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Abstract

There is a natural way of assigning ordinal-valued functions to certain Ramsey-type
theorems. In particular, they can be regarded as an extension of the classical notion of
Ramsey numbers. The purpose of this paper is to obtain an estimate of these functions

for the Nash-Williams’ partition theorem.




0. Motivation

This paper is a continuation of our earlier work [KT]. The motivation for [KT] was
twofold. We wanted to generalize “Ramsey numbers” and thus obtain means to quanti-
tatively measure various infinitary Ramsey type results, and by doing so we wanted to
capture metamathematical phenomena such as the unprovability of certain results in spec-
ified logical systems. In this section we further explain these two ideas. The rest of the

paper is independent of this section.

Let us consider the following two statements. (Our notation is standard and is ex-

plained in the next section.)

(0.0) For every coloring r : [w]*> — {1,2} there exists an infinite set A C w such that

r|[A]? is constant.

(0.1) For every coloring r : [w]* — {1,2} there exists an infinite set B C w such that

r|[B]* is constant.

Is there any reason to believe that (0.1) is “harder” or “stronger” than (0.0)? In [KT]
we have defined “Ramsey numbers” corresponding to these statements and showed that
the “Ramsey number” of (0.0) is smaller than the “Ramsey number” of (0.1). But what
are the “Ramsey numbers”? To answer this question we first formulate a nonstandard

definition of the notion of a Ramsey number.

Let U be an infinite set. By U< we denote the set of all nonempty finite sequences
of elements of U. Let T C U<“. We define the type of T to be the least ordinal v such
that there exists a mapping f : T — ~ with the property that if a,b € T' and a is a strict
initial segment of b then f(a) > f(b). The type is undefined if no such ordinal ~ exists.

Let r: [U]® — {1,...,k} be a coloring, and let ¢;,...,¢; be natural numbers. We
say that a sequence ¢ € U<¥ is ¢-monochromatic if r(M) = ¢ for every n-element
set M consisting of terms of a. Let A; be the set of all 7-monochromatic sequences

(t=1,...,k),and let A= (A1,...,4%). H g=1(g1,...,9%) is a k-tuple of functions g; :
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U<¥ - Ord (:=1,...,k) wesay that a € U< is (4, g)-bad (written a € Bad(4,g))

if the following condition is satisfied:
(0.3) If b1,b € A; and by is a strict initial segment of by ,then g;(b1) > gi(b2).
Let g% : U<¥ — {0,...,¢; — 1} be defined by
¢%(a) = max(0,¢; — length of a),

andlet § = (¢*,...,9%). Notice that a is (4,7)-bad if and only if every i -monochromatic
subseqeunce of a haslength < ¢; forall : =1,... k. Now it can be verified (see [KT]) that
the supremum of the types of all Bad (4, g) (taken over all colorings r : [U]* — {1,...,k}
and all k-tuples of functions ¢ = (g1,...,g%) with ¢; : U<Y — {0,...,4; — 1}) is
R(n;ty,...,L) — 1, where R(n;¢y,...,4;) stands for the usual Ramsey number. (It

follows from Ramsey’s theorem that the types are well-defined.)

The generalization is now obvious. If 41, ...,79% areordinals, we define the R-function
pn(71,---,7n) as the supremum of the types of Bad(A,g) over all colorings r : [U]" —
{1,...,k} and all k-tuples of functions g = (g1,...,9%) with g; : U<¥ — ;. So in
particular, if ~1,...,7% are all finite, then pn(y1,...,7) = R(n;v1,...,7%) — 1. The

following is a corollary of one of the results of [KT].

Theorem 0.4:
_wk .wk
w (n —2) times < pp (w,...,w) < w (n — 1) times
e’
k times

In the definition of the R-function we did not use the fact that A; consisted of

i -monochromatic sequences. All that was needed was that
(i) if b€ A; and a is an initial segment of b, then a € A;, and
(i) the type of Bad (4, g) is well-defined for all A and g¢.

Therefore we may define (and examine) the R-functions corresponding to other Ramsey

type results for which (ii) is satisfied. This was done in [KT] for the Erdos-Szekeres
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Theorem and its generalization and for the Canonical Ramsey Theorem of Erdos and
Rado, and for well-partially-ordered sets. In this paper we investigate the Nash-Williams’
Partition Theorem. The upper bound is reasonably easy to obtain, but it is the lower

bound which makes the analysis of the Nash-Williams’ Theorem so complicated.

To understand the connection with logic let us consider the following concept. Let
@ be a partially ordered set with a partial ordering <. A (finite or infinite) sequence
q1,92,... of elements of @ is called good if there are indices ¢, such that ¢ < j and
¢i < qj, and is called bad otherwise. The set @ is called well-partially-ordered (wpo)
if every bad sequence of elements of ) is finite. If @) is wpo we define the type of @,
denoted by <q, to be the least ordinal 4 for which there exists a mapping f from the

set of all nonempty bad sequences of elements of ¢ into 4 such that

f(q17"'7qn) >f(q17"'7qn+1)

for every bad sequence (gi,...,¢n+1)- It is worth noting that if we define B to be the set
of all sequences (g1,92,-..,qn) € Q<Y with ¢; < g2 <--- < ¢n, and O to be the constant
mapping which is zero everywhere then a sequence (qi,...,¢,) is bad if and only if it is
((B),0)-bad in the sense defined earlier. Therefore the types of well-partially-ordered sets

are a special case of our more general concept of an R-function.

Harvey Friedman [F| discovered that by “miniaturizing” the assertion “@ is wpo”
for certain wpo sets () one can obtain statements of finite mathematics unprovable in
relatively strong fragments of second order arithmetic. Here is an example of such a

miniaturization.

(0.5) [F] For any positive ¢, there exists a positive integer n = n(c) such that the
following holds. If Ty,T3,...,T, is a finite sequence of finite trees with |V (T})| <
¢+t for all : < n, then there exist indices z and j such that : <j <n and T;

is homeomorphically embeddable into T} .

That (0.5) is true can be easily derived from a theorem of Kruskal [K] which states that
the set of finite trees with the partial ordering “to be homeomorphically embeddable into”
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is well-partially-ordered (see e.g.[SI]). What is not so easy is to establish the unprovability

part. The way this is usually done is by

(i) proving that (0.5) implies that a miniaturization of the statement that a specified

ordinal « is well-ordered, and
(ii) applying a result of logic that the above statement is unprovable.

The combinatorial content is now extracted in the proof of (i) (see [SI] for details). It turns
out that there is a connection between the strength of (0.5) and the type of the underlying
wpo set. Therefore the type of a wpo set is a combinatorial invariant which has something

to say about metamathematics of the well-partially-ordered set.

Thus our second motivation was to define the R-functions in such a way that this
connection with logic will be preserved. And indeed, for example, the Parris-Harrington
principle [PH] can be looked at as a finite miniaturization of Theorem 0.4. Since the lower

bound in 0.4 tends to gy as n — oo, this is in accordance with the result of [PH], because

€o 1s the proof-theoretic ordinal of Peano arithmetic.

In this paper we show an analogous result for the Nash-Williams’ Partition Theorem,
which implies that here the “critical” ordinal is I'g. The ordinal I’y is an ordinal much

bigger than €g , defined as follows. Let ¢o(8) = w” and for o > 0 let
¢a(B) = Bth common fixed point of all pu(a’ < a).

Notice that ¢1(0) =¢€o. Now I'g is the least ordinal with the property that if o, 8 < T
then ¢q(8) < Ty.

In [FAS] Friedman, McAloon and Simpson derived from Nash-Williams’ Theorem
a statement of finite mathematics unprovable in a theory called ATR(, which is much
stronger than Peano arithmetic. The proof-theoretic ordinal of ATR, is I'y and so the
relation of the main theorem of this paper to [FAS] is the same as the relation of Theorem

0.4 to [PH].

