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There is a big gap between the infinite Ramsey theorem w — (w)? and its finite
version

R(n;@l,. .. ,Ek) — (Zl,. ..,ek)z.

The finite Ramsey theorem is much finer. In this paper we fill in the gap by
defining “Ramsey numbers R(n;v1,...,7;)” for arbitrary ordinals 74, ...,vk;
these generalized Ramsey numbers are again ordinals, and their estimate is
a quantitative strengthening of the infinite Ramsey theorem. Actually, this is
just a special case of our general definition of “Ramsey numbers” which is
based on an axiomatic approach. The axioms themselves imply some estimates
and other facts. To obtain sharper results, however, we have to consider more
concrete situations. Besides the classical one already mentioned we investigate
also the Canonical Ramsey Theorem, the Erdés—Szekeres theorem on monotone
sequences and the well-partial-ordering (wpo) theory. In the last case, the
Ramsey numbers generalize the so—caled types of wpo sets, a concept already
studied in a great detail.

The Ramsey numbers are also closely connected with independence re-
sults in finite combinatorics. This fact has been already known for the types
of wpo sets. The existence of “R(n;w,...,w)” implies the Paris-Harrington
modification of Ramsey theorem. As one might expect from unprovability of
this theorem in PA, it holds
im R(n;w,...,w) = g.
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Finally, we should remark that our approach is different from ordinal Ramsey
theorems (like e.g. w? — (w?,n)).
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1. Introduction

The well-known Finite Ramsey Theorem says that, given natural numbers
n,k,l1,... L, there is a number R(n;¢1,...,¢;), called the Ramsey num-
ber, with the following property. If r is a coloring of n—element subsets of
{1,..., N} by k colors (i.e. 7 : [{1,...,N}|™ — {1,...,k}) such that every set
E C {1,...,N} whose all n—subsets are colored 4, has at most ¢; elements,
then N < R(n;(y,...,£;). The infinite Ramsey theorem (i.e. w — (w)3) gives
no such number, it simply says that every infinite sequence contains an infi-
nite homogeneous subsequence without indicating how sparse the homogeneous
subsequences are. We propose a way to measure this sparsity based on a gene-
ralization of the notion of a Ramsey number. We refer to (Graham, Rothschild,
Spencer 1980) or (NeSetfil 1987) for an exposition of Ramsey theory.

Our results are motivated by the well-partial-ordering theory, so let us
start by recalling its rudiments. Let () be a partially ordered set. A sequence
q1,42,- .. (finite or not) of elements of Q is called a good if there are indices
i,j such that ¢ < j and ¢; < g;, and is called bad otherwise. The set of all bad
sequences of elements of () is denoted by Bad(Q). The set Q is called well-
partially-ordered (wpo) if every infinite sequence of elements of Q is good. Let
us remark that this theory is often called the well-quasi-ordering one, because
it is usually sufficient to work with quasi-orderings (i.e. reflexive and transitive
relations) rather than with partial orderings. But since every quasi-ordering
becomes a partial-ordering after identifying all elements z,y with z < y < 2
we found it more convenient to work with partial orderings and hence we call
the existing theory the well-partial-ordering theory.

The well-partially-ordered sets have been studied for a while (see e.g.
(Higman 1952), (Kruskal 1960), (Nash-Williams 1963) or (Kruskal 1972) for
a survey). A recent major breakthrough was done by Robertson and Sey-
mour (Robertson, Seymour) who proved the so—called Wagner’s conjecture,
an outstanding problem in the area which has been open for many decades.

The usual method in wpo theory is a minimal bad sequence argument,
basically due to Nash-Williams. It is an induction-like argument, but it is
highly nonconstructive. Trying to find a more constructive proofs for some
wpo theorems we rediscovered the theory of types of wpo sets, initiated by de
Jongh, Parikh (de Jongh, Parikh 1977) and Schmidt (Schmidt 1978), (Schmidt
1979). The constructive approach is as follows: To find an ordinal v and a
function f: Bad(@Q) — 7 such that

flars - yn1) > f(@1,---50n)

for every (¢1,...,¢.) € Bad(Q). The least ordinal for which such a function
exists, called the type of Q) and denoted by ¢(Q), turns out to be an interesting
invariant which reflects the complexity of the wpo set and also provability and
nonprovability of some wpo statements in certain logical systems.

There is another way of expressing ¢(@). A partially ordered set (Q, <) is
wpo if and only if every linear extension of < is a well-ordering, hence it has an
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ordinal type. It is a nontrivial fact that among all these linear extensions there
is a maximal one and its ordinal type is exactly ¢(Q). This may be viewed as a
minimax theorem in wpo theory (see Section 4). De Jongh, Parikh (de Jongh,
Parikh 1977) and Schmidt (Schmidt 1979) have computed the types of some
WpO sets.

The above facts led us to introduce the type in a more general setting
which includes both the Ramsey theory and well-partial-ordering theory. This
is a bit more involved. The type of a Ramsey result is not a single number,
but an ordinal function of the complexity of the partition. To clarify it let us
consider the simplest example. Let A C [w]® and assume that each infinite set
X C w contains an infinite subset Y such that [Y]?> C A. For 4 an ordinal and
g: w<* — ylet us call aset X Cw (A,g)-badif forany z; < 23 < ... <
z, € X such that [{z;,...,2,}]* C Awehave g(21,...,2,-1) > g(21,-..,25).
Roughly, the ordinal v and the function g measure the “killing” of homogeneous
subsets of X. Note that, by our assumption about A, there is no infinite (4, g)-
bad set. The type c4() corresponding to A and v is defined to be the least
ordinal § such that for every g : w<% — 4 thereis f: w<¥ — § such that for
every X C w the following holds:

if X is (A, g)-bad, then f(z1,...,2n-1) > f(21,...,25) for any z; <
<z, € X
Hence if the killing of homogeneous parts of X is measured by g, then the
killing of X itself is measured by f.

Such a formulation is possible not only for the Ramsey theorem, but also
for the Canonical Ramsey Theorem of Erdds and Rado (Erdés, Rado 1950), for
the Nash—-Williams’ Partition Theorem (Nash-Williams 1965) and in general
for every Ramsey type theorem which has an infinitary version and where
homogenity can be recognized from finite segments.

In the following section we introduce the exact definitions. The key notion
is that of a sheaf, which corresponds to a partition in Ramsey theory. We
consider some basic examples and prove two theorems on abstract sheaves.

As in Ramsey theory we are not interested in a single partition but in
a system of partitions of the same kind. In Section 3 we introduce the cor-
responding concepts of R-property and strong R-property. These definitions
enable us to distinguish between “uniform” and “non—uniform” estimates (with
respect to systems of partitions). For a broad class of systems (the so-called
standard ones) the uniform and non-uniform cases coincide (under some ob-
vious cardinality assumptions).

Section 4 is devoted to the wpo theory considered from our point of view.
Some of the theorems presented in this section were known, but the proofs are
new and simpler.

In Section 5 we investigate two possible generalizations of the Erdds—
Szekeres theorem on monotone sequences. Similarly as in the finite case, the
Ramsey function reveals as a product of its arguments, suitably defined for
ordinals.

In Section 6 we give upper and lower bounds to the Ramsey function of
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the k-system which corresponds to classical Ramsey theory. As in the finite
case the bounds are of the form of iterated exponentiation and in fact are
obtained by similar methods. The lower bound requires a somewhat tricky
modification of the Stepping-Up Lemma from Ramsey theory (see Graham,
Rothschild, Spencer 1980).

In Section 7 we give upper bounds for the Canonical Ramsey Theorem of
Erdés and Rado (Erdés, Rado 1950).

Let us introduce some terminology. If U is an arbitrary set, then U <%, U, ™
and [U]™ denote the set of nonempty finite sequences of elements of U, the set
of infinite sequences of elements of U, the Cartesian product of n copies of U
and the set of n—element subsets of U, respectively. If a € U<¥, then |a| is the
length of a. For a = (a1,0as,...), b = (b1,bs,...) € U UU¥ we write a C b if
there are j; < j» <...such that (a1,as,...) = (bj,,bj,,...) anda < bifa #b
and there is n such that a = (a1,...,an) = (b1,...,b,). In particular a C a,
but not @ < a. If a C b we say that a is a subsequence of b and if a < b we
say that a is a segment of b. For a € U<“ weput | a:={b€ U<¥ |bC a}. If
a=(a1,...,a,), b=(by,...,by) € U<¥, then

a.b:=(a1,...,8n,b1,...,by) € U<Y,

If f: X — Y is any function and M C X, then f | M denotes the
restriction of f to M. If f : X — Y is any function and (z1,...,2,) € X,
then the value of f at (z1,...,2,) will be denoted by f(zy,...,z,), to avoid
cumbersome notation like f((z1,...,2,)).

A treeis a couple (T, <), where T is any set and < is a partial ordering on
T such that for any ¢ € T the set {¢' € T | ¢' < t} is a finite chain. A subtree
of T is a subset S of T such that s; < sy < s3 and 51,83 € S imply s € S,
together with the restriction of < to S. A frequently used tree will be (U <v, <),
where a < b iff either a = b or a < b. We make the convention that subsets of
U<“ will be regarded as trees with this ordering. If (T, <) is a tree and ¢,#' are
distinct elements of T, we say that ¢' is a successor of ¢ if ¢ < #' and there is no
t", distinct from ¢ and #' such that ¢ < ¢" < ¢'.

Of great interest will be trees without an infinite chain: to such a tree one
can find the least ordinal yr < |T|™ such that there is a function Yr: T — y7
satisfying ¥r(¢) > 9r(t') for any ¢ < ¢' € T. The ordinal y7 is called the type
of T and the function ¢r is called a character on T. If T is a tree, the T}
denotes the subtree of all ¢' € T such that ¢ < ¢'. Let $,T be trees. A mapping
f: S — T,is called a tree homomorphism if it is strictly increasing, i.e. if
s < &' implies f(s) < f(s') for any s,s' € §. If T contains no infinite chain and
there is a tree homomorphism f: § — T, then it can be seen by induction on
47 that § contains no infinite chain and yg < 7.

The terminology about ordinals is a standard. We identify each ordinal
with the set of its predecessors. If a, 3 € On, the class of ordinals, and

a=w"4+ ...+ (a1 >...2>aym),
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IB:wﬁl—l—...—I-wﬁm (,6122:3711)

are their Cantor’s normal forms, then the natural sum of o, § is defined by
a#tfi=wm™ + ...+ QT

where y; > ... > Y5y, is a nonincreasing rearrangement of a1, ..., an, 81, . . . Bm.
An equivalent definition is

a#f = sup{a'#B+ L,a#B' +1|a' < a, B < B}.
The natural product is defined by
a*fi=#{w¥HPi | i=1,...,n, j= 1,...,m}.

If A is an ordinal, then a set M C ) is called cofinal in ) if for every a € )
there exists § € M such that 8 > a.

We list below some properties of # and * which will be used without any
further reference.

