spirit of
(3.15). We omit the proof, because it is similar to that of (3.15), using (3.8)
instead of (2.8) or (3.14).

(3.16) Let G be a connected graph and let a be an escape in G of order N .
Then o is massive if and only if the tree T from (3.15) can be chosen in such
a way that it contains no infinite path t,, t,, ..., where each t; has valency 2
inT.

Finally, we prove a lemma which will be used in a later paper. Let G be a
graph and ¢ an escape of order Ry in G. A finite set F C V(G) is said to be
free if there is no finite set X C V(G) with |X| < |F| such that FNno(X)=@.

(3.17) Let G be a graph and o an escape in G of order Xy. A set F C V(G)
is free if and only if there is no X C V(G) later than F with |X| < |F]|.
Proof. If F is free then there is clearly no such set. Conversely let F be not
free and let X be such that

1) | X[ <|F[,

(i) Fne(X)=2,
and subject to (i) and (ii),

(ii1) |X] is minimum.
We claim that X is later than F . From (ii) and (3.3) we deduce that a(X) C
o(F); we must show that X C FUo(F). Let v € X. By (iii), a(X — {v}) #
o(X), and so by (3.3), v is adjacent to some u € g(X) C a(F). Hence
veFUa(F), as required. O

The following is a strengthening of (3.5) when x = Xg.

(3.18) Let G be a graph and let 6 be an escape of order Ry in G, and let X
be a finite subset of V(G). Then there exists a free set Y C V(G) such that
YCXUd(X), a(Y)C a(X), and every vertex in X NY is major.

Proof. By (3.5), there exists a finite subset ¥ of V(G) such that ¥ C XUa(X),
d(Y) C o(X), and every vertex in X NY is major. Let us choose this ¥ with
|Y| minimum. If Z is later than Y then

XNZCXN(YUs(Y)C(XNY)u(Xno(X)=XNY,
and so there is no Z later than Y with |Z| < |Y|. By (3.17), Y is free, as
required. O

(3.19) Let G be a graph and let  be an escape of order Ry in G. A finite set
F C V(G) is free if and only if there are |F| disjoint major paths of G, each
with an end in F .
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Proof. Let Hy, ..., Hp| be disjoint major subgraphs, each intersecting F,
and let X C V(G) be such that |X| < |F|. Then X NV (H;) = @ for some
1 <i<|F|;hence V(H;) Co(X) and thus FNo(X) # @. Hence F is free.

Conversely let F be free. By (3.18) there exists a sequence Xy, = F, X,
X,, ... of subsets of V' (G) such that X, C X, Ua(X,), d(X,y1) Ca(Xy),
every vertex in X, N X, is major, and each X, is free. Hence |Xy| < |X;| <

. From (3.6) there exist disjoint paths Py, ..., Pg|, each with an end in
F and intersecting every X, (n = 0,1,...); and from (3.4), each P; is
major. O

4. MAJOR ESCAPES

In this section we shall state and prove an expanded form of (1.6). To state
our results for excluding 7, as a subdivision we need a more general type of
“tree-decomposition”, which we now introduce. A well-founded tree is a pair
T =(V(T), <),where V(T) is an arbitrary nonempty set, whose elements are
called the vertices, and < is a partial ordering on V' (T) such that for every
pair ¢, ¢ € V(T) their infimum inf(z, ) exists and for every ¢ € V(T) the
set {¢/ e V(T): ¢t <t} is well-ordered. The supremum of order types of these
sets is called the height of T . For ¢, t, € V(T) we define T7[t;, t2] to be the
set {t € V(T): either inf(¢;, &) <t <t or inf(t;, 1) <t < t}.

If Risatreeand r € V(R), letus define ¢, < t, (for t;, t; € V(R)) to mean
that #; lies on the path between r and ¢, . It is easily seen that 7T = (V(R), <)
is a well-founded tree and conversely every well-founded tree of height < w
arises in this way. Moreover, T1[t,, ;] = R[¢,, t;] for every t,, t, € V(R), as
is easily seen. We call (V(T), <) the well-founded tree associated with R and
r. Let B be the well-founded tree associated with 7> and r € V(T3), where
r 1is the only vertex of 7, of valency 2. We say that a well-founded tree T is
scattered if there 1s no 1-1 and inf-preserving mapping y: V(B) — V(T). If
T is a well-founded tree associated with R and r, then T is scattered if and
only if R is scattered in the sense introduced earlier.