Finally, let us say explicitly that we do not derive any unprovability results. We

merely concentrate on combinatorial computation of the “ R-functions.”
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1. Introduction

1.1 Conventions and Notation: Let { be an infinite set. The symbols Q<% [Q]<¥, Q¥
Q™ [Q]™ denote the sets of non-empty finite sequences in 2, the set of non-empty finite
subsets of €2, the set of infinite sequences in 2, the Cartesian product of n copies of {2
and the set of subsets of Q of cardinality n, respectively. If a € 2<% then [a| is the
length of a. For a = (a1,as,...),b = (b1,b2,...) € Q<Y UQ¥ we write a C b and say that
a is a subsequence of b if there are j; < j2 < ... such that (a1,a2,...) = (b;,,bj,,...) and
a<b if a# b and there is an n such that a =(a1,...,an) = (b1,...,bs). We shall also
write a <bif a=b or a<b. For a € Q<Y weput | a={be Q< |bC a}. Put, also,
@ = {ai,...,a,} for a = (ag,...,a,). For TC Q<% put | T=U{la|a€eT},T=
{a | @ € T}. Further, it will be convenient to denote the :th element of an arbitrary
sequence a € Q<% by a;. For a = (ai1,...,an),b = (b1,...,bm) € Q<¥,a.b denotes the
concatenation (ai,...,an,b1,...,b0m). An element z € Q<¥ is often identified with the
one-element sequence (z). For a function f: X — Y and for M C X the restriction
of f to M is denoted by f | M. The image of a mapping f is denoted by Imf. The
disjoint union of sets X,Y istheset X UY = (X x {0})U(Y x {1}). As a rule, however,
in X UY, X x {0} is identified with X and Y x {1} is identified with Y. The class of
all ordinals is denoted by Ord. For a set X C Ord we put

MX =sup{a+1|ae€ X}

For ordinal numbers «,f we define their natural sum by 0 @ o = a ® 0 = a, and, for

a, >0,
a® B =min{xk € Ord|(Va' < a)(Vf' < B)c >a' ®B & k> a® '}

, For a set X,|X| denotes the cardinality of X . We define a+f as the type of a followed
by B and af as the type of a x § with the lexocographical ordering

(z,y)<(%,t) if z<z or (z=2 & y<t).

7




1.2. Definition. A subset S C [Q]<¥ is called a Sperner system in Q if
(Va,b € S)(a Cb— a=0)

We now introduce the Nash-Williams’ Partition Theorem, which is the central object of
our study.

1.3. Theorem. (The Nash-Williams’ Partition Theorem): For any Sperner system S C
[Q]<¥ and any partition r: S — {1,...,k} there exists an infinite subset Q' C Q such
that r | SN[Q']<¥ is constant. (see [NW]). O




1.4. The language of Ordinal Types in Ramsey Theory (see [KT]).

1.4.1. Definition. A treeis a couple (T, <) where T is a set and < is a partial ordering
on T such that for every ¢t € T the set {t' € T |t <t} is a finite linearly ordered set.
A tree (T, <) is said to be rayless if T contains no infinite subset linearly ordered by <.
Note that (2<%, <) is a tree. More generally, all subsets of Q<% will be regarded as trees

with this ordering. A character on a tree (T, <) is a function

¢:T — Ord

such that
(Vz,y € T)(z <y — o(z) > ¢(y))-

A tree (T,<) is rayless if and only if there is a character on (T,<). In that case, we

define the ordinal type v by

vr = min{y | there is a character ¢ : T — «}.

1.4.2. The Main Definition. A sheaf (in Q) is a subset A C Q<% such that (a €
A&b=<a)—be A. A k-sheafisa k-tuple of sheaves. By abuse of language, we identify

1-sheaves and sheaves. A k -system is a set of k-sheaves. A sheaf A is said to have the
Ramsey property if (Va € Q“)(Fb € Q¥)(b C a & (Ve < b)(c € A)). A k-sheaf (Ay,...Ax)
is said to have the Ramsey property if the sheaf A;U...U Ay does. A k-sysem R is said
to have the Ramsey property if each A € R does.

Let A = (Ay,...,Ar) be a k-sheaf. A (v1,...,v )-testing is a k-tuple ¢ =
(g1,---,9%) of functions g; : @<¥ — ;. A sequence a € Q<% is called (4,g)-bad if
each g; is a character on | a N A;. The subtree of Q<“ of all (A, g)-bad sequences will
be denoted by Bad (4, g).

The following is a result from [KT].

1.4.2.1. Proposition: A sheaf A in Q has the Ramsey property if and only if Bad (4, g)
is a rayless tree for all ordinals 71,...,7x < ||7 and every (m1,...,7%)-testing ¢. O
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If A has the Ramsey property we define the R-function ¢4 : Ord* — Ord by

a7, k) = sup{'yBad(A,g) |g isa (v1,...,7k)—testing}.

Similarly, for a k-system S which has the Ramsey property we define

es(1,---,1) = sup{palrn,---,v) | A € S}.

1.5. Definition of the  -functions.

Let £ > 1 be an integer, S be a Sperner system and r : S — {1,...,k} be a partition.
Define a k-sheaf AS™ = (AD7,... A?") by putting

AP ={a e Q< |Im (r|(Tans)) = {i}}

The Nash-Williams k -system Ry is defined by
Ri = {A%" | S is a Sperner system and r: .S — {1,...,k}}.

It follows from Theorem 1.3 that R has the Ramsey property. We put

¢(71>' .o 77’6) = 907110(717 . "77’6)'

1.6. Notation. Define functions

po(B) =w”

¢a(B) = the Bth common fixed — point of all o, o' <a, for a >0

o(a) = sup{p(f) |7 2 2 & (B+ 1" > a)

1.7. The Main Theorem. Let k£ > 2 be an integer, let ~1,...,v% be ordinals with
g <y <t (t=1,...,k), and let o =min{y,...,7x}. Then

g(a) <P(yiye M) L a1 @ ... @ i)

Proof follows from 2.4, 3.16 below. O
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2. Prelude. The Upper Bound

2.1. Let S be a Sperner system and let T C Q<% be a rayless sheaf with | T =T . We

define
Cr(S)={acTla¢g S and thereisa be Q<

such that a.b€ S and a.b€ T}
and c7(S) = vor(s) -

We remark that

(2.1.1) Cr(S) NS =0.

Let, for a € Ord,
Va7, 7k) = sup{yr|T israyless,| T =T, cr(S) < a and there exists

(Al,...,Ak)ERk such that YTna; < Vi (Z=1,,k‘)}

2.2. Lemma: Let k > 1 be an integer, let 7;,...4% beordinals and let a = min{vyy,...,v%}.
Then ®(v1,...,7) = Ya(V1,- -, VE) -
Proof: Wefirst prove ‘ >’. Let T be arayless sheaf with | T'= T and such that ¢r(S) < a
and yrna; <vi (e =1,...,k) for some A = (41,...,4r) € Ri. For i =1,...,k, let
gi : TN A; — «; be characters and let ¢ = (¢1,...,9x). Then T'C Bad(A4,g), and hence
v S $(y1,e M)

To prove ‘<’ let ¢ be a (v1,...,7%)-testing and let A = (A4,...,4z) € Rg. By
(2.1.1), Cgag(a,g)(S) C Bad(A,g) N A4; for every ¢ =1,...,k, and hence

€Bad (4,9)(5) S YBad (A, 9)na; S (1=1,...,k).
Therefore,

7Ba.d(A,g) S '¢'a('71, e ,Vk)' O

2.3. Theorem: Let k£ > 1 be an integer and let ~,...,7% be ordinals. Then
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(a) Po(y1,ee s M) SN D DYk

(b) For a >0 we have

'Qba(')/l,-",’)’k) < M{z;ba'("/)a('Yir'°’7k))"°¢a(’yla"'77;c)) I o < a77£ < 75}

Proof: To prove (a), observe that ¢7(S) =0 implies
52 {{z}|(z) €T}

Now (a) follows from Theorem 6.1 in [KT].