(i) o#B =p#a, axf=LF*a,

(i) a#tl=a+1,-

(iii) a#(B#7) = (c#tB)#y, a* (B*7) = (a*xB) x1,

(iv)if @ < 9, B < § and one inequality is strict, then a#8 < y#6 and
ax <yx*é,

(v) if B < w® and v < w?, then B#y < w?,

(vi) a* (B#7) = (a * B)(a x ), )

(vil)if B < w* and vy < w* then B*vy < w¥ .

2. Sheaves

Definition 2.1. Let U be an infinite set. A sheafin U is a set A C U<“ such
that a € A and b < a implies b € A. A k-sheaf in U is a k-tuple of sheaves
and it is convenient to identify sheaves and 1-sheaves. A sheaf A is said to
have the R-property (short for Ramsey property) if every infinite sequence in
U contains an infinite subsequence each finite segment of which belongs to A.
A k-sheaf (A1,..., Ay) is said to have the R-property if the sheaf A4; U...U A4,
has the R-property. Equivalently (A1, ..., Az) has the R-property if and only
if for every infinite sequence p in U there are an index 1 < 7 < k and an infinite
subsequence of p each finite segment of which belongs to A;.

Example 2.2. For r: [U]" — {1,...,k} and i € {1,...,k} we define
R} :={a € U<“ | if (%1,...,2,) is an injective subsequence of a,
then r({z1,...,2,}) = i}.
Clearly R" := (RY,...,R}) is a k-sheaf, it will be called the Ramsey k-sheaf
corresponding to the coloring . By Ramsey theorem this k—sheaf has the R-

property.
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Definition 2.3. An ordinal-valued function f defined on a set M C U<¥ ig
called a killing on M if a,b € M and a < b imply f(a) > f(b).

Let 71,...,7x be ordinals. A k~tuple of functions g = (g1,...,gz) is called
a (711,--.,7k)-testing if g; : U<® — ;. Let A = (4;,...,A) be a k-sheaf,
Y1,.--,7k ordinals and g = (g1,...,9%) a (71,...,7k)-testing. A sequence a €
U< is called (4, g)-bad if each g; is a killing on | an A;. The tree of (4,9)-bad
sequences will be denoted by Bad(4, g).

Definition 2.4. Let A = (4,,..., A;) be a k—sheaf, v;,...,7; ordinals. The R-
ordinal @ 4(71,-..,7k) if such exists is defined as the minimal ordinal v such
that for each (71,...,7:)-testing g there exists a function f : U<¥ — ~, called
the R-character corresponding to A and g (or simply corresponding to g if
it is clear which k—sheaf is ment), such that one of the following equivalent
conditions is satisfied.

(2.4a) Ifais (4,g)-bad, then f is a killing on | a for every a € U<¥.
(2.4b) Ifb < aand ais (4,g)-bad, then f(b) > f(a).
(2.4c)  fis a character on the tree of (4, g)-bad sequences.

In other words ®4(71,...,7k) exists if and only if for no (v1,...,vz)-testing g
the tree Bad(A4, g) contains an infinite chain and equals the least upper bound

of the types of Bad(4, g) for all (y1,...,7:)testings g.

Definition 2.5. The above least upper bound may be attained for some g. Such
a g will be called the universal (v1,...,vk)-testing. If v1,...,v; are finite then
the supremum is always attained, namely for g = (g1, ..., gx) defined by gi(a) =
(7:—la|)*. We make the convention that fory1,. .., finite we shall understand
by a universal (71,...,7,)-testing the one defined above.

Theorem 2.6. For a k-sheaf A = (Ai,...,As), the following conditions are
equivalent.

(i) A has the R-property.

(ii) All the R-ordinals ® 4(71,...,v:) exist and are < |U|" for any ordinals

Vire s Yhe
(iii) The R-ordinal 4(|U|Y,...,|U|") exists.
(iv) All the R-ordinals $ o(y1,...,7vk) exist for y1,...,7 < |Ul+.
Proof. (i) = (ii): Let 71,...,7x be given and let g = (g1,...,4z) be a
(715-..,71)-testing. By assumption, Bad(4, g) contains no infinite chain. Thus
f: U® 5 |U|* defined by

f(a) = ¥paaca,g(a) forae Bad(4,g)
=0 otherwise
is the desired R—character corresponding to 4 and g.
(i) = (iii): Obvious.

(ili) = (iv): Obvious.
(iv) = (i): Let A not have the R—property.
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Then there exists an infinite sequence p in U such that the subtrees S; of
Bad(4, g) consisting of all {a C p | a € A;} contain no infinite chain (; =
1,...,k). Put
gi(a) =Yg, (a) forac S;
=0 otherwise.

Then g = (g1,...,9%) is a (7s,,...,7s, )-testing such that every finite a C p is
(4,9)-bad. Hence if (iv) was true there would be an R—character corresponding
to A and g, which would be a killing on the set of finite segments of p, i.e. if

P € py K. L p, then
f(p1) > f(p2) > ...

a contradiction. 0

Definition 2.7. Let A = (A1,...,A4) be a k-sheaf, 41,...,7: ordinals and
a € US¥. An (A;71,...,71)-germon a is a k—tuple g = (g1,...,gz) of functions
gi : | @ — 7; such that each g; is a killingon | a N A;. If g = (g1,...,9%) is a

(715-++,7k)-testing, we define '

g fl a = (gl ” Qy..., 0k N a)'

Thus if a is (4, g)-bad, then g [| a is an (4;v1,...,7%)-germ on a.

Theorem 2.8. If a k—sheaf A = (A,,...,A,) has the R-property, then & 4
(Y15---5,7%) < IUI+ for any ordinals i, ...,v, < |U|+.
Proof. Consider the tree (.5, <) defined by

§:={(a,9)| a € U< and g is an (4;71,...,7x)-germ on a},

(a,9) < (b,h)ifa< band g=h || a. o
We claim that S has no infinite chain. Indeed, let (a%,¢*) be an infinite chain
in S. Then there exists an infinite subsequence s C | J . each finite segment of
which lies in 4;, j fixed. Let 51 < 83 < ... < s and assume s; C ¢’ in such
a way that j(1) < j(2) <.... By the definition of < we obtain
i(1 (2

'yj>g§()>g§()>..

which is a contradiction showing that S has no infinte chain. Now vs < [U[*.
Let g be a (v1,...,7:)-testing, we define f : U<¥ — 4g by

fla) =9s(a,g [ a) if ais(4,g)—Dbad
=0 otherwise.

Obviously, f is an R-character corresponding to 4 and g. O
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3. Ramsey Systems

Definition 3.1. A k-system M in U is a set of k-sheaves. A k-system M is
said to have the R—property, if each A € M has the R-property. In that case
we define the R—ordinals

éM(')/l" --v’)’k) = Sup{@A(ﬁh,“',’yk) I Ae M}

Definition 3.2. Let r : [U]* — {1,...,k}. The Ramsey k-sheaf R" = (RJ,... , R})
was defined in 2.2. We put

Fi={R" | r: U™ - {1,...,k}}.
Clearly, R} has the R-property. It will be called the Ramsey k-system. We
shall write & (v1,...,7x) instead of Sgn (y1,...,7). '
Proposition 3.3. If v1,...,v; are finite, then

ﬁn('yl," . 7710) +1= R(n;7la"',7k))

the Ramsey number.
Proof. Let us consider the universal (yy,...,v;)-testing g. Let a1,...,a, € U
and let

r: [{al,- . aa’m}]n - {la- 719}
be such that thereis no E C {ai,...,a,} such that |E| = ~; and [E]" is colored
i, and extend r to [U]™ arbitrarily. Then a = (a1,...,an) is (R", g)-bad, hence
there is a killing f : U< — &g+(71,...,7%) on | a, which implies

m < @Rr(’yl,...,’yk) < Q_Bn(’)/l,...,"yk).

To show the converse inequality let a' k-sheaf R™ € R} be given, we define
f: U< — R(n;vy1,...,7) by

f(a) := (R(m;mi,s...,m) — la| = 1)t
and for a = (a1,...,an) € U we define 7 := [{1,...,m}|" — {1,...,k} by

T({i1,. . yin}) =r({ai,...,0:,) if (aiy,...,a;, ) is injective
= arbitrarily otherwise

If ais (R", g)-bad, then thereis no E C {1,...,m} such that |E| = +; and [E]"
is 7—colored ¢. Hence m < R(n;7i1,...,7;) and thus f is a killingon | a. O

Remark 3.4. The R-ordinal &,,(w,...,w) corresponds to a statement whose fi-
nite miniaturization is the Paris—Harrington principe (Paris, Harrington 1977),
i.e. the statement Vn Vk Vni,...,ni IN such that for any k-coloring of
[{1,..., N}]™ there exists A C {1,...,N} and i € {1,...,k} such that [A] > n;
and [A]" is colored ¢, and, moreover A is relatively large, i.e. |A| > min A.
Indeed, letting U = w and g = (g1,...,gx), where
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gi(ai,...,an) = max(y; — m,min{ay,...,a,} — m,0)

we see that the corresponding Ramsey character kills subsets without mono-

chromatic relatively large subsets.
One might expect that because of unprovability of the Paris-Harrington
principe from PA it would hold

sup{Pn(w,...,w) | n,k € w} = ¢.

k times

This is in fact true, we prove it in Section 6.

In this section we stay on a rather abstract level. Of course, we have an
analogy of 2.7 for Ramsey systems, but there is no general analogy of 2.8. We
search for a restricted class of Ramsey systems for which such a statement
would hold.

Definition 3.5. A k-system M is said to have the strong R-property if for each
sequence A’ = (43},...,A}) of elemets of M and for each infinite sequence p
in U there exists a subsequence s C p such that for each finite segment a < s
there exists an ¢ > |a| with a € A} U...U A%. Note that the condition actually
implies a to be in A; for j € {1,...,k} fixed and infinitely many 3.

Definition 3.6. Let M be a k-system and 7y,...,7; ordinals. We define the
germ tree T(M;y1,...,7) = (T, <) by

T := {(a,9) | @ € U< and there is A € M such that g is an

(A371,---,7%)-germ on a},
(a,9) <(b,h)ifa< band g=h [| a.
If the germ tree has no infinite chain we define the strong R-ordinal by

3/\4(’)’1 N O YT Miv1yeem0)

and we write ®,(71,...,7:) instead of ERZ (715 --,7%)- In general the existence
of &), implies the existence of &4, $rq > S and nothing more holds.
Theorem 3.7. A k-system M has the strong R—property if and only if all the
strong R-ordinals ® s(v1,...,7x) exist for y1,...,7x < |U[T. In that case we
have _

QM(’YI)"' 7710) < QM('Yl,--w’Yk)
for any ordinals y1,...,vx and Spm(y1,...,7%) < |[U[T for y1,...,m < |U[T.

Proof. The inequality $¢(71,... y k) < [U[* is obvious by a cardinality ar-
gument. To see ae(71,---,7%) < Pm(71y---,72), let & (y1,...,7;)testing g
be given, and let A € M. We define f: U< — & r4(71,...,71) by

f(a) = Y1 Miyi,m) (@9 TL @) if ais (4,g)—bad
=0 otherwise.