A well-founded tree-decomposition of a graph G 1is a pair (T, W), where T
is a well-founded tree and W = (W,: t € V(T')) satisfies (W1), (W2) and

(W3) if CCV(T) isachainand ¢ =supC € V(T), then (), W, C
we.
We say that (7', W) has width < k if

U ﬂ Wy| <k for every chain C C V(T).
teC t'eC
t'>t
The tree-decomposition (77, W) is called scattered if T is scattered, and is
said to be of height a if T is of height a. Let R be a tree, let r € V(R) and
let T be the well-founded tree associated with R and r. Then to every tree-
decomposition (R, W) there corresponds a well-founded tree-decomposition
(T, W) of height < w and vice versa. It is easy to verify that the conditions
in the definitions of widths are the same, and hence (R, W) has width < k if
and only if (7', W) has width <« .
Now we can state the full version of (1.6).
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(4.1) For a graph G and a cardinal k > Ry, the following conditions are equiv-
alent:
(i) G contains no subgraph isomorphic to a subdivision of T,
(ii) G has no major escape of order i,
(1) G admits a scattered well-founded tree-decomposition of height < cf(x)
and width < k,

(iv) G admits a scattered well-founded tree-decomposition of width < k,

(v) G admits a well-ordered decomposition of width < k,
(vi) G admits a scattered linear decomposition of width < k .

If k = Ry then these conditions are moreover equivalent to

(vil) G admits a linear decomposition of width < X,
(viii) G admits a scattered tree-decomposition of width < R .

Implications (iii) = (iv) and (v) = (vi) = (vii) are trivial, (vi) = (i) follows
from (2.11) and (2.13), and for k¥ = X (vii)= (i) follows from (2.11) and
(3.13). Finally, for ¥ = Ry conditions (iii) and (viii) are equivalent by our
earlier remark about well-founded tree decompositions of height < w. We
now prove (i) = (ii) = (iii) and (iv) = (v).

The implication (1) = (ii) follows from the next result.

(4.2) Let k be an infinite cardinal. If G has a major escape of order k, then
G contains a subgraph isomorphic to a subdivision of T, , such that every vertex
of valency > 2 of this subgraph is major.

Proof. This follows from (2.6) by letting ¢ = ¥t and /(¢) = k for all ¢ €
V(T,). O

Now we begin the proof of the implication (ii) = (iii) of (4.1).

(4.3) Let k be an infinite cardinal, let G be a connected graph and let  be an
escape in G of order k, and assume that there is no major vertex. Then there
exists a well-ordered decomposition (cf(x), W) of G such that

(@) |UgcaNp<preaWpr N Wpiiy)| <k for every a < cf(x),
(b) J(Wa n Wa+1) = Ua<ﬂ<cf(K) Wﬂ - Wa, and
(€) Wetw) = 2.

Proof. Let A = cf(x) and let {x,}.<; be a nondecreasing sequence of regular
cardinals < xk with supremum x. We shall construct a transfinite sequence
{Xa}a<a of subsets of V(G), with |X,| < k for all a < 4, as follows. Let
Xo C V(G) with |Xp| =1, and assume that o < A and Xz has already been
constructed for all B < a. If a is a successor ordinal, say o« = f + 1, we
let X, be the set “Y ” of (3.5) with X = X3 and x’ chosen to be a regular
cardinal such that [X;| < «x’ and kg <k’ <« ; and if o is a limit ordinal we
let X, =UgeoMNp<prca Xp - Then the following conditions hold:

(1) |Xa| <x,forevery a<4,
(2) Xo CXgUa(Xp) for B <a<Ai,
(3) o(X,) Co(Xp) for f <a<4,and
(4) for B < a <A, every vertex in X, N Xp is kg-major.
These conditions are obviously satisfied except for (3) for limit «, which we
now prove. Let a be a limit ordinal and 8 < a, and let C C g(X,) be an X,-
flap. Let Y = (J;_, X5 . Then there exists by the second escape axiom a Y-flap
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C' Ca(Y)nC. We claim that no u € C' is adjacenttoa v € Y — X,,. For
otherwise v € Xs— X5 forsome d <’ < a. Since u € C’' C g(Xs/) by the first
escape axiom, and v ¢ Xy , it follows that v € XsNo(X;) C XsNao(X;) =2,
a contradiction. Hence no u € C’ is adjacent to a vertex in Y — X, . Therefore
C=C'Co(Y)C a(Xp) by the first escape axiom, as desired.