We prove (b) by induction. Let a and +,...,7% be ordinals and assume that (b)
holds for all o' and +i,...,7} such that either &' < a,or &' =a and 7] <71,...,7; <
~r and at least one of these inequalities is strict. Let T' be a rayless sheaf with | T'=1T,
and let AS" = (Als’r,...,Af’r) € Ri be such that Vrnas” <~ (¢=1,...,k) and
er(S) < a. We must estimate yp. Let z € Q andlet T, = {a € Q<% | (z).a € T}. Then
T, is a rayless sheaf with | T, = 7, and such that

(2.3.1) T, CT.
Let
S;y={me[Q]<“|z¢m and mU {z} € S}

and for m € S, , let r;(m) =r(mU {z}). It is easily seen that
(2.3.2) CT,:(Sz) < CT(S).

By (2.3.1),
{za|a € T,NAF™ NAP"}CTNAY for i=1,...,k,

Sz,a: S, S, . . ..
T, NA™NAYT CTNAYT for i#j, 4,j=1,...,k

Thus,
’YTznAfz,rznAf,r < vYi for 1 = 17. . .’k,
7T$nAfm””nAf” < for 1,7 =1,...,k.
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Since, obviously, ¢r qa,5:.=(S) < er(S) < «, it follows from the induction hypothesis
that
7TzﬂAfwﬂ'z S ¢a(71, o ,7;, “oe ’Yk)

for some v} < «;. By this, (2.3.2) and the induction hypothesis,
Y1, < "/’a’(@ba("/;,’ﬁ, s 77k)7 SRR 'Qba(')’l, <o 77’6—1,7;;)))
where o' = er,(S;). Since z was arbitrary, the result follows. O

2.4. Theorem: Let & > 1 be an integer, let 71,...,7x < ||t be ordinals and let

o =min{y1,...,7x}. Then we have

P15 7%) S Pa(n @ ... O ).

Proof: Observe that

wo(B) = B
0a(B) > M{pa(pa(B)) | & <a,f < B}.

Qur result now follows from 2.2 and 2.3. |
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3. Fugue

3.0. Outline of the proof. Let tp X denote the ordinal type of a well-ordered set X .

We are going to construct, for all ordinals «,<y, well-ordered sets T, (a) such that

(3.0.1) tpTp(a) > 2% for all >0

3.0.2) tpTs(tp T(a)) < tpT.(a) forall « >0 and all 4,6 >0 with vy > 6+ w,
¥ ¥ Y

(3.0.3) tpTy(a) <tpT(B) forall y>0 and 0 < a < B.

We are going to construct a Sperner system S, in T.(a), a coloring r, : S, — {0,1} and

an ((a+ 1)w?,(a+ 1).w?")-testing g, such that

(3.0.4) Dec T, (a) C Bad (4577, g,) U {0} .

(Here Dec X denotes the set of all decreasing sequences in X .)
We claim that

(3.0.5) ¢ (a) <tpT,.,(a) forall o >0 and all v > 2.

For let, for v € Ord, g, : Ord — Ord be the function defined by g¢,(a) =

From (3.0.1) — (3.0.3) we deduce
(3.0.6) go(a) >2° forall a >0
(3.0.7) g4(a) is a fixed point of gs for every é§ <~ and every a >0
(3.0.8) ¢g4(B) < g4(a) forall y>0 andall 0 <8 <.
Hence, g,(a) = ¢! () for all a,y >0 where

po(a) = 2%,

@' (a) is the a-th common fixed point of ¢, +' <y for v>0.
But ¢! (a)=¢,(a) forall @ >0 and v 2> 2. (3.0.5) follows.

Now condition (3.0.4) implies

(8.0.9) YDec T, (o) < P((a + Dw?, (a+ 1).w27) .

14
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(Recall that T,(a) is regarded as a tree under the relation =.) Assume, without loss of

generality,
(3.0.10) T.(a) CA.

Since obviously tpT,(a) = YpecT, (a)\{0}» (3.0.5) and (3.0.9) imply the desired lower
bound.
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3.1. The language of Category Theory

The concepts used here can be found in any elementary text-book of category theory,
e.g. [ML]. We shall assume that the reader knows the concepts of a category, functor and
natural transformation. For a category C, let Obj C' denote the class of objects of C' and
let Mor C' denote the class of morphisms of C'. For z,y € Obj C, C(z,y) denotes the
set of morphisms from z to y in C. In the sequel, we shall mostly use the category Set
of sets and mappings and the category W of linearly ordered sets and strictly monotone

mappings.

Let A be a partially ordered set (regarded as a category in the usual way, i.e. objects
are elements of A and, for z,y € A, A(z,y) =0 if 2 £ y and |A(z,y)| =1 otherwise),
let C' be an arbitrary category and let

F:A-C
be a functor. A colimit of F' is an object z € Obj C together with a bunch of morphisms
(pz € C(F(2),2) |z € Q)

such that, for a € Ay, z),
@20 F(a) =,

and whenever there is an object ¢t € Obj C' together with a bunch of morphisms
(%: € C(F(2),1) |z € A)

such that, for a € Ay, z),
P20 Fa) =1

then there is a unique ¢ € C(z,t) such that for each z € ObjA
"/)z =gop,;.
A partially ordered set A is called directed if

(Vz,y € Obj A)(Fz € Obj A (z <z & y < 2).
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A directed colimit is a colimit of a functor
F: AN C

where A is directed. We say that C has directed colimits if for each functor F: A — C

where A is directed there is a colimit.
3.1.1. Fact: The categories W, Set have directed colimits. a

Let G : C; — C2 be a functor. We say that G preserves directed colimits if for each
functor F : A — C; where A is directed and for each colimit (z,(¢, | z € A)) of
F(G(z),(G(yp:) | z € A)) is a colimit of GF.

3.1.2. Fact: The forgetful functor W : W — Set preserves directed colimits. O

3.1.3. Compositions. In this paper we shall generally denote compositions of morphisms
by “o” and compositions of functors by “-”. Let S:C — D, T : C — D be functors. A
natural transformation ¢ : S — T is a system of morphisms (¢, : Sz — Tz |z € Obj C)

such that for f € C(z,y) the following diagram commutes:

se 2, Sy
Pz l lSOy
Tz T 7y

It is common to write ¢ instead of ¢, ¢, if there is no danger of confusion. In natural
transformations, we have two kinds of compositions: Let first R : C — D,S : C — D,
T:C — D befunctors and let o : R — S, 7:S — T be natural transformations. The
vertical composition of ¢ and 7 is the natural transformation 7 oo : R — T given by
(Too); =Tg00;.

Let, on the other hand, S: C —- D, T:C —-D, S':D —- E, T':D - E
be functors and let 7 : S — T,7' : §' — T' be natural transformations. The horizontal
composition of 7 and 7' is the natural transformation 7'-7: (8" -S) — (T' - T) given

by (7' 7)s = T, 0 S'(7z). Note that, by naturality, we also have (7'-7), = T'(7;) 0 7g,
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(Proof: For any z,t € Obj D and any g € D(z,t),7,05'(9) =T'(g)o7.,. Put 2 = Sz,t =
Tz,g =1T4.)
Put, in particular, T' -7 = (Idp) - 7,7 - T = 7' - (Id7) . We see easily that (T"-7), =
T'(7z), (7' - T)g = T, . Thus, in general, 7' -7 =(T"-7)o(7'-S)=(7"-T)o (5 - 7).
We would like to warn the reader that some authors use the symbols o, in different

meanings.

3.2. The functors T3 : W — W and natural transformations «° : Id — Tp, x5 :
To — Tg,a < € Ord.

3.2.1. We first define T, on objects. Let a € ObjW. We define Tp(a) as the set

a]<¥ U a together with the ordering < given by the following conditions:
g g g g

(3.2.1.1) (Vr € a)(Vy € To(a))(z < {2}&(y <z or y > {z}))
(3.2.1.2) (Vr,y € To(a)\a)(z <y iff (y\z # 0 & (Vz € z\y)z < max(y\z))).