It is easily seen that f is an R—character corresponding to g.
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Let us pass to the proof of the equivalence.
=: We must prove that T(M;~,...,7%) has no infinite chain. Suppose that
(a',9'),(a*,¢*), ... is an infinite chain in T(M;y,... k), let g* = (g5,...,9%)
be an (A% 91,...,7:)-germ on a’, let A* = (4%,...,A}). By the strong R-
property there exists an infinite sequence s such that for every its finite segment
si < s of length i there exists n(i) such that s; C a™® and s; € ATP U... U

A’,:(i). We may assume that s; € A?(i) with j € {1,...,k} fixed and that
n(1) <n(2) <... . Now, by the definition of T(M;~1,...,7:) we have

n (2
v > 97 M (81) > g7 (s2) > ...

which is a contradiction.

<: Let A™ = (A?},...,A}) be a sequence in M and p an infinite sequence
in U each infinite subsequence s of which has a finite segment a < s such
that a € AT for j € {1,...,k} implies n < |a|. Let S; be the subtree of I/ <%
consisting of all a C p such that a € A} for some j € {1,...,k} and some
n > |a|. By the assumption, S; contains no infinite chain. Now for a < p let
g7 :l a — 7s; be defined by

9; = ";bSJ(b) ifbe S]
=0 otherwise.

We see easily that ¢* = (g7,...,4%) is an (4!%;vs,,...,7s, )-germ on a. Thus,
{(a,9%)}a, where a runs through finite segments of p, is an infinite chain in

T(M;1,--.,7k), showing that ®r¢(vs,,...,7s,) does not exist. 0
Proposition 8.8. The Ramsey k-system R} has the strong R—property.

Proof. This follows either from 3.17 or from the estimates of &,, given below,
but we give a direct proof. Let (A7 );c. be a sequence of elements of R}. Let
us choose a non—trivial ultrafilter 2/ on w and define r : [U]™ — {1,...,k} by

r({z1,...,2n}) =10 ff {5 | r;({z1,...,2.}) =i} € UU.

By Ramsey theorem there is for each infinite sequence p in U an infinite subse-
quence s C p such that every finite segment a of s belongs to AJU...U A47. By
the definition of r there is j > |a| such that 7;({z1,...,2,}) = r({z1,...,2,})
for all injective subsequences (z1,...,2n) C a, hence a belongs to A7 U...UA} .

0

Theorem 3.9. If M is finite and 71, ..., are also finite, then S p¢(v1,---,7)
exists if and only if @ p(11,.-.,7e) exists and S pq(71,...,7k) =

Pm(m,--- 77/6)'

Proof. Let M = {A1,...,An}, let T = T(M;~1,...,7x) be the germ tree
and for 1 = 1,...,m let T; be the subtree T; consisting of all (a,g) € T such
that g is an (A;;71,...,7k)-germ on a. Then each T} is downwards—closed in
T (i.e. (a,g) < (b,R) and (b, h) € T; imply (a, g) € T;), hence
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5}\4(71,---,%) =vyr =max{yr, |1 <i<m}
= max{®4,(71,...,m) | 1 <3 < j}.

Thus it is sufficient to prove that Sa1(y1,...,7%) > Sm(71,---,7s) for M| =
1. We proceed by transfinite induction with the following induction hypothesis.
(H, ) For any natural number %, any k-sheaf A and any finite numbers

Yo7k such that dsA(')’la 77k) < it holds QSA(717 )7&) > QA('YI) .. ,7k)-

Assume that (Hpg) is true for any 8 < « and let k,A4,71,...,7% such that
P a(71,--,7k) = a be given. We denote by T' the germ tree T({A};71,...,7z).
Let @ € USY be a one-element sequence and let ¢ = (g;,...,9%) be an
(A;71,...,7)-germ on a. We define a 2k-sheaf A® = (Ag,...,A%) by
Af = A, AF, = {be U< |abe 4} (i =1,...,k) and a tree homo-

morphism
H . fZ’(a,g) - T({Aa};719 LA 77’0;91(0’)’ ¢ ’gk(a’))

by H(a.b,h) = (b,h), where h;(z) = h;(z) and hpyi(z) = hi(a.z) for z C b.
Thus

Bay(r1, -, 18) < sup{@ae}(11,- .-, 70, 91(a), -, 91(a)) + 1| (a,9) € T}

Now we are going to estimate the corresponding R-ordinals. Given finite num-
bers v1,...,72x such that v; > vi4p (i =1,...,k),let h = (h,...,hai) be the
universal (71,...,72x)-testing. We define a (y1,...,v5)-tesing b = (hq,..., k)
by
hi(z) = hi(z)  if neither a = z nor a < =
= Vhti ife=a
= EHi(b) if = a.b.

It is easily seen that if b € U<¥ is (A%, h)-bad, then a.b is (A, h)-bad. If f is
an R-character corresponding to A and h, we may define f := U<¥ — f(a)
by f(b) = f(a.b). Then f is clearly an R-character corresponding to A and h,
thus showing 45{A«z}(’)’1, S Y2k) = TBad(A42,k) < YBad(4,h) < 45{‘4}(71, 3 Yk)-
(Here the finiteness of 41,...,4s is crucial.) Hence we may use the induction
hypothesis. The above inequalities and Theorem 3.7 conclude the proof. O

Theorem 3.10. If S p((71,...,7:) < w, then D pg(71,...,7%) = Paa(V1s- - sT0)-
Proof. If g =(g1,...,9x)isan (4;71,...,7c)-germon a = (a1,...,an), then
extending each g; by g:;(b) = 0 for b €| a we see that a is (4, g)-bad. Hence

m < @p(71,---,7k) and consequently D aq(y1,...,7%) < Pae(71,---,7%). The
converse inequality follows from 3.7. 0

Remark 3.11. For no k-system M one can expect sEM(fyl, k) = Ba(Y1s- -0 TE)
for any ordinals y1,...,7k, since r(Y1,...,7%) < |U|T by 2.6(ii), while it is

an easy exercise that 5 m(71y. ey 7k) > minfyy,.. -37x}- On the other hand it

is eagy to construct k-systems such that even & M(l) < P p(1) or B pq(1) exists
and @ r((1) does not. Namely, for a = (a1,...,am) € U<* we define
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A% = {(21,...,2,) € US| either 21 =... =, or 2; # a; for all 4, j}.

Cleatly ®44(1) = |a|, thus letting M = {4* | a € U} we have $4(1) = w,
while the corresponding strong R-ordinal does not exist. If § C U<¥ is a tree
without infinite chains, then for M(S) := {4* | a € S} we have P pms)(1) L w,
while EM(S’)(I) > vs.

An example of a k-system consisting only of one k-sheaf for which the
R-ordinals and strong R-ordinals differ for small ordinals is given in the next
section (see Remark 4.12).

In the rest of this section we prove that for a large class of k—systems the
R-ordinals and strong R-ordinals coincide for all ordinals y1,...,v, < |U|T.

Definition 3.12. We say that a k-system M is movable, if for any k-sheaf
A = (41,...,4r) € M, any sequence (ay,...,a,) € U and any injective
sequence (b1,...,by,) € U<¥ there exists a k—sheaf B = (B,,...,B;) € M
such that if (bz’“---,bi,,) € Bjforsome 1 <4 < iy < ... < ip < m and
1 <j <k, then (ai,...,a;,) € 4;.

Let A = (A4,,...,A4:), B = (B,...,Bi) be two k-sheaves and let V C
U<“. We say that A = B on V if for every sequence a € V and any j €
{1,...,k} we have a € A; iff a € B;.

We say that a k-system M has the concatenation property, if for any
family {A%},c4 of elements of M, any family of subsets {V,}aca of U<® such
that each V, is closed under subsequences and A% = A4# on V, N V; for any
@, € A there exists a k—sheaf A € M such that A% = A on V,, for every
a €A

A movable k-system which has the concatenation property will be called
standard. For example, the Ramsey k—system is standard.

Theorem 3.13. Let M be a movable k-system satisfying the strong R-property
and V an infinite subset of U. For A = (Ai,...,4Ax) € M we put AV =
(AY,...,AY), where

AY = Anv<e

and further
MY = {AV | A e M}.

Then MV satisfies the strong R—property (in V) and
EM('Yl) oo 7710) = EMV(FYI)- . 771&:)

for any ordinals y1,...,Yk.
Proof. Let a1, as,... be distinct elements of V. Let (b,h) € T(M;v1,...,7),
where b = (b1,...,by) and h = (hy,...,ht); we define H(b,h) = (a,g) by
a=(ai,...,ay) and g = (g1,...,9gs), where

gi(ail yoouy a,-],) = h.,;(b.,;l, PP 7bi1,)-

Let S be the range of H. By movability, S is a subtree of T(MY;71,...,7i)
and H is a tree homomorphism, showing that
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EM(’h,o--ﬁk) = VT( My S8 S 3/«4"(71, ey Yh)-
Since the converse inequality is obvious, we are done. O

Definition 3.14. Let T' be a subtree of the germ—tree T(M;71,...,7:). We say
that T is simple if whenever (a,g),(b,h) € T are such that a and b have the
same last term, then (a,g) = (b,h). Similarly, § C U<¥ is called simple if
whenever a,b € S have the same last term, then a = b.

Lemma 3.15. If M is a movable k-system satisfying the strong R-property
and y1,...,7 < |U|* then there exists a simple subtree S of the germ tree
T(M;71,...,7k) such that vs = Pp(71,- -5 V)-

Proof. Let us denote by T' the germ tree T(M;v1,..., ), let I : T — U
be defined by I((ai1,...,am),9) = am and let J : T — U be a bijection. For
a (v1,---,7k)-testing g = (g1,...,9%) we define a (y1,...,7;)-testing g' =

(91,---»9%) by
gi(as, - am) = g(IT(a1), ..., 17 (am))
and for (a,9) = ((@1,...,am),9) € T we define

a' =(J((a1),9 Il (a1)),J((a1,a2),9 I (a1,a3)),...
ey J((a1,000,am), 9 T (a1, ... am))).

Now if g is an (A4;71,...,7:)-germ on a, there exists by movability a k-sheaf
A' € M such that ¢' is an (A';71,...,7:)-germ on a'. Hence the mapping
H :T — T defined by H(a,g) = (a',4') is a tree homomorphism. Thus denoting
by S the image of T under H we see that

5./\4(717"'7710) 275 2T ZEM(’Yla-'-a')’k),

moreover S is clearly simple. O

Theorem 3.16. A k—system which has the R—property and the concatenation
property has the strong R—property.

Proof. Let M be as above, let 71,...,7; be ordinals and let (a’,g%) be an
infinite chain in T(M;y1,...,7%), o' = (21,...,2:), ¢* = (gi,...,9%), let ¢*
be an (A% 71,...,7:)-germ on &', A* € M. By an easy compactness argument
we may pick an increasing sequence y,1s,... such that

Ain = A'm op 1 a™ for any m > n.