5 X;=2.

For every vertex in X, is kg-major for every f < 4 by (4), and hence major.
But no major vertex exists.

(6) MNpcr0(Xo) =2.

For otherwise there would be some u € (], _, 0(X,) adjacent to some v ¢
Nu<10(Xa). Let a < A be such that v ¢ o(X,); then v € X forall § with
a < B < cf(k), and hence v € X, contrary to (5).

The result now follows from (1), (2), (3), (5), (6), and (3.10) applied to the
sequence {X,}taci. O

Now we prove the implication (i1) = (iii) of (4.1).

(4.4) If G has no major escape of order x, then G admits a scattered well-
founded tree-decomposition of height < cf(kx) and width < k.

Proof. For the purpose of this proof, a scattered well-founded tree-decomposi-
tion of height < cf(kx) and width < x will be called a normal decomposition.
Suppose for a contradiction that G is a graph with no major escape of order
which does not admit a normal decomposition. For X € [V (G)]<*, we define
o(X) to be the union of all X-flaps C such that the restriction of G to C
does not admit a normal decomposition. As in (2.1) or (3.12) it can be verified
that ¢ is an escape of order k in G, and so is not major. Hence there exists
a set Xo € [V(G)]<* and a component H of G\X, which contains no major
vertex and such that V(H) C o(Xy). Hence

(1) H does not admit a normal decomposition.

For X € [V(H)]<¥, let ©(X) be the union of all X-flaps of H which do not
admit a normal decomposition; it follows that 7 is an escape in H with no
major vertex. Let (cf(k), W) be the well-ordered decomposition of H (relative
to 1) asin (4.3), and for a < cf(x) let H, be the subgraph of H induced by
w,.

(2) Every H, admits a normal decomposition.

For V(H,) =W, CV(H) - 1(W,N W,4,) by (4.3).

Let (T, U*) be a normal decomposition of H, and let ¢, be the least
element of T° (a < cf(x)). Let T be the well-founded tree with V(T) =
Ua<ctey V' (T*) in which ¢ < ¢ if either ¢, ' € V(T*) for some a < cf(x) and

t<t in T*,or t=1, and t' € V(T#) for some a < B < cf(x). We put, for
te V(T*),
U=UruWan W)Ul () (We 0 Wpi) € W,
P<a p<p'<a

and put U = (U,;: t€ V(T)). By (4.3a), |U;| <k forevery te V(T).
(3) (T, U) is a normal decomposition of H .
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For it follows directly from the construction that 7 is a well-founded tree
of height < cf(x), and (W1) and (W2) are verified as in (5) of (3.12) (we omit
the details). To verify (W3) let C C V(T) be a chain and let ¢ = supC. If
there exists ryp € C such that {t € C:t > ro} C V(T*) for some a < cf(k)
then (,c- U; C U, by the fact that (T, U“) satisfies (W3). Otherwise let

A={y<cf(x): CNV(T?) £ 2},

and let o = supA, f = minA. Then f < a, a < cf(x) (because C has a
supremum) and c € V(7). It follows that

ANucNWrc (| WnWacl,
teC yEA B<y<a

where the second inclusion follows from (WO2) and (WO3). This completes the
proof of the fact that (7', U) is a well-founded tree decomposition. Evidently
it is scattered. It remains to prove that it has width < x. To this end let
C C V(T) be a chain. If there exists rp € C suchthat {te C:t>ry} C V(T*)
for some a < cf(k) then |U,ccNpec,ps, Url < k because (T, U*) has width
< k. Otherwise let A, a, B be as above. If o < cf(x) then supC = ¢, and
Uiec Niec,vs Ur € Uy, , while if o = cf(x) then

UNuvcl N W cWiw=2.