It is easily seen that conditions (3.2.1.1) and (3.2.1.2) indeed specify a unique linear or-

dering on Ty(a), whose restriction to o coincides with the original ordering on «. For
a,B € ObjW and ¢ € W(a, ) define Ty(p) by

To(e)z)=¢(z) for z€a

To(w)(m) = {¢(z) |z € m} for m e [a]<“.
(It is easy to check that To(¢p) is strictly increasing if ¢ is.) Now define «°,1d — T, by
(£%)a(z) _ (for z € a).
3.2.2. Now assume T, already defined. Put T.; = (T,)* (T2 stands for T'-T'). Put,

further, for g <7,
kYT = k7. kY = (.7 -T,)0 K"

kYt — T, - &7

v
fcz,""l = fq"'l 0 Kj.
Note that
(3.2.2.1) ' AR ARl
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3.2.3. Now assume T/, already defined for all 4’ < v where v is a limit ordinal. We

define T, as the colimit of the (commutative) diagram of functors

1

K
T0—°)T1—>...————+T7:—)...—>T,1u — .
\__/
’Y"
Ky

Let , also, xj be the colimit mappings arising from the system (nzl |7 <«) for B <.

Now define

~

¥ — B
KT =KgOK".

Observe that this definition does not depend on the choice of 8 < .

3.3. The “square” transformation Lg : T, — TgT,, pB,v € Ord

We shall define natural transformations ij : T, — TpT,, by transfinite induction on + in

the following way:

3.3.1. Put, for v < 3, Lg = ’C*ﬁr - K7

3.3.2.For v = f+1,put ¢f,, =Tp-x5"" . (Wehave 1y, : Ty =Tp-Tp — Tp-Tp-Tp =
TsTp+1)-

3.3.3. Let Lg be defined for v > #. Put L5+1 = Lg T,

3.3.3. Now let Lg, be already defined for all 4' < v where 7 is a limit ordinal. First note

that, by the naturality of L,ﬂY, , the following diagram commutes:

T‘Y' -k
T,YI -~ T’Y' . T’Y'

(3.3.3.1) L& LTy

Tﬁ T,yl Tﬂ};—fn‘Y Tﬁ T‘Y' T‘Y' .

Changing the notation, we get the commutative diagram (for v' > 8+ 1):

K+
T,yl 1—') T‘Y'+1
3.3.3.2 P 5
( ) l L'Y, l L'Y'+1
Tﬂn7:+1
-

TﬁT,yl — TﬂT,YI +1-
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This allows us to define Lg : T, — T3T, as the colimit mapping of a (by induction,

commutative) diagram

&7,
—_— T’Y' L) T,Yll e
N v
Ts-k1)odf TsT Ts - k)02
(.3 K/'y’) [”y’ Bt~ (ﬂ K’y” [’7”'

The reader may feel that the restriction 4' > 8+ 1 in diagram (3.3.3.2) violates the

beauty. Indeed, it is not necessary. For 4/ = § we observe that Lg = Kg+1 = Tﬂnﬂ, Lg+1 =

Tﬁ&g'*'l = Tg kP . For 4' < 3, we observe that

'+1 +1 ! 41 d
(Tﬂlﬁ?;, )o&ﬁ, Z(Tﬂﬁz, )o(n:f:, -n"):mf’/, -(K,z, okY)=

’
ﬂ/ . :“67 +1

— (B 7' +1 v+ _ B v +1
K —(/c,y,_H-fc )ox7, = .

,YI+1 0o K:,.Yl

Summing up our results, we get the following commutative diagram valid generally for

v <
K'Y:
T, -2 T,
(3.3.3.3) l Lg/ l Lg
Tﬁ IS’Y,

TyT, —3 T,T,.
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3.4. The total-image transformation tim.,
Denote by W the forgetful functor W : W — Set and by K : Set — Set the functor given

by
K(m) = [m]<¥,K(f) is the map induced by f.

Note that there is a natural transformation
U:K?— K,U(m) = Um,
called the union. We also have a natural transformation
S:1d - K given by S(z) = {z}
called the singleton. It holds that
Uo(K-S)=Idg =Uo(S-K).
We shall now define natural transformations
tim,: W-T, - K-W

to satisfy
timy o (W-K") =S5 -W.
3.4.1. Define timg by (timg)a(8) = {8} for B € a and (timg)e(m) = m else.

3.4.2. Now assume tim., already defined. To define tim.y;, put

(timyy :W-T,- T, > K-W)=(U-W)o (K- tim,) o (tim, - T)

3.4.3. Now assume that tim., has been already defined for all 4’ < v where v is a limit
ordinal. By the naturality of tim. , we have the following commutative diagrams (the
second one arises from the first one by change of notation):

WT. &7

WT./I —7—) WT,YI T‘Y'
tim. | 1 timy - Ty
KW — KWT,

KW-x7'
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WK‘Y:+1
WT, -2  WTypn

timvr 1 l tim,yl T‘Y'

kw Y5 kwr,.
Now since

UW o (K -tim,)o (KWk" ) = Idgw,
we get the following commutative diagrams:

ch'7:+1
W, -2 Wl

tim,y/ / l tim,y; T’Y'

Ktim_
kw ™ grxw & KwT,,

and consequently
7' +1

WT, -2 Wl
tim,yl \‘ / tim,yl+1
KW.

This allows us to define tim, as the limit mapping of the (by induction, commutative)

diagram
H
Wk?,
— WT.Y/ . WT,YH —

tim.,/ N < tim,yu
KW
(cf. Fact 3.1.2).
3.5. Sheaf functors
We first introduce a functor
Dec: W — Set

assigning to each linearly ordered set o the set of all finite strictly decreasing sequences in

a (including the empty sequence) and to each morphism f — a the appropriate induced
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mapping. Observe that Dec preserves directed colimits. For two functors Fy, Fy : W — Set
we shall write Fy C F, if there is a natural transformation ¢ : F; — F3 such that for
each o € ObjW,, is an inclusion mapping. Now assume that we are given functors
F, : W — Set, F, : W — W such that Fy C Dec F; and, moreover, for each o €
Obj W, Fi(a) C Dec Fy(a) is a sheaf in Obj F3(a). Then we call Fy an F, -sheaf functor
and write

F, 4 Dec F.

Now let A and B be T~ sheaf functors. A natural transformation A : A — B is called
(v, A) -regular, (v, € Ord), if the following conditions hold:

(35.1.)f a € W and a,b € A(a) with a < b then Aa X Ab. Also, (Vz € Aa)(Jy €
@)z € tim,(y).

(3.5.2.) Put, for o € ObjW and a € A(a),
t(a’) = {a'(:EO;' .. ,-Tk) I k Z 0 & A (a.(mo, e ,:L‘k_l)) = Aa}

Then, for each « € ObjW and a € A(v),
Yt(a) < A

(In particular, the left-hand side exists.)

(3.5.3) Let, under the notation of (3.5.2), a.(y) = ¢ € t(a) and (Aa).(z) 2 Ac. Then

there is a z € a.(y) such that = € tim,z.

(3.5.4) There is a natural transformation " : Dec — A such that the following diagram

commutes:

A £, Dec T,
SN /" Deck”
Dec
(3.5.5) Ao®Y=1Id.

23




3.6. Extension of a (0, \)-regular transformation Ay : Ag — Dec.

Let Ay «Dec Ty and let
g : Ay — Dec
be a (0,A)-regular transformation. We are going to construct T -sheaf functors 4. «
Dec T, and transformations
Ay : Ay — Dec
such that the following diagrams of functors and natural transformations may be completed

to commute:

Dec
VAWEYS N \gAWY
(3.61.) A,YI ———————— > A'Y"
| I
Dec 57:'
Dec T’Y' — Dec T‘Y”’
where 7' < 4" € Ord;
Dec T, 2 Ay
: A
b
! v
(362) Dec TﬂT,YI 2 A,BT‘y'
L DTy
\Y .
Dec T > Ay, — Dec

where $,v' € Ord, and ig, = Dec Lgl;

(3.6.3.)




where 4’ € Ord. Before preceeding further, let us show that starting with a (0, A) -regular

transformation A : Ag — Dec, we have (3.6.1) — (3.6.3) for v' = 0.

First note that (3.6.1) is trivial. In (3.6.3), the missing map is ®° (see (3.5.4), (3.5.5)).
In (3.6.2), the vertical missing map is Aox® and the diagonal one is %% 0 Ag. The upper
left square is commutative since Ag is a sheaf functor (note that ¢§ = Tyx?). The right
triangle follows from the computation Ao (720 Ng) = (Lo 0®?) o Ag = Ay (cf. (3.5.5)).
The middle triangle is the circumference of the following diagram, which is commutative

by (3.5.4) and the naturality of A, .