Now apply the concatenation property to the family of sheaves {4}, and to
the family of sets {| a™},,. We obtain a sheaf A € M with

A= A" on | a™

For z C (z1,...,2,) we put g;(z) = g7 (j =1,...,k). Then g = (g1,...,9s) is
well-defined and the sequence (z1,...,%,,...) is (4,g)-bad. A contradiction.
Thus ® pm(y1,-..,7k) exists. Apply 3.7 0
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Theorem 8.17. If M is standard and has the R-property and y1,...,v < |U|T,
then

@M(")’l,...,’)/k) = 5./Vl(’)/ha")/lc)

Proof. Let T be a simple subtree of T(M;71,...,7%) of type ar(v1,- .., 7).
We shall find a subtree S of T' of the same type, a (y1,...,7;)-testing & and a
k-sheat A € M such that his an (4;71,...,7%)-germ on a for every (a, g) € S.

Let Tqz be the tree obtained from T by formally adding a least element I7.
For 2z € Tyt we define

T(z):={z'eT|z<zorz <2z}

(so that T(IT) = T) and V(2) := U {| a | (a,9) € T(2)}. Let us observe that
by simplicity if z = (a,g) € T and 2',z" are its distinct successors, then
V(z') N V(2") =] a. We shall construct for every z € Ty a k-sheaf A%, a
subiree 5(z) of T(z) and a k-tuple g* = (¢7,...,g7) of functions such that

(3.17a) for every (a,g) € S(2), g7 is an (A%;71,...,7x)—germ on a, and
(3.17b) ¥s(z) = Y7(2)- If 2 = (a,9) € T is such that ¥p(z) = 0, then let
S(z) = T(z), g* = g and let A* be such that g is an (A%;71,...,7)-
germ on a.
If ¥p(2) is a successor ordmal then ng(z) Yr(2') + 1 for some z < 2. We
put S(z) := §(z'), A% := A7 and 9% = g*
Finally if ¢7(2) is a limit ordmal let (za)ae 4 be successors of z in T such
that sup{9r(2.) | @ € A} = ¥7(2). There is a subset A' C A such that

(3.17¢c) sup{¥r(za) | @ € A'} = P7(2)

and if z # II, say z = (a,9) € T, then for every b C a, every o, € A' and
every i € {1,...,k} b€ A¥ iff b € A;® hence A% = A% on V(za)NV(2g). By
the concatenation property there exists a k—sheaf A* € M such that 4% = A%
on V(z.) for every o € A'. We define ¢* = (¢7,...,97) by

9i(c) =97"(c) if c€ V(zy) for a € A’
=0 if no such a exists.

Then g7 are well-defined and it follows that (3.17a) is satisfied for S(z) :=
U{8(24) | @ € A'}; condition (3.17b) follows from (38.17¢c).
Now put § := S(II), h:= g™ and A := A™. Then S C Bad(4, h), hence

5/\4(71, cen ,’)’k) =g < YBad(A4,h) < QSM(’)’l, <o ,’)’k)-

The converse inequality follows from 3.7. O
Corollary 3.18 of the proof. If M is standard and v1,...,v, < |U|*, then there
exist A € M, a (11,...,7+)-testing g and a simple subtree S of Bad(A4, g) such
that
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EM(’Yl,---,'Yk) = QM('Yl:" . 7710) = ¢A(7l," '7716) = VYBad(4,9) = VS-

In particular, there exists a universal testing.

4. Well-partial-ordering

Definition 4.1. Let (Q, <) be a partially ordered set. A sequence ¢y, gs, . . . (finite
ornot) of elements of () is called good if there are indices %, j such that ¢ < j and
¢i: < ¢; and is called bad otherwise. The set @ is called well-partially-ordered
(wpo) if every bad sequence is finite.

Proposition 4.2. The following conditions on a partially ordered set (Q, <) are

equivalent.

(i) (Q,<) is wpo.

(ii)  For every infinite sequence q1,qz,... of elements of Q there is an incre-
asing sequence i,1s, ... of natural numbers such that ¢;, < ¢q;, <... .

(iii) ~ There is neither an infinite decreasing sequence in  nor an infinity of
mutually incomparable elements of Q).

(iv)  Every linear extension of < is a well-ordering.

(v)  Every nonempty subset of Q) has at least one but only finitely many

minimal elements.

Proof. Easy consequence of Ramsey’s theorem. O
Definition 4.3. Let @ be a partially ordered set. For g1, 92 € Q we write ¢; < ¢o

if @ < g2, and ¢1 # ¢z, and ¢; £ ¢» if not ¢ < go. For a cardinal £ we put
U := k x @ and we introduce the following sheaves in U :

ASC(U) = {((al,(h),-- w(am)Qm)) eU<v I G <g¢p<...< Qm},
Bad(U) :={((@1,q1),---»(@m;qm)) €U<?| g; £ g; for i < j},

Nd(U) = {((al,QI)v"’(am’qm)) e U< I 4 > q; forno i < ]}’
Dec(U) = {((alaQ1)7""(am) Qm)) € U<w I @ > @ <...> Qm},
Inc(U) = {((a1,q1), -+, (0m,qm)) € U<¥ | g; < g; for no i # j},
Comp(U) :={((a1,¢1),.--,(@m,qm)) € U<¥| for all ,j either ¢; < g; or

2 < ¢}
For £ = 1 we identify U with @; thus the sheaves Asc(Q),..., Comp(Q) C Q<¥

are defined.
If ) is wpo, then Bad(U),Dec(U) and Inc(U) are trees without infinite

chains. Hence they have types, which were denoted by YBad(U) s YDec(U) @A Vinc(U),
respectively.

Let g be the universal (1)-testing. Then a sequence (a1,41),(a2,92),...
is (Asc(U),g)-bad if and only if the sequence g1, ¢o,... is bad. (This should
justify our terminology). Hence the sheaf Asc(U) has the R-property if and
only if Q is wpo. Moreover

B asc@)}(1) = Paser)(1) = Piasc()3(1) = Pase(o)(1) = YBad(U) = YBad(Q)-
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This ordinal, denoted by ¢(Q), is called the type of the wpo set Q. Similarly,
we have

2 v} (1) = Pnaw)(1) = Biva@1(1) = Evac@)(1) = ec(u) = ec(@)-
This ordinal will be called the height of Q and will be denoted by ht(Q). Finally,

% (Gomp()}(1) = Boomp)(1) = P{Gomp(2)} (1) = Poomp(g)(1) =
= Yinc(U) = Mnc(Q)-

The last ordinal will be called the width of @ and will be denoted by wd(Q).
For ¢ € @ we define

ht(g) =0 if ¢ is a minimal element of Q
= sup{ht(¢') + 1| ¢' < ¢} otherwise.

Clearly ht(Q) = sup{ht(¢) +1| ¢ € Q}.
Definition 4.4. For (¢i,...,¢n) € Bad(Q) we put

Q(‘h,-..,qm) = {q € Q I (ql, co 3 qm, Q) € Ba‘d(Q)}7
Qq, = Q(ql)’
cdlg) ={g€eQ|a < g}

and we denote

M@) := sup{a € Qn | a is the (ordinal) type of a linear extension of <},
x(Q) = sup{e € Qn | o is the (ordinal) type of a chain in Q}.

Let us remark that ¢(Q) = sup{e(Q4) +1 | ¢ € Q}.

If @1 and @ are partially ordered sets, then Q,UQ, denotes the disjoint
union of @ and @2 whose partial ordering is the disjoint union of the partial
orderings on @; and @, and Q1 x @, denotes the Cartesian product of Q; and
()2 with the partial ordering defined by

(q1,92) < (q1,05) iff ¢; < ¢} in Q; (i = 1,2).

It is easy to see that if )1 and @, are wpo, then these constructions define
again wpo sets.

Lemma 4.5. Let ) be wpo and let (¢, | @ € c¢f()\)) be a transfinite sequence of
elements of Q). Then there exists an increasing ordinal sequence (ag | § € cf(\))
such that qa, < ¢a,, for § < B' € cf(X).

Proof. Let (¢o | @ € cf())) be as above. For a cofinal subset M of cf()\) we
call an ordinal o € M terminal for M if the set

{ﬂGMlqaﬁ%'}
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is cofinal in A\. We claim that there is a cofinal subset of cf()\) without a terminal
element. Suppose not and put My = cf(A). If My,..., M, &,...,6,_1 are
defined, we let &, be the terminal element for M, and M,; := {f € M, |
g5, £ qg}- Then g5,,¢s,,... is a bad seuqnce in @, a contradiction.

So let M C cf(\) be cofinal without a terminal element. We define induc-
tively @ := min M and

ap :=sup{sup{é € M | gop £ ¢s} +1|8' < B}.

O
Theorem 4.6 (de Jongh, Parikh 1977). If Q; and Q, are wpo, then
(@1 U Q2) = ¢(Q1)#¢(Q2).
Proof. By induction on ¢(Q;)#¢(Q2)
(Q1UQ2) = sup{e((Q1UQs)e) + 1] g € @1UQx} =
= sup{e((Q1)g:UQ2) + 1,e(Q10(Q2)g,) + 1| a1 € Qu, g2 € @} =
= sup{e((Q1)q, ) #c(Q2) + Le(Qi)#c((Q2)g,) +1] a1 € Q1, g2 € @2} =
= ¢(Q1)#c(Q2).
O

Theorem 4.7. Let (@, <) be wpo.

(i) (deJongh, Parikh 1977) \(Q) is attained, i.e. there always exists a maximal
linear extension of <,
(ii) (The First Minimax Theorem) ¢(Q) = A\(Q).

Proof. Clearly ¢(Q) > ¢(A(Q)) = AX(Q). For the converse inequality let v =
¢(Q) and let (go | @ € cf(y)) be such that sup ¢(@,, ) + 1 = 4. By Lemma 4.5
we may assume that g, < gg for o < 8 € cf(-y). We proceed by induction on 7.

Let first v be sum-reducible, i.e. v = ¢ + 7, where £, # 0 and 7 is
sum-irreducible. Choose a such that ¢(Q,,) > €. Since

(Qa)#e(cl(ga)) Z Q) = ¢(Qq.) + e(cl(da)),
we have v > ¢(cl(gq)) > 7. Hence by the induction hypothesis

MQ) < (@) =&+ 1 < MQq,) + Acl(ga)) < NQ).

Now let v be sum—irreducible. Let v, converge to v (o € cf(v)) and define
inductively

(@) := min{B € cf(y) | e(([ {cl(quan) | @' < a})gs) > Ya}-
The function p is well-defined, since

(n{d(qu(a’)) |’ < a})Qﬁ) U U{Qq,‘(‘,l) e’ <a}= Qqp
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and hence
c((n{d(q#(a')) | < a})gs )#C(U{qu,(al) o' <a}) > C(qu)7

which converges to v. We put

Qa = (n{CI(Q;L(a’)) I o < a})qp(a)7

clearly v > ¢(Qa) > 4. By the induction hypothesis

MQ)<e(@ < ) Q)= Y, MQ«) <ANQ),

a€ef(y) agcf()
which proves (ii). The maximal linear extension is obtained by concatenating
the maximal linear extensions on corresponding subsets of Q. 0
Theorem 4.8 (de Jongh, Parikh 1977). Let Q;,Q2 be wpo sets. Then

(@1 x @2) = ¢(Q1) * ¢(Q2).