teC t'eC YEA Y EA
't Y>>y
In both cases |U,ec Npec,p> Url <k, as desired. This proves (3).
Conditions (1) and (3) contradict each other and therefore no such graph
exists, as required. O

Let T = (V(T), <) be a well-founded tree. A trunk in T is a nonempty
subset P C V(T), totally ordered by <, such that if v € P and u < v
then u € P. Now let ¢t € V(T). We denote by br(z) the well-founded tree
{eV(T): ¢ >t},<),and if ¢, € V(T) we say that ' is a successor of t
if ¥ #¢, t<t and thereisno ¢’ € V(T)— {¢,t'} such that t <" <. Let
P beatrunkin 7 and ¢t € P. We denote by P(¢) the set of all br(¢'), where
t' ¢ P is a successor of ¢.

We need Laver’s [4] characterization of scattered well-founded trees, as fol-
lows. Let % be the class of all one-vertex well-founded trees, and for an ordinal
a >0 let J, be the class of well-founded trees T not in (J;_,7p such that
there is a trunk P in T such that P(¢) C U, , 75 forevery t € P. Thereis a
unique minimal such P, and it is called the spine of T € .7, . Laver’s theorem
[4] is the following.

(4.5) Let ~ be the class of all scattered well-founded trees. Then T = cop T -

For a scattered well-founded tree 7', the unique « such that T € .7, is
called the rank of T .
The next result yields the implication (iv) = (v) of (4.1).

(4.6) Let Kk be an infinite cardiral, and let G be a graph.

(1) If G admits a scattered well-founded tree-decomposition of width < k,
then G admits a well-ordered decomposition of width < k.
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(i) If G admits a scattered tree-decomposition of width < k and adhesion
< Kk, then G admits a well-ordered decomposition of width < x and
adhesion < k.

Proof. (i) Let (T, W) be a scattered well-founded tree-decomposition of G
of width < k. We proceed by transfinite induction on the rank of 7. The
theorem obviously holds if the rank of T is 0, so we assume that the rank of T
is > 1 and the theorem holds for all graphs which admit such a decomposition
(T, W') with T’ of smaller rank.

Let P be the spine of 7 and let P = {p,}.<i, Where for a < f < 4,
Po < pp in the ordering of T. For a < A,let N, ={t e V(T):t>1¢ for
a successor t’ ¢ P of p,} and let G, be the subgraph of G induced by the
set (J{W; — : 1 € N,}. By the induction hypothesis each G, is a disjoint
union of graphs each of which admits a well-ordered decomposition of width
< k. Hence G, itself admits a linear decomposition (L*, X*) of width < k
such that L* is a well-ordering. Let L* be a one-element linear ordering, say
L* = {m}. We may assume that all the L® (o < i) are mutually disjoint.
Let L be the well-ordered sum L' + L? + --- + L*. Then L is Dedekind
complete, and is a well ordering. For / € L—{m}, let us define X; = W, UX},
where o is such that / € L; and let X = U, Na<p<s Wp, - Finally we put
X = (X;: ] € L). We claim that (L, X) is a linear decomposition of G of
width < k.

Indeed, the statement about width follows immediately, and so it remains to
prove that (L, X) satisfies (L1)-(L3). To verify (L1) we have

Uxia2 U xpuw, =JV(G)um,

leL a<AlEL~ a<l
=U Uwum,. = U m=v(@).
a<AtEN, teV(T)

Now let u, v be endpoints of an edge of G. Then u,v € W, for some
t € V(T) by (W1). There exists an ordinal o < A such that either ¢ = p,, in
which case u,v € X; forevery / € L*, or ¢t > ¢ for a successor ¢ ¢ P of
Do, in which case u,v € V(G,)UW,, and thus u,v € Xp UW,, C X, for
some [ € L*, by (L1) applied to (L*, X*). This proves (L1).

To verify (L2) let a < b <c in L,andlet ae€ L*,be LB, ce L”. If
a =7 then

XaNXe= (W, UXZ) N (Wp, UXT) C Wp, UXY = Xy,

and if a <y then

Xonx.c J winUwcw, X,
t2>Pa t2py
tzpa-{»l

This verifies (L2).