A Lo Dec 25 Ay
1 Agx® | Dec k®

AO To A-_T') Dec T()
0Lo

3.7. The Construction

Let A,, A, be already defined.

A7+1
~
r“ t \ \ —
o ~ Ay
' -
AT, A,
ﬂl AqTy ﬂl \
Dec T,? = Dec T4 Dec T, Dec

Let A,4; be the pullback of diagram (3.7.1). Let, further, A4 = Ay o_A_,f . Now (3.6.1)
and (3.6.3) for v =y +1 can be easily obtained by diagram-chasing (3.7.1) and (3.6.1),

(3.6.2), (3.6.3) for v' < «. For example, to get (3.6.1) with ' = 4,7" = v+ 1, consider
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the part

AT, A,

O/,
Dec T,

AT, N

of diagram (3.6.2) for 8 =+’ = . By the induction hypothesis, this diagram commutes.
By pulling-back, we obtain a mapping A, — A,41 which satisfies the requisite properties

(by 3.3.2 and the remaining parts of diagram (3.6.2)).

The crucial step in the induction is to prove (3.6.2) for v/ = y 4+ 1. We distinguish

two cases:

3.7.2 B < v. By virtue of 3.3.3 and (3.6.2) with 4" = v, we enjoy the following calculation

{valid up io restiictions via inclusion mappings):
Ayt | Ay = Dy OZ‘Y =0,0(8y Ty Aypr) =
= Ay o ((ByTyo(LpTyTyo0 i?/T'Y) | AyTy) | Ayi) =

= A‘H-l (o] AﬁT,H_]_ o ng., - A7+1 o) AﬂT.),_H_ o] 7:5_*_1.
3.7.3. 3 =~. We have the following commutative diagram

Ayes

T, =
]JCC X*L - AY"i - DQC Id . Dec
Aoy kY T~ - e
Dec Ty KY \;i De”v“x\ \;’Aﬁf
ec
g1 Apa Ty T Dec Ty
oy N T
\
\ AX"TY‘
\
v ,\J
Dec T, T, ]
Y AYTX‘




which proves the statement by 3.2.2 and 3.3.2. (The lower pentagon is the definition of
A,41 composed with T, the upper rhomboid is naturality of A.,4; and the upper right
triangle is (3.6.3) for v' =~v.)

In view of (3.6.1), A, and A, for v limits may be defined by passage to colimits.
(3.6.1), (3.6.2) and (3.6.3) for +' =« follow.

3.8. The Extension lemma: Let Ay < Dec To and let Ag : Ag — Dec be a (0,)-

regular transformation. Then A, <Dec T, and the transformation A, : Ay — Dec is
(7,A?") -regular.

Proof: The fact that A, is a sheaf functor is proved by an easy induction together with
(3.5.1). (3.5.4) and (3.5.5) follow from (3.6.3).

(3.5.3) follows from the definitions of A, and tim, by transfinite induction on ~.
For example, the non-limit step goes as follows: Assume the statement true for some
v € Ord. Now let a € Obj W,a € Ayti(a),a.(y) 2 ¢ € t(a),(Dyt10).(z) 2 Ayqic.
The last expression rewrites (A,(A,a)).(z) 2 A,(Ayc). By definition, we conclude that
A, (c) € t((A,(a)) and by (3.5.1), there is a § € T,,(«) such that

(3.8.1) Ay(a).(7) = Dy(o).

(By abuse of notation, we usually drop the indices indicating at what object a natural

transformation is applied. Here, A, stands for (Ay)r1 (a)-)

This, by the induction hypothesis, implies that
(3.8.2) (32 € Ay(a).(7)))z € tim,Z.
Also by the indution hypothesis and by (3.5.1), however, (3.8.1) implies that
(3.8.3) (37 € a.(y))Z € tim,Z.

By the definition of tim.+1, we conclude that z € tim,41%.
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We now turn to the proof of (3.5.2). We shall proceed by transfinite induction on «.
For the non-limit step, we need to realize that AT = (A?")? and to perform an easy

deliberation essentially analogous to the one demonstrated above in order to prove (3.5.3).

The essential difficulty is in the limit step. Let, thus, 4 be a limit ordinal and let for

all smaller values of v (3.5.2) hold true. Qur aim is to construct a character
x : t(a) — b
For b€ A,(a), choose a y(b) < v in such a way that
b€ (Dec k1)) Aye)()-

Now put
x(a.(zo,...,zx)) = )\27(”0) when k=0
= x'(i7)(azo...2x))  when k>0

(recall that zg = Dec L,’Hy) where
Xl . t(il(dl}o)(a)) —_ AZ'Y(amO)

is the character corresponding to the (by the induction hypothesis, (7(a:c0),)\27(“°))—
regular) transformation A.,,) applied at the object T,(a) of the category W. (This

means that we are considering the morphism A (4z4) : Ay(aze)(Ty(@)) — Dec(T,(w)).)

It remains to show that x is correctly defined and namely that
c € t(a) = ify”(‘“’") (c) € t(b)

where b = iz(a“) (a). In the rest of the proof, we shall write 4’ instead of vy(azo). We

will show that if, for some

i (c) € 4(b) = #(iY (a)),

we have
Ay (i7(a)) # Dy (57 (€))
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then we have
(3.8.4) A (a) # AL(c).
In effect, the choice of 4’ implies
iz'(a) € Im(Dec T./&” : Dec T/ (o) — Dec Ty T, (a))

(We have a € (Dec fcz,)A.Yr(a) since A, is a sheaf functor; by diagram (3.3.3.3), we
compute i:’;(a) € Im(i?r' o Dec ),) = Im(Dec(L,'YY' oY) = Im(Dec (Ty&], o L:ij)) =

Im(Dec(Ty (xJ, 0 7)) = Im Dec(T,k7).) Thus, by (3.6.2) and (3.6.3), we have
(3.8.5) (AyT,) il (a) = (Dec £7) 0 A(a).

In effect, by (3.6.2) we have

(3.8.6) Ay o (DyTy)oil (a) = Ay(a).

Putting ¢ (a) = Dec Ty x7(b), compute

(Dec k7)o Ay(a) = (Dec 7)o Ayo (AyT,)o0 z",;/(a) =

= (Dec k") o A, 0 (A, oDec Ty x¥(b)) = (by naturality)
= (Dec k7)o A, 0Dec 67 0 Ay(b) = (by (3.6.3))
= (Dec k7)o A (b) = (by naturality)

= Ay oDec Tyr7(b) =
= (Ay 7) 0 Z:; (a).

(Again, by abuse of notation, a general transformation is occasionally identified with its

specification to an object.)

Now let A(i7 (a))(z) 2 Ay (i1 (¢)). By (3.5.3), thereis a z € a.zo with

T € tim. Lzl(Z).
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Again, by diagram (3.3.3.3), we have qi(z) € Im(T, - k7). Thus, timvrq'(z) C Im &7

(by the naturality of tim.s ). Thus, for some 7 €

(3.8.7) z = K(T).

Compute:
Dy (e) = (by (3.86))
=Dy 0(AyTy)oid (¢) = (by (3.5.1))
= Ay o (Dy(iY (a) - (2) = (by (3.8.5))
= Ay o(((Dec £7) 0 Ay(a)) - (2)) = (by (3.8.7))
= Ay o (((Dec £7) Ay (a)) - £7(T)) =
= A, 0Dec k7(Ay(a) -T) = (by (3.6.3))
= A (a) - T.

This concludes the proof of (3.8.4). O

3.9. The Extension Construction: A combinatorial input.

In the sequel, we will be dealing with one particular set of T., -sheaf functors A, <Dec T,

and transformations A, : A, — Dec.
Let o € Obj W and a > b € To(a). Then a\b# §. Define é(a,b) € a as
max(a\b) if a,b € [a]<¥
a = if a€a

maxa if a€fa]<¥ & b€ a.