Proof. Clearly

(@1 x @2) = AM(Q1 % Q2) = AMe(Q1) % ¢(Q2)) > ¢(@1) * ¢(Q2).

We prove the converse inequality by induction on ¢(Q;)#c(Q2). Let first
(@) =o1+...4an, c(Q2) =F1+...4Pmy 1 > ... 2, f1 > .. B, i, s
sum-irreducible, n > 1 or m > 1 (i.e. we are assuming that either ¢(Q,)
or ¢(Q2) is sum-reducible). By Theorem 6.7 @1 = Qi U...U Q}, Qs =
QU ...UQF, where ¢(Q%) = @i, ¢(@3) =85 (6 = 1,...n; § = 1,...,m).
We have

(@1 x @) = (| {QI x @ |1 <i <m, 1< 5 <m}) < #{c(Q}) *c(Q)) |
1<i<n, 1<j<m}=

= (#1<i<a(Q})) * (#15,~5mc(Q§)) = ¢(Q1) * ¢(Q2)-

Now let ¢(@1) and ¢(Q2) be sum-irreducible. Then by the induction hy-
pothesis

c(@Q1 x Q2) = sup{c((Q1 X @2)(g1,42)) + 1101 € Q1, g2 € Q2} <

< sup{e(((@1)g, X @2)U(Q1 X (Q2)g;)) + 1| q1 € Q1, g2 € Q2} =

= sup{c((Q1)g, X Q2)#c((Q1 X (Q2)g;)) | @1 € @1, @2 € @2} =

= sup{(c((Q1)g,) * ¢(Q2))#(c(Q1) * c((Q2)g,)) + 1| 1 € @1, 2 € @2} <
< e(@1) * ¢(Q2)-
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Theorem 4.9. Let Q be wpo.

(i)  (Wolk 1967) x(Q) is attained, i.e. there is a maximal chain in Q.

(ii) (The Second Minimax Theorem) ht(Q) = x(Q).

Proof. (i) This argument is taken from (Wolk 1967). Let M, be the set of
minimal elements of @ and define inductively M, to be the set of minimal
elements in Q\ Uz, Mp. By 4.2 each M, is finite, let x be the least ordinal
such that M, = 0. Then clearly x > x(Q), we shall prove that there is a chain
(4o | @ € x) such that ¢, € M, for any « € x, which will give (i).

If A ={o; <...<a,} C xis a finite set then there is a chain do, <
+++ = Qa, such that g, € My, (i = 1,...,n); we put fa(a;) = ¢a,. By Rado
Selection Lemma (cf. Ore 1962) there is a function f : y — Q such that for
every finite A C y there is a finite B such that AC BC yand fg | A = f A
Hence (f(a) | @ € x) is the desired chain.

(ii) Clearly ht(Q) > x(@Q). For the other inequality define f : Dec(Q) — x(Q)
forg1 >...> ¢, by

flan,- o) = x({e € Q| g > q}).

By (i) above, f is a character, which gives ht(Q) < x(Q). | 0

Remark 4.10. Theorem 4.9 holds under weaker hypothesis than that Q be wpo,
namely it suffices that for every infinite sequence ¢y,¢s ... of elements of Q
there are indices %, such that 7 < j and either ¢; < g; or ht(q;) > hi(g;). See
(Kiiz), (Milner, Sauer), (Pouzet 1979), (Schmidt 1981).

4.11 T!l_eorem. .
(1) P(ase@1(7) = Ppascn(v) =7 * ¢(Q).

(ii) Ify < k' then ¢Asc(U)(7) =7 *¢(Q).
(iii) For @ = w + 1 we have

Prse(@)(w +1) S w0 + 20 <w? + 2w + 1 = By 0y (w + 1).

Proof. _

(i) 7*c(Q) < Diase(3(7) : For s = ((e1, 1), -, (@m, Gm)) € Bad(yxQ) let
a* = (q1,...,9m) and let g° :| a®* — 7 be defined by 9 (z1,...,2p) = g,
if (giy,..-,4q:,) is the first appearance of (z,... yZp) € a® in a®. Then g¢°
is an (Asc(Q),7)-germ on a°. Hence H : Bad(yxQ) — T({Asc(Q)};)
defined by H(s) = (a*,g°) is a tree homomorphism, which gives

7% (@) = e(7xQ) < Syase()(7),

_ using Theorem 4.8.
Q{Asc(Q)}(’Y) S Qs{Asc(U)}(7) : Obvious.

§{ASC(U)}(7) <vx*xe(Q) : Let T = T({Asc(U)};7), we shall define a tree
homomorphism H : T' — Bad(y x @), which will give the result. So let (a,g) €
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We have taken the liberty to denote the last k—system of 5.2 by Chy, because it
carresponds to a weaker version of the Chvétal’s Tree-Complete Graph Ramsey
Theorem. The systems &;, Sy, and Chy, are closely related and their R-ordinals
are easily computed. Later in this section, we introduce the Erdds—Szekeres
system &, corresponding to n linear orderings. Generally, £, is a 2"-system.
T'he investigation of $¢, is technically more complicated and we do not know
if it was completely done even for finite values of arguments.

We obtain a lower bound for &¢, by certain ordinal product and an upper
bound by a maximal product. In the finite case, of course, these bounds coin-
cide. In the infinite case, however, the upper bound is not generally achieved.
The exact form of the function &¢, seems to be rather profound.

Theorem 5.4,

() I y,...,7% < ]U|i then @5, (V1,--+1Vk) = Peny (Vs> Tk) =71 % . % Y.

(1i)85, (Y1, - - - s T8) = Pen, (V15 -+ V) = Y1 %. .. %y, for any ordinals v4, ... ,vp.

Proof. (i) Let Q =1 X ... X 41 be endowed by the product partial ordering.
Proof of $cp, (v15--57k) <y1%... %y : Let r: U% — {1,...,k} and let a

(Y1:- -+, 7k )-testing g = (g1,...,9x) be given. We define a (71,...,7:)-testing

h =(hi,...,ht) by

hi(a) = min{g;(b) | b €| aN S, a and b have the same last term}
fori=2,...,k and by

hi(a) = min{gi(2) | £ = (21,...,2p) C @, z, = last term of q,
h,(:z:l) S hi(.’L‘l,.’Bz) <...<Z hi(a:l,...,:vp) for i = 2,...,]{:}

for i = 1. If we consider h as a function U<“ — @, then H : Bad(Ch",g) —
Bad(@) defined by

H(ai,...,am) = (h(a1),h(a1,as),...,h(as,-..,an))
is a tree homomorphism, showing that (use 4.8)
Ponr (V15--371) S e(Q) =7 * ... % .

D5, (715 57k) < Sen,.(11,---,71) is obvious.
Y1 %%y < Do (11,---57) : We may safely assume Q C U. We define

r:U? — {1,...,k} by

r(a,b) = min({i | a; > B;} U {k}) if a = (e1,..., 1) € Q and
b= (ﬂl)"‘)ﬂk) € Q
= arbitrarily otherwise.
and g; : USY — ; by

gi(ar,...,a,) = o if a; =(a},...,a;-°)EQforj:I,...,m

=0 otherwise
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It follows that the identity is a tree homomorphism Bad(Q) — Bad(S",g),

hence v1 * ... xvp < Pgr (71, -, 7k)-
(ii) This follows from (i), since by Theorem 3.13 we may assume that |U| is as

large as we wish. (The system is evidently standard.) a

Theorem 5.5.
() Ify,y2 <|U|" then &g, (71,72) = 71 * 7.
(ﬁ) D¢, (71,72) =1 * 72 for any ordinals Y1,72-

Proof. Similarly as in 5.4, it suffices to prove (i).
<: Given a linear ordering < on U, we define r : U? — {1,2} by

r(z,y) =1ifx <y
= 2 otherwise.

Then the identity is a tree homomorphism Bad(E<,g) — Bad(S",g) for any
(71,72)-testing g, and the inequality follows from 5.4(i).

>: We may assume that @ := 41 x y2 C U. Let gi(a1,...,an) be defined to
be the i-th coordinate of a,, if a,, € Q and to be 0 otherwise (¢ =1,2). Then
g = (91,92) is a (71, 72)-testing. For (a, B), (¢',5') € Q we define

(a,8) < (o,B)ifB< B or =7 and a>a'.
Then the identity is a tree homomorphism Bad(Q) — Bad(E<,g) and the

remaining inequality follows from 4.8. O

Definition 5.6. Let n > 1 be a natural number and let 7 = (<1,...,<n) be
an n—tuple of linear orderings on U. We denote by X the set of all mappings
{1,...,n} — {1,2} and for ¢ € ¥ we define <, by

r<,yiff z <;yforic 0"1(1) andy <; z fori € 071(2)
and the sheaf
E = {(z1,...,2m) €U |21 <o 22 <o o.. <o T 1
This gives rise to a 2™—sheaf
E":=(E;|c€eX)
and a 2™-system
En :={E7 | r is as above}.

This system will be called the Erdds-Szekeres system, for it clearly generalizes
the system &; introduced in 5.1.
For the lower bounds to $¢, we need some more definitions.

Definition 5.7. For ¢,0' € ¥ we define o < o' if there exists i € {1,...,n}
such that o(i) < ¢'(7) and o(j) = o'(j) for all j =i +1,...,n. For ordinals
Yo (0 € X) we define an irreflexive ordering < on the product X,¢ 57, by
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T)let a = ((@1,q1),--,(0tmsqm)), we put b= (q1,...,qm) and we shall define
h:b— by

h(z1,...,2,) = ming(z;,,...,z;,),
the min taken over all 4; < ... < i, = p such that T, <z, <...<z;. Now
we define

H(a'a g) = ((h(Q1),Q1),(h(Q1,Q2), Q2), Y (h(QI, ce 7qm)7qm));

it is easily seen that this definition gives rise to a sequence H(a, g) € Bad(yxQ).
(ii) Ify < k™ then we may safely assume that v x Q C U, it suffices to show
that @psc1)(7) > ¢(y x Q). So let g : U<® — v be defined by

9(z1,- . 2m) =Tm f2i=(1, @) €y xQand ¢ <...< gm
=0 otherwise,

and let f be the R-character corresponding to Asc(U) and g. It is easily
seen that if a sequence a € (y x Q)<¥ is from Bad(y x @), then it is
(Asc(U), g)-bad. Hence f is a character on Bad(y x Q) and consequently

QAsc(U)(7) 2> 0(7 X Q) =7* C(Q)) as desired.