To verify (L3) it suffices, since L is a well-ordering, to show thatif a,be L
and a < b, and b has no predecessor in L (that is, for all / < b there exists
I' with [ <!’ < b) then (,<;., X1 C Xp. Let ae L*, be Lf then a < B. If
there exists ¢ € L# with ¢ < b, then

N X< () Xi=Wp,,u (| X/ <, ux{=x,
a<li<b c<I<b c<Il<b
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because b has no predecessor in Lf and (L#, W#) satisfies (L3). We assume
that there is no such ¢. Thus » = min(L#), and o < B. If B is a successor
ordinal, say B =y + 1, then sup(L?) is the predecessor of b in L, a contra-
diction. Thus £ is a limit ordinal. We claim that (,.,.z W,, C X, . For if
b = m then this is true by definition of X, ; while if b # m then f <A and

ﬂ %vg%ﬁgXb

a<y<p

since (7', W) satisfies (W3) and pg = sup{p,: « < y < B}. This proves our

claim that (), ., W, € X, . But
N Xi= () XenX)C () W CXp
a<l<b a<l<b a<y<fB

as required. This proves (L3), and hence (L, X) is a linear decomposition of
G of width < k.

Now L is a well ordering; let its order type be an ordinal y,andlet f:y — L
be an order-preserving bijection. Now since m = sup(L), it follows that y is
a successor ordinal, y = g+ 1 say. For 0 < a < f, define Y, = Xy, and
let Y =(Y,:a< pB). Thus (B,7Y) is a well-ordered decomposition of G of
width < k. This proves (1).

(ii) Now let (7', W) be a scattered tree decomposition of G of width <
k and adhesion < k. We can regard 7 as a well-founded tree and apply
the construction from (i). We claim that the well-ordered decomposition thus
produced has adhesion < k.

Indeed, let / € L. If [ has a predecessor then the required condition fol-
lows easily from the fact that (7', W) has width < k. If / does not have a
precedessor then (since A < w) either there exist // </ and a < 4 such that
I" € L* forevery [” € L with I’ <[” <[, or [ = m. In the former case
we apply the induction hypothesis, and in the latter case the required condition
follows from the fact that (7, W) has adhesion <x. O

Finally, we mention without proof a variant of (3.15) and (3.16). A tree T is
called T,-balanced if for every edge e of T, both components of 7\e contain
a subtree isomorphic to a subdivision of T, .

(4.7) Let k be an infinite cardinal and let o be an escape in a graph G of order
k. Then o is major if and only if the tree T in (3.15) can be chosen to be
T,.-balanced.

5. ESCAPES AND ENDS

Our objective here is to discuss a natural partial order of the set of escapes of
order k, and when k = R, to describe a connection with the “ends” of G . If
k 1s a cardinal, let 0(X) = @ for all X € [V(G)]<*; we call o the non-escape
in G of order k. It is convenient to augment the set of all escapes of order
kK by the non-escape of order x ; thus, we are now really concerned with the
functions o satisfying the first two escape axioms. Let us call such a function
o a strategy (of order k). (Thus, the only strategy of order k which is not an
escape is the non-escape of order x.)
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There is a natural partial ordering of strategies. If o, o, are strategies of
order k in G, we say that o, broadens o, if 0,(X) C o(X) for all X €
[V(G)]<*.

(5.1) The broadening partial ordering of strategies of order x is a lattice.
Proof. If X is a set of strategies of order x, we define

oX)=Jdx)  XelV@I.
o'€X
Then o is a strategy, and is the join of the elements of X. Since there is also
a zero element (namely, the non-escape), it follows that the partial ordering is
a lattice. O

If Ry and R, are rays in a graph G, we say they are parallel if for every
finite X C V(G), the unique X-flap C with CNV(R;) infinite also has infinite
intersection with V' (R,). This is an equivalence relation, and its equivalence
classes are called the ends of G. This concept was introduced by Halin [3].

If E is an end, let us define o(X) to be the unique X-flap C with CNV(R)
infinite for some (and hence every) R € E, for each finite X C V(G). This
function ¢ 1is an escape of order X, and is a minimal nonzero element (that
is, atom) of the lattice of (5.1) for k = Ry . For any escape ¢ of order Xy, we
denote by &(o) the set of all ends E such that ¢ broadens the corresponding
atom. Thus, an end E belongs to & (o) if and only if some member of E is
g-balanced. In general, a set # of ends is closed if for eachend E ¢ F there
is a finite X C V(G) and an X-flap C such that CNV(R) is infinite for some
Re E,and CNV(R) is finite for every member R of every end in % . It is
easily verified that the collection of all closed sets of ends forms a topology on
the set of ends.