The following observations for a > b > ¢ € Ty(a) are in order:

(3.9.1) §(a,b) = 6(b,c) » a € [a]<Y & b=maxa
(3.9.2) é(a,c) = max(6(a,b), 6(b,c))

(3.9.3) bea— 6(ab)>b

(3.9.4) a€a—dbc)<a
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For a = (ag,...,as) € Dec Ty(a), put §° = §(a;,a;+1) and
8(a) = (8°,...,6" 1) if a, € [a]<¥
= (8%...,6" 1 a,) if a, €a.
Put, for o € Ob; W
Ao(a) = {a € Dec Ty(«) | §(a) € Dec(a)}
(Do)a =6 | Ao(a).

To make Ao a functor, we define for ¢ € W(a, §)

Ao(p)((ao, .-, an)) = (¢(ag),.-.,o(an)).

3.9.5. Fact: We have Ay <« DecTy. Moreover, Ay : Ay — Dec is a (0,2)-regular

transformation.

Proof: We easily verify (3.5.1) and the first sentence of the statement follows. Also (3.5.2)
is obvious. To see (3.5.3), note that §(a,bd) € timg(a). Concerning (3.5.4) and (3.5.5), we
observe that, for a = (ag,...,a,) € Dec a C Dec Tp(a), No(a) = a. O

At this point, we consider the sheaf functors A, <« Dec T,, and the (v, 22") -regular tran-
formations A, : A, — Dec defined in 3.6 and 3.7.
3.10. The Transformations §.,+v € Ord

Let Seq: W — Set be the functor assigning to a € Obj(W) the set of all finite sequences
in @ and to ¢ € Mor(W) the corresponding induced mapping. From 3.9, we have a

natural transformation

6 : Dec Ty — Seq.
We are now going to define natural transformations
-57 : Dec T, — Seq T,

in the following manner:
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3.10.1 &y = (Seq- k%) 0 8.
3.10.2. Let 37 be already defined. Let oo € Obj W and let a € Dec T, :(a).

We define §.+1(a) to be
(37 . T‘Y)(a’) if (37)Dec T,y(a)(a) ¢ Im(Dec(n”')ﬂ (0‘))

and

(SearT)84(8) # (By)pect, (@)(a) = Dec(s ™), a)(8)

3.10.3. As usual, for v limit we would like to define §., by passage to colimits. As usual,

this requires a commutative diagram of the form

Dec T, — Seq T,
(3.10.3.1) | Dec Kq'*_l | Seq &1’“
Dec T41 JAkE: Seq Ty41

However, using naturality of 6., and the fact that kIt = T,x" , we only get a commutative

diagram
5,
Dec T, — Seq T,
(31032) l Dec /4;1'*‘1 l Seq K,z'*'l
Dec T‘y-{—l % Seq T’Y+1

To obtain (3.10.3.1), we need show that, for a € Dec T,(a),
(3.10.3.3) (gv)Tq(a) o Dec Iﬁz+1 (a) = Dec(k")1, () () — (6,(b) = &,(a)).

This cannot be reached without some deeper insight into what the induction has done as

yet. Comparing 3.10.2 with 3.7, we obtain the following key results:
(3.104)  (5,(a) € Dec T,(a)) — (@ € Ay()) & 5,(a) = (Dec £7) Ay (a)),
(3.10.5) 8,0 (Dec £7) = (Seq £7) o (C: Dec — Seq),
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(this is a consequence of (3.10.4) and (3.6.3)) and
(3.10.6) | a Cb—8,(a) Cé,(b)

(this follows from (3.9.2) by transfinite induction).

Now to prove (3.10.3.3), note that by the very fact that (k)1 () is @ W-morphism,

we have

Im(Dec(&”)r, («)) C DecT, 14

Thus, the precise of (3.10.3.3) implies

(gv)Tq(Q)(Dec fcz"'l(a)) € Dec T41

and hence, by (3.10.4) and the naturality of A,

(310.7)  (By)ry(e(Dec £7(a)) = (Dec(kT)z, (@) D)1y oy (Dec £7(a)) =
= (Dec(£7))1, () (By)T, (a)(Dec Tyx7(a)) =
(Dec £7) A, (a) = (Dec /c7+1) Ay (a) =

= (Dec(K7) 1))

= Dec(£”) 1 (a) © (Dec k) A, (a).

Since Dec(kY)g (as well as (k7)g) is obviously injective for any 8 € Obj W (by the mere

fact that (x7)g is a W-morphism), we conclude that
b = (Dec k") A, (a) = §4(a)

(the last equality following from (3.10.4)). Now (3.10.3.3) follows from (3.10.5). The

induction is complete.

3.11. A partition
In the sequel, we shall identify Dec § with [B]<¥ via the obvious bijection (aq,...,a,)
{ao,. . .,an}.
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Define 9
Q. (a) = {(41,92,93,9) € Seq Ty(a) | 1 < g2 < g3 > ¢4}

Q%(a) = {(91,92,93,94) € Seq To() | q1 < g2 > g3 < qa}
Q%(a) = {(q1,92,43,94) € Seq To(@) | @1 < g2 > ¢3 > ¢4}
Q% () = {(q1,92,93,44) € Seq To(a) | q1 > g2 < g3 > ¢4}

Q>(a) = {(41,92,93,94) € Seq Ty(a) | ¢1 > g2 < g3 < qu}
5
Q+(a) = | J @4(e)
i=1
5,(a) = {a € Dec T, () | Ty(a) € Qy(a)}
Observe that 7 # 5 — Qi(a) N Q?'Y(oz) =0.
Next define a mapping 7., : S,(a) — {0,1} by
Ty(a)=0 if 6,(a)€Q with i<3
T(a)=1 i §é,(a)€ Q; with ¢ >3

It is quite clear that S, (a) is usually not a Sperner system. On the other hand, by (3.10.6)

we have
(3.11.1) (aCb & a,be S, (a))—Tyla) =T (b).

We shall put _ _
Sy(@) = {a € 5,(a) | (G )b ¢ By(a)}

Ty =Ty | Sy(a).

Now S,(a) is a Sperner system.

3.12. Some combinatorial properties of &

Choose an a = (ag,...,as) € Dec Ty(a) and let 6(a) = (go,...,qx) (it can be k = £ or
k=£—-1). Wecallan 2 € {0,...,k} separable (with respect to a) if one of the following

conditions holds:
(3.12.1) ¢; = a; (in particular, a; € a)
(3.12.2) 1 < £ and a;41 € [a]<¥.
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We shall need the following facts.

3.12.3. Let 0 < ¢y < iy < i3 < 14 < k. Assume, further, that i, is separable. Put

q = (4i, iz, 9is, 9is ) - Then we have

(3.12.3.1)

(3.12.3.2)

g € Q5(a) UQg(ar) — (3b € a)Fo(b) =0

7€ Qia)UQ3(a) — (Fb Ca)F(b) =1.

Proof: (3.9.2) allows us to construct b explicitly. Eight cases need to be distinguished:

(3.12.3.3)

(3.12.3.4)

(3.12.3.5)

(3.12.3.6)

(3.12.3.7)

(3.12.3.8)

(3.12.3.9)

q€ Qg(a) & aiy € [a]<w . Then put b= (a’imai1+17ai37ai3+17ai4+1) )

we have §(b) € Q%(a).

g€ Q%ia) & a;, € a. Since a € Dec Ty(a). Since a € Dec Ty(a),
we must have i4,—1 > i3 and ¢;,—1 > ¢;, . Putting b = (a;,, @i, 41, ¢iy—1, %),
we have 6(b) € Qi(a) U Q3(c).

q € Qg(a) & Ai, € [a]<“’ . Putting b = (ail,ai1+1,ai3,ai3+1,ai4+1) 5
we get 3(8) € Q3(a) U QY(a).-

q € Q(a) & a;, € a. Putting b = (a;,,ai,41,0,,0:,), we get
5(b) € Q5(a) U Q3().

qc Qg(a) & a;, € [a]<w . Putting b= (aiuaiz’ai2+1aai4aai4+1)a we
get 8(b) € Q5(a).

q € Q¢(a) & a;, € a. Putting b = (a;,,0a,,a:,41,0;,), We get
5(b) € Q3(a).

qe€ Qg(a) & ai, € [a]<w . Putting b= (aiuaizaai2+1aai4,ai4+1) , We
et 5(b) € Q4(e) U af(a).
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(3.12.3.10) q € Q3(a) & a;, € a. Putting b = (a;;,ai,,0i,+1,48,), we get
8(b) € Qb() - O

3.12.4. Let 0<ip <17 <...<1i, <k be all the separable indices. We have

(3.12.4.1) 20 <1 and é443 < i +2.