(iii) Let @ =w+1 andlet g: Q<Y — w + 1 be given. Let ¢' : w<¥ — w be
the restriction of g to w<¥, let f': w<¥ — w? + w be the R—character
corresponding to Asc(w) and g¢'; let g(w,w) = n € w. We define f :
Q<Y »wr+w+n+3by

f(‘h,---,(Im) = f’(‘h,---,(Iil—l,(_Ii1+1,---,qz‘,,-l,qz',,+1,---,qm)+n+2~p,

where ¢;;,...,¢;, are all occurences of w within (qi,...,¢n). Then f
is clearly an R-character corresponding to Asc(Q) and g, showing that
QAsc(Q)(w + 1) < w? 4+ 2w. O

Remark 4.12. Part (ii) of the above theorem is the essential reason for intro-
ducing the cardinal . For the other results the value of  is irrelevant. Let us
remark that 4.11(iii) can be used to construct a sheaf A for which a universal
(w + 1)-testing exists, but S, 43(w + 1) < S 43(w + 1). This shows that the
assumptions in 3.9 cannot be weakend.

Theorem 4.13 (The Height-Width Theorem). We have
¢(Q) < ht(Q) x wd(Q)

for any wpo set Q.
Proof. Let g be a character on Inc(Q). We define, for (g1,...,¢,) € Bad(Q)

haq1,-..,q,) = min{g(g;,,..., ¢, ) |11 <ia < ...<ip =n, h(g;,) < ...
S]:l(qi’"l)}

and
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fars-+-50n) = (ht(q1), h(@1)), (ht(g2), h(g1, g2)),. ..
cee (ht(qw-)) h’(ql, see )Qn)))'

It is easily seen that h is well-defined and that f(g1,...,¢.) € Bad(ht(Q)x
wd(Q)). Hence f : Bad(Q) — Bad(ht(Q) x wd(Q)) is a tree homomorphism,
which gives ¢(Q) < ¢(ht(Q) x wd(Q)) = ht(Q) » wd(Q) by 4.8 0
4.14 Remark. The above theorem generalizes the result that a partially ordered
set with at least rs + 1 elements either contains a chain of length 7 + 1 or an
antichain of s + 1 elements.

On the contrary to ¢(Q) and ht(Q) we did not find any reasonable charac-
terization of wd(Q)). Of course, for wd(Q) < w the Dilworth’s decomposition
theorem (Dilworth 1950) gives one, but the width behaves much worse, when
it is infinite. For example, there is a wpo set Q of width w + 1, which cannot
be decomposed into two sets, one of width w and one of width 1.

5. Erdos-Szekeres Theorem

Definition 5.1. Let < be a linear ordering on U. We define a 2-sheaf ES =
(Ef,E5) by

Ef ={(x1,-.,2m) |21 < ... < 2},

Ex ={(21, - 2m) |21 > ... > 2}
This gives rise to Ramsey 2-system

& = {E= |< is a linear ordering on U},

which will be called the Erdés-Szekeres system.
Definition 5.2. Let r : U2 — {1,...,k} be given. We define a k-sheaf S™ =
(81,...,5%) by

ST ={(21,...,8m) €U | r(2j,2j41) =i for j =1,...,m — 1}.
This defines a Ramsey system Sy, := {S" | r: U2 — {1,...k}}, which will be
called the generalized Erdds-Szekeres system.

A minor modification of this system yields a more general system, which, ho-
wever, has the same R-ordinals. We define

1 ={(®1,-s2m) €U | r(z;,z;) =1forall 1 <4, j < m}.
(Note that Rf was for r : [U]* — {1,..., k} already defined in 2.2; and this just

extends the definition to r : U*> — {1,...,k}.) We put Ch" := (R}, S5,...,ST)

and
Chy:={Ch" |r:U?* = {1,...,k}}.

Remark 5.3. It is an easy exercise that for ¢;,¢, finite the Erdds—Szekeres
theorem is equivalent to the statement S¢, (£1,45) = £1.4.
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(@o)oes 9(Bs)oes if there exists a o € ¥ such that a, < B+ and

ay = B, for any o' 9 0.

Let us denote by @ the partially ordered set (X, 57s,<). The set Q is in fact
well-ordered, we denote its type by [locx 7o Let us remark that [Toes 7o is
the usual ordinal product of the ordinals v, in the order given by < on %.

Lemma 5.8. Let n be a natural number and let Q be as in 5.7. Then there exists
an n—tuple v = (<y,...,<,) of linear orderings on Q such that for any ¢ € %
and for any z,y € Q, x>y and z <, y implies z, > y,, where z, and Yo are
the o~th coordinates of z and y, respectively.

Proof. We proceed by induction on n. For n = 1 we identify ¥ with {1,2}
and define <; as < in 5.5(i). Now assume the lemma to be proved for n — 1.
Let us prove it for n. For 1 = 1,2 we put

Y ={o€X¥|a(n)=1}
and '
Qz = (Xa-ez'i’)’o-,Q).

Let p° : @ — Q° be the projections. By the induction hypothesis, there are
linear orderings <j,...,<}_;, on @* (i = 1,2) with the desired property. We
define for j=1,...,n —1

z <;y if p'(z) <j p'(y), and p'(z) >} p'(y) implies p*(z) <2 p*(y)
and
& <,y if either p'(z) <p'(y),or p'(z) = p'(y) and z>y,0r ¢ = y.

Now let z >y and z <, y for some o € ¥. We distinguish two cases.
Case 1: o € X*. Then 2 >, y and it follows that p'(z) > p'(y), since otherwise
we would have a contradiction to z > y. It follows that for j = 1,...,n — 1 we
have . -

p(z) <;p(y) if 0(j) =1, and

p'(z) 2} p'(y) if o(j) = 2.
Thus we are done by the induction hypothesis.

Case 2: 0 € I*. Then & <, y. Since p is <—nondecreasing (!), we have p'(z)»
1 ol () — ol
p'(y) or p'(z) = p'(y). The former case cannot occur and hence the latier one

occurs. But then p*(z) > p*(y) and for j =1,...,n -1

p’(z) S? P’(y) if o(j) =1, and
p*(z) 22 p*(y) if 0(j) = 2.

We may again use the induction hypothesis. O
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Theorem 5.9. Let n > 1 and let v, (0 € X) be ordinals. Then

(i) Ifall v, are < |U[*, then Iocs Ve < Pe.((Vo)oez) < *oexo

(i) IoesYe < ®e,((Yo)oex) < *scxo for any ordinals +,-.

Proof. Again, it is suficient to prove (i). We shall skip the expression “o € X”
whenever it will be possible.

M7 < %¢,.((70)o) : Let @ and 7 := (<4,...,<,) be as in Lemma 5.8. We
may assume that ¢ C U and we extend the orderings <; to U arbitrarily.
Let g, : @ — 7. be the projection to the o—th coordinate. Extend g, by 0
outside Q. Then g = (gs)o is a (Yo )s—testing and it follows from Lemma 5.8
that the identity is a tree homomorphism Bad(Q) — Ygaa(g~,¢), which proves
the inequality.

Pe. ((Vo)s) < *sexvo : Let 7 = (<y,...,<,) and let a (7, )o—testing be given.
Let ¥ = {o1,...,09+}. We define r : U2 — {1,...,2"} by

r(z,y) = min{i | 2 <., y}.

Then the identity is a tree homomorphism Bad(E",g) — Bad(S",g) and the
inequality follows from 5.4. 0

Definition 5.10. We are going to show that, for n > 2, the upper bound from
5.9 is not attained. In the rest of this section we put n = 2 so that |¥| = 4.
Suppose that <;, <, are linear orderings on U. Then for a,b € U, a # b,
there is a unique o(a,b) € X such that a <,(, ) b. Let us call o,0' opposite if
o(3) + o'(t) = 3 for every i = 1, 2.
Lemma 5.11. Let a,b,c € U be distinct and let o(a,b), a(b,c), o(a,c) be
distinct. Then o(a,b), o(a,c) are not opposite.
Proof. Suppose the contrary. Because of symetry and possible reversing of the
orderings we may assume that o(a,b) is equal to 1 identically. Then we have
a<1b,a<3b, a>1¢, a>3c Thusc <y b, ¢ <3 band hence o(a,bd) = o(a,c),
a contradicition. 0

Definition 5.12. Let Q = X,ecx(w + 1) be equipped with the product partial
ordering. For ¢ = (¢s)o € X € @ we define the pattern of g by

w(q):={c € X | g <w}CX.

A sequence (q1,...,qm) € @<¥ is called jolly if

(5.12a) ot i # j, m(a:) # n(q;),

(5.12b) for1<i<j<n, 2 <|r(q)| <|n(g) <3, and

(6.12¢) for1<1i<j<m,if ¢7,q7 are the oth coordinates of ¢;, g;, respecti-
vely, and if ¢f < w, then ¢f < ¢7.

Thus the length of a jolly sequence is at most 10 and every jollly sequence is
bad. We put :

T := {a € Bad(Q) | a contains no jolly subsequence of length 10}.
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Lemma 5.13. vr < w* + 40w® + 502 + 4w + 1.
Proof. The idea is straightforward: since 7' contains no jolly subsequence of
maximal possible length, the essential part of some subset of type > w? is not
included in T. To make it precise we need some more definitions.

We say that (¢,)0 € ¥ € Q is controlled by (¢')c € ¥ € Q if w > q, >
go for some o € ¥. For # C ¥ and ¢ € Q we define

Qr :={q € Q| n(q) =7},
Q3 :={¢' € @ | ¢ is controlled by ¢ and |r(¢')| = 2},
Q3 :={¢' € Q| ¢ is controlled by ¢ and 2 < |r(¢')| < 3}.

It is easily seen that ¢(Qx) = W™, ¢(Q}) < w?, c(@Q%) < w?; let
gr ¢ Qﬂ' - wlﬂ|7
93 1 Q5 — ¢(Q%),
93 1 Q1 — (Q3)

be characters. In this proof we shall use a convention that g, of the empty
sequence is w!™l and similarly for gf and gf. If s € Q<“ and 7 C ¥, we denote
by s [ @ the (possibly empty) subsequence of s consisting of all those terms
of s which belong to Q. It is worth noting that

f:Bad(Q) — w* + 4w + 60w + 4w + 1

defined by
f(s) = #rcgn(s [ Q)
is a character on Bad(Q).

For some s € Q< and ¢ € @ we define J(s) € Q<¥, II(s) C [Z]2 U
[Z], s® € @< and s? € Q< by induction on the length of s. The intended
meaning is the following. J(s) will be the “first jolly subsequence”, II(s) will
be the set of patterns of terms of J(s), s will be the subsequence of elements
controlled by no term of J(s) and s? will be the subsequence of all elements
controlled by q.

For s = empty sequence we initialize all these objects to be empty sequen-
ces or empty sets. Now let s = z.(¢), where  is possibly empty. We distinguish
several cases; each one is ment to assume negation of preceding ones.

(i) If II(s) is undefined, or |r(q)] = 3 and [Z|>\II(z) # 0, then let
J(s), II(s), s°, s? be undefined.