(5.2) If o is a strategy of order ¥y in G, then & (a) is closed.

Proof. Suppose that E ¢ & (o). Then o does not broaden the corresponding
atom, and so there is some finite X C V(G) such that no X-flap in g(X) has
infinite intersection with any member of E . Choose an X-flap C € o(X) such
that C N V(R) is infinite for some R € E; then C N V(R) is finite for each
member R of each end in & (o) since C ¢ g(X), and so & (o) is closed. O

(5.3) If & is a closed set of ends, then there is a strategy a of order Ry such
that &(o) = F .

Proof. Let o be the join of the atoms corresponding to the members of .7 .
Then o is a strategy of order Ry, and ¥ C &(0); it remains to prove equality.
Let E be an end not in % . Since .# is closed there is a finite X C V' (G) and
an X-flap C such that CNV(R) is infinite for some Re€ E,and CNV(R) is
finite for every member R of every end in .# . By definition of ¢, C € a(X),
and so £ ¢ &(0), as required. O

(5.4) If 01, 0, are different strategies of order X, then & (a,) # & (0,).

Proof. Let X C V(G) be finite with g;(X) # 02(X). By symmetry, we may
assume that there is an X-flap C C a(X) with C ¢ a,(X). By (3.14), there
is a ag;-balanced ray R with V(R) C C. Let E be the end with R € E. Then
E € &(ay) since R is og;-balanced, and E ¢ &(0;) since C ¢ g2(X). Thus
&(o1)#&(g2). O
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From (5.2), (5.3), (5.4) we deduce

(5.5) The function & is a bijection between the set of all strategies of order R
and the set of all closed sets of ends.

Consequently, every strategy of order Ry is a join of atoms. (This is also
implied by (3.15).)
As a corollary of (3.15) and (5.3) we deduce

(5.6) Let F be a closed set of ends of a connected graph G. Then there is a
subgraph T of G which is a tree, such that for each finite X C V(G) and every
X-flap C, C includes a ray of T if and only if C includes some member of
some end in & .

In particular, if we let .# be the set of all ends, we deduce

(5.7) For every connected graph G there is a spanning tree T such that for every
finite X C V(G) and every X-flap C, C includes a ray of T if and only if C
includes a ray of G.

This is a weak form of an old conjecture of Halin [3], which we have recently
shown to be false [7]; the following.

(5.8) Conjecture. For every connected graph G there is a spanning tree 7T
such that for each end E of G there is exactly one end F of 7 with F C E.

6. VARIATIONS OF THE GAME

In this section we investigate what happens to the cops-and-robber game when
the robber is invisible. This makes it no longer a full knowledge game, and
luck now plays a role. We are concerned with—in which graphs can the cops
guarantee to capture a lucky, invisible robber? Another way to view this game,
suggested by the referee, is: the cops are required to submit the sequence of cop
moves in advance, and the robber will gain knowledge of this sequence before
the game begins. Can the robber use this information to survive infinitely long,
or can the cop search sequence be constructed so that the robber will be captured
at some finite step no matter what he does?

Let us state the game more precisely. Let G be a graph, and let ¥ be a
cardinal. We say that < k cops can blindly search the graph G if there exists
a sequence @ = Xy, Xi, ... of subsets of V(G) such that

(1) |Xi] <k forevery i >0,
(i1) for every i >0, either X; C X;4; or X;;; C X;, and
(ii1) there is no sequence Ry, R;, ... of (nonempty) subsets of V' (G) such
that R; is an X;-flap and R,NR;;, # @ forevery i >0.

It is shown in [1] that < k cops can blindly search a finite graph G if and only
if G has “path-width” < k—2. To state a result for infinite graphs we need the
following definition. Let (7", W) be a tree-decomposition of a graph G, and
let to € V(T). We call the triple (T, ty, W) a rooted tree-decomposition of
G. Let k be a cardinal. We say that a rooted tree-decomposition (T, ty, W)
of a graph G is < k narrow if ||J{W;: dist(¢, ty) = n}| < k for every integer
n>0.
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(6.1) Let G be a graph, and let x be a cardinal. Then < k cops can blindly
search G if and only if G admits a < k narrow rooted tree-decomposition
(T, to, W) such that T is rayless.