Moreover, we have

(3.12.4.2) (de41 = t¢ + 2) = (ai,41 € [0]<¥ & a;,,, € @)

Proof: This is obvious. O

3.12.5. Let 0 <t < s andlet ¢;, > ¢i,+1 > ¢;,, - Then we have ¢;, > ¢;,,, -

Proof: We distinguish two cases:

(3.12.5.1) i¢+1 = ¢ + 1. Then we have a;, 41, ai,+2 € [a]<¥. Apply (3.9.1).
(3.12.5.2) tt+1 = %; + 2. Then we have a;,42 € a,ai,41 € [a]<¥ (see 3.12.4.2).
By (3.9.1), again, we have g;, > ¢;, 41 - O

3.12.6. Let 0 <p<t<{ andlet ¢, < gp41 <...<q. Then

(3.12.6.1) {ap, apt1,--.,at-1} C [a]<¥.
(3.12.6.2) Ip < gpt1 < ...< gt
(31263) {qpa 9p+1y--- ,qt} g_: timo(ap)

Proof: (3.12.6.1) follows from the fact that a € Dec Tg(a). (3.12.6.2) is a consequence of
(3.9.1). (3.12.6.3) follows from (3.9.2): For p <1 <t —1,¢; = 6(a;,ai41) = 6(ap, ai41).

For i =t we either have ¢; = ¢;—1 or we can argue similarly. O

3.13. The sheaf functors AS (e € {0,1}) and (y,w?")-regular transformations

AE

Y
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3.13.1. Put
Ag(a):{aeDec To(a) lg(a):(qo,...,qk)&qo oo gi>q41 > ... 2 Q-2
for some 0<:<k—2}
A(l)(a)z{aeDech(oz)Ig(a)z(qo,...,qk)&qoz...Zqi<q,~+1 <...< gg—2
for some 0<:i<k—2}.

No doubt, by taking the proper action on mappings, A§ become sheaf functors.

3.13.2. The transformation AJ: AJ — Dec

For a given a € AY(a), choose the minimal ¢ € {0,...,k — 2} such that ¢ = k -2 or

g; > qi+1 - Let indices ¢; < ... < t5 be defined in the following way:

(3.13.2.1) iy =1
(3.13.2.2) For 1 <t < 8,441 € {84+ 1,2+ 2,...,k} is such that
Gip = Qig+1 =« -+ = Qi =1 > Qi gy
(3.13.2.3) No 1,41 satisfying the condition of (3.13.2.2) for ¢ = s exists.

Now define Ag(a) as

(Qiys---14:,) if ¢, €T

and

(9y5---,9i,_,) else

3.13.3. Lemma: A is (0,w)-regular.

Proof: (3.5.1) is obvious. (3.5.2) follows from (3.12.4), (3.12.5) and (3.12.6). To prove
(3.5.3), we have to distinguish three possibilities:

(3.13.3.1) Ala = 0. Then our statement follows from 3.12.6.
(3.13.3.2) ASa # 0 & g;, & a. Then the statement follows from g¢;, € timg a;,.
(3.13.3.3) Na # 0 & ¢;, € a. Extending the notation to ¢ compatibly, we

have by (3.9.1) ¢;,,, = ¢i,+1 € timo(c;,,,)-
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(3.5.4) and (3.5.5) are obvious. O

3.13.4. The transformation A} : A} — Dec

Let a € A}(a). Let indices 4; < ... <15 be defined in the following way:

(3.13.4.1) 11=0
(3.13.4.2) For 1 <t < s,i441 € {t¢ + 1,4 +2,...,k} is such that
iy = Qip+1 =« - Qip -1 > Qiyyy
(3.13.4.3) No 7,41 satisfying the condition of (3.13.4.2) for ¢t = s exists.

Now define Al(a) as

(¢iy,-+-,q,) if ¢, €Q

and

(¢iys---5qi,_,) else.

3.13.5. Lemma: A} is (0,w)-regular.

Proof: follows in a similar way as the proof of 3.13.3. Moreover, observe that a case

analogous to (3.13.3.1) does not occur. O

3.13.5. Now consider the sheaf functors AZ < Dec T, (¢ = 0,1) and (7,w?") -regular
transformations AZ : A — Dec constructed by the machinery of 3.6, 3.7. Observe that

by virtue of (3.9.2) and a transfinite induction, we have the following extra property:

3.13.6. Lemma: (Va € Af/(a))(Vc - A;(a)(ﬂb Ca)(be Ay(a) & A, (D) =c). O
We shall next return to the circumstances of Nash-Williams’ partition theorem. We shall
observe the identification imposed at the beginning of 3.11. Thus, for € € {0,1}, we have
sheaves

AZvT1 C SeqTy ().

Put A7 (a) = AZY™ N Dec T,(a). Clearly, by taking the appropriate action on map-

€

. —Sy, .
pings, A, ™ turns into a sheaf functor.
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3.14. The Inclusion Lemma: We have

—S.
A7 C A

Proof: We shall proceed by a transfinite induction on . First we shall handle the case
7v=0. Let a g AJ(a). As we can easily check, then there are 0 <43 <iz <23 < k—2
such that

(3.14.1) qi, > qi, < GQi-

By 3.12.4, thereisan i4 € {k—1,k} such that g¢;, isseparable. By (3.14.1), (¢i,,4:,, %5, %is) €
Qi(a) U Qi(a). Hence, by 3.12.3, there is a b C a with Fo(b) = 1.

Now let a ¢ A}(a). As we may easily check, then there are 0 <i4; < iz <13 <k —2
such that
(3.14.2) g5, < gip > Qis-
By 3.12.4, thereisan 14 € {k—1,%} such that ¢;, isseparable. By (3.14.2), (¢i,, ¢i,, %is, is) €
Q%(a) UQ3(a). Hence, by 3.12.3, there is a b C a with 7¢(b) =0.

Next we remark that the limit case is trivial, since both sides are obtained by passing

to colimits. Thus, the non-limit step remains.

Let the statement be true for a certain v € Ord. By definition, we have

AT () € AT (T ()

Thus, by the induction hypothesis,

ZeS,H.l sTy+1 (Ol) g A;(T'y(a))

Now we shall prove that for an a € Zf”l’r”l (o)

we have
(3.14.3) Af(a) € 4.7 (a) .
In effect, let, say, € = 0 (the case of € =1 is handled similarly). Should (3.14.3) be false,

then thereisa ¢ C Aﬁ’/(a) with

54(c) € Q4(@) U @%(a).
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By 3.13.6, there is a b C a with
AL (b)) =c.

By (3.10.4), we obtain
5,(8) = (Dec k), (o) )
Now by definition 3.10.2 (the second part), we get
8141(b) = (Seq k] ™1)(8,(c)) € (Seq £JT)(Q3(e) U Q3(@)) €
€ Q1(a) U QY4 (a).
We conclude 741(b) =1 which is a contradiction.

Thus, (3.14.3) is proved. By the induction hypothesis, we conclude that
A% (a) € A5(a),

implying a € A% ;(a) directly by the construction 3.7. O

3.15. Some computations

As yet, we did not assume that the argument a of Af(a), T,Y(a),Z?’r"’ (a) e.t.c. would be
an ordinal. Indeed, it was not even possible to restrict ourselves to working with ordinals.
Our construction was based on the categorial behaviour of W, which would substantially

change by restricting to ordinals: For example, we would lose directed colimits.

Yet, the case of a being an ordinal is the most interesting one. We shall consider it

throughout the rest of the paper. As before, we shall first make the assumption

(3.15.1) Q2 T,(a).