(i) If |m(g)| # 2 or |n(q)| # 3 or w(q) € II(x), then let J(s) := J(z), II(s) :=
I(z), s :=2%(q), 87 := 2 for any ¢ € Q.

(iii) If g is controlled by no term of J(z), then let J(s) := J(z).(q), II(s) :=
I(z)U {n(q)}, s* :=2%(q), 87 := 29 for any ¢ € Q.

(iv) Let ¢' be a term of J(z) such that g is controlled by ¢', we put J(s) :=
J(z), I(s) = H(z), s* := 2%, s := 29 .(q), ¢ := 27 for any q €

Q\{¢'}.
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Let M(s) be the set of terms of J(s). We claim the following.

(513a)  J(s) is a jolly sequence.

(513b)  If [Z]2\II(s) # 0 then [X]* N II(s) = 0.

(513¢) Ifse T and [¥]*\II(s) =0 then [Z]3\II(s) # 0.

(513d) If s? is a nonempty sequence, then s? € (Q%)<“ and if moreover
[Z]12\II(s) # 0, then s? € (Q])<.

(513e) If gis a term of s and IT(s) is defined, then ¢ is a term either of s°
or of 57 for some ¢' € M(s).

Condition (5.13c) follows from (5.13a) and the definition of T, the other con-

ditions follow from the construction.

Now we define

F:T — w* +40® + 502 + 4w + 1
by
FO) 1= #1505 1 Qe Ty a8(6T) i [EP\II(s) # 0, where o € [51\1L()

= il gr(s | Q) if II(s) is undefined

T rCyY
= #1250 1 @ut Ty a8 HIZPI(s) = 0, where x € [S\T(s
It is easily seen that f is a character on T. O

Theorem 5.14. We have
Pe,(w+Lw+ 1w+ 1l,w+1) <wh+ 4w + 50 + 4w + 1
<(w+1)*(w+1)*(w+1)*(w+1).

Proof. By standardness, it is sufficient to prove the inequality for &¢,. So let
7 = (<1,<2) be a pair of linear orderings on U and let g = (g, ),cx be an
(w+1l,w+1,w+1,w + 1)-testing. We claim that

YBad(B ) < W + 4w 4 Bw? + 4w + 1.

This will be done by defining a tree homomorphism H : Bad(E",g) — T. We
define h = (hy)sex by

ho(a) := min{g,(d) | b €] aN E, a and b have the same last term}
and put, for a = (a1,...,an) € Bad(E7,g)

H(a) = (h(a1),h(a1,a2),...,h(as,-..,am)),

where h is considered as a function Bad(E™,g) — Q. It is easily seen that if
o = o(a;,a;), then
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(5.14a)  ho(ai,...,a;) < ho(aa,...,a;),
and if a; = a;, then
(5.14b)  ho(ay,...,a;) > ho(ay,...,a;) forall ¢ € X.
Hence H is a tree homomorphism Bad(E", g) — Bad(Q) and thus our aim is to
show that its range is in fact contained in T. To this end suppose the contrary,

namely that
bl = (b};)aEZ‘ = h(al, e ,a,-lo),

b10 — (b,l,o)aeﬂ = h(al, ey aim)’

is a jolly sequence for some 1 < 4; < ... < 439 < m. By (5.14b) we have
a;; # a;, for 1 < j <p < m and thus g;, := o(a;;,a;,) is well-defined. Now
for j = 7,8,9,10 let w(b;) = {o;} (w(b;) consists of one element by (5.12b)).
There are p,{ such that 7 < p < ¢ < 10 and 0,0, are opposite. Now let
j €{1,...,6} be such that n(b;) = 2\ {op,0.}. By (5.14a)

bT > P

o7, 7,p°
From this and (5.12c) we deduce that o;, = 04, 050 = 0p, O1p = 07,0 =
o7, i1 € {0p,00} (see fig. 1, where » denotes a value less then w).

g¢ 0p 07

b = (w,w,*,%)
b7 = (%,%,w,*)
b? = (¥,w,*,*)

be = (w, %, %, %)

Fig.1
By (5.12a), o7, 0p, 0¢ are distinct. Now if ;7 = 5, then o, 7 is opposite
to 0, while o7, 07,p, 0;p are distinct. If, on the other hand, o;7 = ¢, then
;7 is opposite to o ¢, while o7, 07,¢, 05, are distinct. In both cases we obtain
a contradiction to Lemma 5.11. 0

6. Ramsey Systems

In this section we give bounds for €,(v1,...,7:) and ®,.(71,-++57)- Recall
that, according to 3.17, Sn(Y1,---,7k) = Bn(Y1,---,7s) for 11,..., 7 < |U|*.
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Theorem 6.1.

(1) Pu(71,-..,7) =0 if some v; = 0.

(i)  Hvy,...,7 >0 then &1(y1,...,7) = 11 ... #%.

(iii) IO <71,..., v < |U|" then &1(71,..,7k) = 11 ... 7.
(iv) Forn>1and~yi,...,7x >0

Sr(v1y-0, k) <

< sup [én—l(én(q’i,' ",710):'-',4571(71,' "77;9""770)9'-- ,fﬁn(’)’l;- . e ,71'\:)) + 1]
v <y

Proof.
(i)  Obvious.
(ii) <:For(a,g)€ T(R};1,---,7k) define

fla,g9) = myz:)‘x[#f:l min{g;(b1,...,bm) | (b1,...,bm) C a,r(b1) = ...
= T(bm) = 7'}]7

the max taken over all colorings [U]' — {1,...,k} such that g is an (R"; 74,. .., Y )
germ on a. It is easily seen that f is a character on T(R};71,...,71).
>: Let v1,...,7% be given, let us choose distinct elements Z1,...,2, € U and

define

r(z) =1 if 2 =
= arbitrarily otherwise.

Let @ be the set consisting of all pairs (i, a), where i € {1,...,k} and a € v;,
partially ordered by the rule (i,a) < (5,8) if i = j and a < B. Then ¢(Q) =

T ... #k by 4.6.
For s = ((21,01),...,(im,am)) € Bad(Q) let a* = (a1,...,am) =
(24y,..., i, ) and define gf :| a® — 4; by

s _ .
9:(aj,,...,a;,) = a;, if aj,,...a;, are the first p
occurences of z; within a°

=0 otherwise.

Then ¢° = (g{,...,93) is an (R";71,...,7%)-germ on a°. Hence if we define a
tree homomorphism H : Bad(Q) — T({R"};m,...,7) by H(s) = (a*,¢°), we

see that y1# ... #7 = YBaa(@Q) < YTHR Yyrpers) < P1(T15- 005 78)-
(iii JThis follows from (ii) above and Theorem 3.17, but we give a direct proof. It

suffices to show that if y1,..., are nonzero and < |U|T, then 4, ... T <
®1(71,---,7%)- Let @ be as in (ii), we may safely assume that Q C U. We

define a (y1,...,7:)-testing g = (g1,...,9%) by

gi(a1,...,0m) = an if a; = (l,a;) €Qfor j=1,...,m
=0 otherwise

and a coloring r : [U]' — {1,...,k} by
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r(a) =1 if a = (i,a) € Q
= 1 otherwise.

Let f: U< — &1(71,...,7%) be the R—character corresponding to R"
and g. Since, as easily seen, every sequence from Bad(Q) is (R", g)-bad, it
follows that f is a character on Bad(Q), hence &,(v1,... yYe) 2 NH - H,
as desired.

(iv) For r : [U]* — {1,...,k} and z € U let »' : [U]*"? — {1,...,k} be
defined by :

' zaa}) =r({31,.. @, 2}) if s £ fori=1,...,n—1
= arbitrarily otherwise.

Let g be a (71, ...,7:)-testing and let T be the tree of (R", g)-bad sequen-
ces. We are going to estimate the type of Ti,). Let v = gi(z), we define

(71) ces 771':7 cve 77k)_teStings gi = (gi, e ,g;c) by

9;(a) = g;j((z)-a) if j # i or gi((2).a) < 7!
=0 otherwise.

Let b’ be the R—character corresponding to R™ and g°. Then h = (h!,.. ., h®)
is a (Pn(ir--» V)5 > Bnl(71,- - -,7,))-testing, let f be the R-character
corresponding to this testing and the k-sheaf R". We claim that f is a
killing on every sequence a € U<“ such that (z).a is (R",g)-bad. Indeed,
each g;: is a killing on | a N R} N RY, hence h'is a killing on | a N R; " and
consequently f is a killing on a. Thus

YTy < én—l(én(’ﬂl? ce 771\'-)7 ce ,én(')’h v ,7;))

and (iv) follows. 0

Corollary 6.2. $5(v1,...,7k) < (k + 1)n##ne,

Remark 6.3. For n = 2, Theorem 6.1 gives the same estimate as the one

known is the finite case. The estimate contained in Corollary 6.2 is slightly
weaker because of the difficulties with limit ordinals. On the other hand, for

n > 2, the bound from 6.1(iv) is of little interest; in the finite case, for in-
stance, it is not even primitively recursive in n. To obtain sharper estimates
for @,(71,...,7k) (n > 2) one has to use different methods. It is convenient to

use the strong R-ordinals here.

Definition 6.4. For n > 3 and colorings r; : [U]* — {1,...5;} (i=1,...,n) put

B = {a e USY | ri({z1,...,2:}) = r({z,. .. ,Zi—1,2;}) for any
t=1,...,n and any two injective subsequences

(1171,. ..,mi),(ml,...,xi_l,xé).
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We define a 1-system Bj,,...j» by
le)""j'n. = {Brl,'“,r" I 7'1: : [l']']z - {1, A 7j1}}

and put

2 (y) = 551,...,1,k(')') (n — 1 occurences of 1).
We denote by 1 the constant mapping U <% — {1}.

Theorem 6.5.

(i) @;,,.,.(0)=0, and fory >0

(1) Pjy g g (V) S 1% @1, (),

(A1) 155,050 (V) < SUD{PL o iz 1503 (V) + 117 < 7}

Proof.

(i)  Obvious.

(ii)  Let the colorings r; : [U]* — {1,...,5} (i = 1,...,n), an ordinal ¥ > 0
and a (y)-testing g be given. Let b : U<® — &, ;.  , (v) be the character
corresponding to B2 and g, and let f : U<¥ — j; « B15s,in (V)
be the R-character corresponding to R™ and (h,...,h) (5 times), which
exists by 6.1(ii). Now if a is (B™"™, g)-bad, then A is a killing on
} anN R} for every j =1,...,7;, hence f is a killing on | a, which proves
(ii).

(iii) Let the colorings r; : [U}} — {1,...,5:} 6 =2,... ,n), € U, an ordinal
v > 0 and a (y)-testing g be given. We put j; = 1 for definiteness. Let
T be the tree of (B2 ™ g)-bad sequences. We are going to estimate
the type of T(,). We define colorings 7; : [U]* — {1,...,7:.5i41} (Z =
L..o,mn—1), 7n: [U™ = {1,...,5.} by

Tr 1= Tp,

Fi({a1,- .-, ai}) = Jiyr-(ri({ar, ..., a:}) = 1) + rip1({2, 04, . ..y a;})

if 0
= Jix1.(ri({a1,...,a:}) — 1,1 if z ¢ {a1,...,a:}

otherwise
fori=1,...,n —1 and a (g(z))—testing h by
h(b) = g((x).b) if g((2).b) < g()

=0 otherwise.