For if G admits a < k narrow rayless rooted tree-decomposition, then it is
easy to show that < x cops can blindly search G'. Conversely, it can be shown
that if < k cops can blindly search G, then they can do so “monotonely”, that
is, the sequence Xy, X;,... satisfies X;N X, C X; forall k > j>i>0
(compare to (2.3) of [1]). From this the required tree-decomposition is easy to
obtain. We omit further details.

For x infinite we deduce the following two corollaries.

(6.2) Let k be a cardinal with cf(k) = w. Then < k cops can blindly search
G ifand only if |V(G)| <k and < Kk cops can search G .

(6.3) Let k be a cardinal with cf(k) > w. Then < k cops can blindly search
G ifand only if |V(G)| < k.

There is also a transfinite version of this searching game, as follows. A blind
search in G is a transfinite sequence (X,).<: of subsets of V(G), where A
is an ordinal, such that X, = @, for every ordinal a either X, C X, or
Xot+1 € X,, and X, = nﬂ<a Uﬂ<y<a X, for every limit ordinal a < 4. Let
be a cardinal. We say that a blind search (X,),<; has width <k if |X,| <k
for every a <A. If X = (X,).<s is a blind search, we define By(X) = V(G),
and for a > 0 let B,(X) be the set of all v € V' (G) such that there is a path
in G between v and a vertex in ﬂﬂ <aUpcyca By(X) avoiding X,. We say
that X is successful if B;(X) = @, and we say that < k cops can transfinitely
blindly search the graph if there exists a successful blind search of width < « .

(6.4) Let k be a cardinal. Then < k cops can transfinitely blindly search G if
and only if G admits a well-ordered decomposition of width < k .

The proof is similar to the proof of (6.1). Again, we omit the details. For
infinite ¥ we deduce from (1.6)

(6.5) Let k be an infinite cardinal. Then < k cops can transfinitely blindly
search a graph G if and only if G contains no subgraph isomorphic to a subdi-
vision of T, .

The reader may perhaps ask what happens to the regular cops-and-robber
game if the cops are allowed to search transfinitely. This game turned out to
be useful in characterizing graphs with no minor isomorphic to the complete
graph of cardinality x . See [6].

7. UNDECIDABLE STRUCTURE THEOREM

One might expect a structure theorem of the form “a graph contains no minor
isomorphic to Ty, if and only if it admits a well-founded tree-decomposition
(T, W) of width < X, where T contains no minor isomorphic to 7y, .” Such
a theorem indeed exists, but only under an additional set theoretic assumption.
We now explain this fact.

Let T be a well-founded tree. We say that a set K C V(T) is convex if for
every t,t',t”" € V(T) such that ¢ € T[¢, t"], t,t” € K implies ¢/ € K. Let
{Ka}aen be acollection of disjoint convex subsets of V(T'); we define K, < K
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if t<t forsome t€ K, and ¢’ € Kg. Then ({Ka}ueca, <) is a well-founded
tree, called a minor of T . Since Ty, can be regarded as a well-founded tree, the
statement “ 7T has a minor isomorphic to Ty, ” is well defined. The following
is implied by (1.3).

(7.1) Let G be a graph. If G contains no minor isomorphic to Ty, , then
G admits a well-founded tree-decomposition (T , W) of width < X, where T
contains no minor isomorphic to Ty, .

The question is about the converse. A well-founded tree T is called a Suslin
tree, if T is uncountable, but every chain and every antichain in 7 is countable.
The Suslin hypothesis is the following statement:

(SH) No Suslin tree exists.

It is known that (SH) is independent of ZFC, and even of ZFC + CH,
or ZFC +-CH . It turns out that the converse to (7.1) depends on (SH), as
follows.

(7.2) The converse to (7.1) holds if and only if (SH) is true.

Indeed, the comparability graph of a Suslin tree admits such a tree-decompo-
sition, but contains a minor isomorphic to Ty, . We omit further details.
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