Note that, by (3.5.2), for any (v, A)-regular transformation A : A — Dec, we have (4

being considered a tree by the relation <)
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(3.15.2) Yoy S(@+1)- A+ 1

Indeed, let x : Dec(a) — a + 1 be a character (the summand 1 comes from the empty
sequence). Let, for each b € A(a), xs : t(b) — A denote the character whose existence is

stated by (8.5.2). Let, further, for a € A(a),
b(a) € A(a)
denote the sequence satisfying
bla) = a
Ab(a) = Aa
¢ < bla) = Ac # Aa.
Now define a character X : A(a) = (o +1).A+1 by
X(a) = (x(Aa).X) + Xpa)(a) if bla) <a
X(a) = (x(Aa) +1).A if b(a)=a.
(3.15.2) is proved.

Now by (3.13), (3.15.2) and ) & AS(«) we conclude

(3.15.3) Vi S (@+1) -0, (e=0,1),

and, by 3.14,

(3.15.4) < (a+1)-w?, (e=0,1).

’Y S,
A,V T NDecTy (o

Thus, there is an ((a + 1) -ww,(a +1) -wz")-testing g9 = (90,91) (recall that g, is a
character on A" N Dec T, ()) such that

(3.15.5) Dec T, (o) C Ba,d(Af”’T“' ,9) U {0},
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which is (3.0.4). From this, 1.4.2.1 and 1.3 we conclude that

(3'15‘6) Tpec Ty (a) < 1/)((01 + 1) .w2'7, (OA + 1) ) w2’7).

Now we show that T., satisfies (3.0.1)-(3.0.3). Condition (3.0.1) follows directly from the

definition of Ty(a). To prove (3.0.2), we first define a natural transformation

AZ : TﬂTﬂ—i—n — Tﬂ+n+1

for € Ord,n € w by induction on n. For n =0 let )\% : TgTp — Tpg+1 be the identity.

Is A% already defined, define /\Z+1 as the composition

n

Tptnt2 =

A5
TsT, —
TpT kY |
ALT,

TsTyr1

which is readily rephrased into

T,B K7 l

Ag“
Tﬂ T‘)’+1 —

A5 Tp4n
TgTpintr = TpTptnTptn —

Ts4nt1Tp+n

1 Tp4nsrs
(Tgtn+t1)?

For v = f +n, the naturality of A} yields a commutative diagram

T 41
L Ty k7
Ty Ty
| Tyqa w2

T’Y+ 2

T.y+ 1

+2
l ’93+1

T7+2 .

B+n+1
Btn

Since T obviously preserves directed colimits, we can pass to a colimit transformation

phte
Tﬂ Tﬂ.*.w i
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Assumed we have already defined a natural tranformation
py TgTy — T,
for some v > f + w, we also have a natural transformation

1
pyt = pITy : TpToyy — Typa.

The naturality of /,l,g yields a commutative diagram

T,T, =% T,
Tgr" | l &1"‘1
At
TgTyyr — Hyt2

allowing us to pass to colimits and define a transformation
(3.15.7) pp: TgTy — T, forany v 2B +w.

Recall, however, that morphisms in W are strictly monotone mappings. Thus, we conclude

that
(3158) YDec(Tp Ty () < TDec(T (c)) for a, :Ba’)/ € Ordy’)’ 2 /3 +w,

which is (3.0.2). To prove (3.0.3), we prove the following

3.15.9. Lemma: Let f C a € Obj W and let p € a. We have

(Vo € B)p> o) — (Vo € T(B))"(p) > o)

where T,(f) is considered a part of T,(a) via the identification T, (C).

Proof: An induction on . For 4 = 0, the statement is easily verified. On the other hand,
for « limit, we easily get it by passage to colimits. Thus, the non-limit step remains. Let,
thus, the statement be true for a certain 4 and let (Vo € f)p > o. Using the induction

hypothesis, we get
(Vo € T(B)R7(p) > o
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and
(Vo € T, T, (B) (K )aia)(K7(0)) > o

Now
(K1, 287 (p) = (&7 - £7)(p) = K7 (p),
proving the statement. ‘ O

Lemma 3.15.9 is summed up into

(31510) YDecT, (8) < YDecT, () for ,B <ae€ Ord,

which is (3.0.3). This completes the construction outlined in 3.0. We have proved

3.16. Theorem: For v > 2, a,v < |Q|*, we have

(e +Dw?™” (e + 1Dw?™) > ¢, (a). O

3.17. Remark: Defining ¢ by means of Strong R-functions (see [KT]), we could get
rid of the cardinality restriction on 2. Using the methods of [KT], one can prove that on

arguments < [T, the R-functions and the strong R-functions for the Nash-Williams’

k -system coincide.
4. Concluding Remarks

4.1. Restricting ourselves (say) to two colours, we may define the (classical) Ramsey

number R,(sg,s1) as the minimal number K such that for each mapping

r: (K) - 2
n
thereis an X C K and an ¢ € 2 such that

|X|=s; and r~1(i) D (X>

mn

The existence of the numbers R, (so,s1) was first proved by Ramsey [R]. The first attempt
to find an explicit upper bound was in Skolem’s paper [Sk]. Roughly, Ramsey’s and

Skolem’s methods lead to the following recursive upper bound:

(411) Rn(So,Sl) S Rn-—-l(Rn(SO — 1, 81), Rn(SO, 81 — 1))
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In other words, we obtain an upper estimate by a function Ay, (so,s1) satisfying

(4.1.2) Ai(s0,81) =89+ 51— 1
(413) An(SO,Sl) = An_l(An(S() - 1,81),An(30,81 - 1))

This is an example of an Ackermann function (function growing faster then any primitively

recursive function).

Later, Erdos and Rado found a better upper bound (see [ER]). This upper bound can

be expressed as a “tower function” (iterated exponentiation (see [GRS], Chapter 4).

The results in our Section 2 indicate that the ordinal numbers %4(y0,71) may be
regarded as generalizations of the numbers Ry(sg,s1), where n,sq,s; become ordinals.
(More exactly, ¥a(70,71) corresponds to Rn(so + 1,51 +1) —1.) Indeed, Theorem 2.2 is
a precise analogy of the estimate (4.1.1). Also, the function ¢q(y0 @ 1) is an analogy of

the Ackermann function A,(so,s1). Indeed, we have, e.g.,

Pat+1(7) = sup{pa(patr1(7)) | n Ew,¥' < 7}

which is an analogy of (4.1.3).
What is interesting and surprising is that an analogy of Erd6és and Rado’s stronger

upper bound [ER] does not hold. Instead, we have shown that asymptotically, in the range

of countable ordinals, the Ramsey-Skolem’s upper bound is quite good.

We would also like to remark that in order to obtain our lower bound, we did use the

classical Erdds-Hajnal’s stepping-up lemma (see [GRS], Chapter 4) as the first step.

4.2. Finally, we would like to make a short remark on the use of category theory in this
paper. As the reader might have noticed, we did not use any actual results in category
theory except a few elementary observations about the categories W, Set. What is then

the purpose of introducing all that “abstract nonsense”?

We feel that it is the same as in the majority of other fields of mathematics: category

theory is a very convenient language.
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Recall that in order to make any achievement at all (a hyper-exponential lower bound),
we needed to construct T, (a). While T,,(a) can be still plausibly described as (T )2" (a),
to define T,(a), we need to identify T,(a) with a part of T,41(a). The problem is
that the identification can be made in many equally natural ways. The two coming up
immediately are via T,x" and «"-T,. Note that they actually are different: for example,
Ti(a) consists of a, two copies of [@]<“ and one copy of [[a]<¥“]<“. The two mappings
Tox®, k°Ty both send o to a, but make a difference in the matter as to which of its copies
to send [a]<“. Naturally, this has an impact on the ordering ... . Of course, we could
define T.(a) in one blow as an appropriate set of sequences and introduce some peculiar
ordering. Although we could carry out the whole proof this way, we would be introducing

a lot more information than what we are actually using.

Thus, in the language of a computer programmer, we are using category theory as
a data structure to keep exactly the amount of information we are using each time. Of
course, as a computer programmer would understand, this requires some extra work on
updating our data structure even through the steps where it does not seem necessary. This

is exactly the meaning of our auxillary diagram-chasing lemmas.
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