Nowif b € B™ ", then (z).b € BY =" Thusif (z).ais (BL™™ g)-bad,
then a is (B™ ™ h)-bad. Hence

’YT(;,) S ¢B"’1 """ Tn (g(w))
and (iii) follows. O

Corollary 6.6. If v is finite, then $}(v) is finite. For any v we have $7(v) < w”.
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Theorem 6.7. For n > 3 we have
én('yl, tee ’7k) < é}:(én—l(’rl) s 7716))

Proof. Let r : [U]™ — {1,...,k}, let 7y1,...,7; be ordinals and let g =
(915---,9%) be a (71,...,7;)-testing. We define b : U<® — &, _1(71,...,7x)
by

a) = Trpp-tip,..m)(@9 [L @) if g ] ais an(R% 7, ..., 7)—germ on a
for some 7 : [U]™! — {1,...,k}

=0 otherwise.

We claim that if a is (R", g)-bad, then a is (B*~-1" h)-bad. Indeed, let
b €l anBb7, then for an injective sequence (21, ...,2,) C b we may define
F({z1,...,2n-1}) = r({21,...,2}), since the right hand side does not depend
on z,. Thus g | bis an (R";v1,...,7%)-germ on b and hence A is a killing
on| b. Thus, a is (BY~17" h)-bad. We conclude that the identity is a tree
homomorphism Bad(R", g) — Bad(B»1" h). Hence

@Rr (')’1, e ,'Yk) S QBl,...,l,r (En-—l(’}'l geae ,’)’k)),

which gives the theorem by 3.17. O
Remark 6.8. Note that Theorem 3.17 is used essentially in the proof of 6.7.

Corollary 6.9. For n > 2 we have

w(k+1)‘71#c--#’7k

w (n—2) times
én(')’l,-")')’k)sw } .

Now we are going to obtain lower bounds for &, (v1,...,7z).

Definition 6.10. We need to consider another set U and for every tree S C
U<¢ its dual tree S C U~“. The set U is defined as the set of all functions

¢ : USY — {0,1} with the property that there exists an a € U<% such that
e(b) = 0 for every b € U<* which is not a segment of a. The letter ¢ (with or

without dashes or suffixes) is reserved to designate elements of U or U ~*.

For ¢,¢' € U we define ¢ < ¢' if there exists an a € U<% such that e(a) <
¢'(a) and for every b € U<¥, ¢(b) # ¢'(b) implies a = b or a < b. In this case
we define D(e,¢') := a; this determines D(e,¢') for € 1€’ uniquely. The relation
<is easily seen to be an ordering. Observe the following properties of <« and D :
(6.10a) Ife<e'ae”, then D(e,e') # D(e',e").

(6.10b) Ifey aey<a...<ep, then D(e1,e,) =< —min; <;<n D(g5-1,€;). [For
a partial ordering <, < —min M means the < —least element of M,
if such exists.]

If S C U<¥ is a tree, we define the dual tree S C U~ as the set of all sequences
(€15.--,Em) € U~ such that
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(6.10c) ife;(a)=1thenaec Sforeveryac U<¥ andi=1,...,m,
(6.10d) e1<gez<a...dEm.

Lemma 6.11. Leﬁ_S C U<¥ contain no infinite chain and let S C ﬁ<w be the
dual tree. Then S contains no infinite chain and we have

’)’g > 275.

Proof. Suppose that
(61), (61,62), . .,(61, S ,€n), e
is an infinite chain in §. We put

D; := JLIEO D(ei en).
(By (6.10b) the right hand sequence is eventually constant.) By (6.10b), too,
the sequence Dy, D,,... is <-nondecreasing and by (6.10a) is not eventually
constant. Thus it yields an infinite chain in S.

This proves the former statement. To prove the latter one we proceed by
induction on vys. Let § be fixed and suppose that the lemma holds for every
tree S' C U<* such that ys» < 7. Let v < 75 be given. We denote by T
the tree of all (¢1,...,6m) € S such that e1(z) = ... = e, (z) = 0 for every
z € U< such that |z| = 1. If 2 € § then (S.) (i.e. the dual tree to S,) is
contained in T'; hence, by the induction hypothesis
(6.11a) 77 < Y5,y = SWPges 27 2 27.

We claim that
(6.11b) 5, > 27 for every ¢ € T. To prove (6.11b) let z € § be such that

|z| = 1; we define H : (5,) — S; by
H(e1y - r6m) =t(e]s---ren);

where
e, =cifa)if a £z

=1 if a = 2.
Then H is a tree homomorphism showing that
V5, 2 SUP (5, > sup 275 > 27,
which proves (6.11b).
Now (6.11a) and (6.11b) imply
013 >27 427 = 97+1

which proves the lemma, since v < s was arbitrary. O
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6.12 Stepping-Up Lemma. For n > 3 and ordinals 41, ...,v, we have

én—i—l(")’i,')/é, ce- 77;c) > 24;"(71""’7’*),

where
v; = min(y;,w) +sup{y' +n |y <} fori=1
=7y + min(y2 +n — 1,w) for i =2
=sup{y +n |7y <} fori=3,...,k

Proof. We may assume that v1,...,v% < |U|T, forif y; > |U|* for some i and
all 7; are nozero, then @ i1(71,-.-,7L) = BulV1,...,7k) = [U|T = 21UIF by
2.6, 6.1(iii) and obvious monotonicity of the R-ordinals. By 3.18 there exists
a (71,...,7e)-testing g = (g1,...,9%), a coloring r : [U]™ — {1,...,k} and
a simple substree S of Bad(R",g) of type $,(71,...,7,). We shall define a
coloring 7 : [U]"*! — {1,...,k} and a (7},...,7%)-testing b = (hq,..., )
such that S C Bad(R",h). Then the lemma will follow from 6.11.

For 61,62 € U we define é; < 8, if (61,8,) C a for some a € S. This is an
ordering by simplicity of S and the definition of a subtree. For ¢,¢' € § let
8(e,€') be the last term of D(e,e'). By (6.10a), (6.10b) and simplicity of S we
have
(6.12a) ife,e',e" € S and eae’ a€”, then 6(e,¢') # b(c', "),

(6.12b) ifeq,e9,...,6m € S and & <& d...4€m,, then
6(e1,6m) = 4 —ming ;< 8(ei-1,€;).

Let E = {e1,...,6n41} € [U]**1. If E is not linearly ordered by «, then define
7(F) arbitrarily. In the opposite case assume that ¢; <e2 <... 96,47 and put
b; = b(eiy€i41). Now define

F(E) = r({61,...,6,}) if 6,<...96, 0r §,a...a6],

=1 if51<1521>53;
= 2 if51[>62<153,
= arbitrarily otherwise.

Claim 6.13. Let €; <62 4... a4&,, be elements of U, m > n and assume that

(e1y...,6m) € RT. Put, forj=1,...,m—1, 0; = (¢j,€j4+1). Then there exists

apsuchthatl <p<m-n+1 and

(6.13a)  (b1,...,6,) € R} and(8p,...,6m-nt1) € R}, and one of the following
possibilities occurs.

(6.13b) 61 <963...96,1 <98, 811> ...Dbp_pyy O

(6130) 511>52l>...l>§p_1l>5p<15p+1 <1...<16m_n+1.

Moreover, if 1 <k <m —n+ 1, then either i = 1 and (6.13b) holds, or i = 2
and (6.13c) holds.

Proof. For 2 <j<m—mn+1,let us call j local max if §;_; <6; > ;41 and

local min if §;_1 28> é;41. If ¢ # 1 then there can be no local max j, since
otherwise (€;_1,€;,€j41,...,6n+1) € R]. Similarly there can be no local min
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if i # 2. Since between any two local max’s there must be a local min and vice
versa, all of the claim except (6.13a) follows.

To prove (6.13a) let (6;,,...,8;,) C (64,... »6m—n+1) and let, say, 6;, ad;, <
.+.<6;, . The result follows by stepping—up to the set

E={ei,...,€i,,€i, 41}
For1<j<n
6(eijrei ) =<—min{b | i; <€ <ijp 1} = &,
by monotonicity and
6(ei, €i,41) = b5,
The 6;; are monotonic so E is colored “by the §”, and r({iyy..,6:,}) =

T(E) =i. I §;, b...p§;, the same argument works with

E:{5i175i1+17---)5in+1}- O

6.14 Proof of 6.12 continued. For 6, € U we put ||§,n| := m if (81,...,6m) € S
for some 6i,...,6m,—1 € U. Note that |.|| is unique, if defined. It remains to
define k. So let (e1,...,6m) C e € S, let (e1,...,6m,) € RT and let p be as in
6.13. We define 6; := §(¢j,¢;41) for j = 1,...,m—1 and observe the following.

(6.142)  If 6; > 8 then [15]] < |6l
(6.]41)) If 5,'1 d...4 5,'8 then gi(&l, - ,5;’3_1) < gi(ﬁil, - ,5,;’ )

Now we define for7 = 1

hi(e1,.++,€m) = min(y1,w) + g1(61) +n —m ifm>n
:min('yl,w)+g1(51,...,6m_n+1) fm>np=m—-—n+1
= |[6m—1]] fm2>n,p<m—-n+1, 11 >w
=7 —m fm>n,p<m-n+1, v <w

fori =2
h2(€l7-")€m):72+“61”+n’_—m lfmS’)'L, Y2 2w
=212+n-m-1) fm<norp=m-n+1, and 7, <w
:')/2+”5m—n+1” lfmZn,p:m‘TH'l, 722(‘7
=g2(bpy.ybmentr))if m>n, p<m-—-n+1

andfori=3,...,k

hi(ex,...,em) = max(||61]),9:(61)) + n —m if m < n, Y > w

:gi(51,---,5m+n—1) if 61 <1...<16m+n_1, %'zw
= ”(Sm—n+1” if 6.0 5m+n—17 Vi 2w
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Corollary 6.15. For p,{ finite we have

3,20 +n—-1,204+n—1w,...,w) > 28 Plwr.w)

Using the trivial lower bound &3(w,...,w) > w® (k repetitions of w), which
follows from 5.4 we obtain

Theorem 6.16. For k > 3 we have

ok ) ok
’ (n—1) times . (n—2) times

> By (W, w) > W
S

ktimes

7. Canonical Ramsey Theorem

In this section we assume that U is linearly ordered by an ordering <, n will
be a fixed number and and & a subset of {1,...,n}.

Definition 7.1. Let r : [U]™ — [U]® and k C {1,...,n}. We say that a sequence
a € U<¥ is (7, k)-canonical if for any 2n terms 1 < ... < Zn, Y1 < ... < Yp Of
a we have r({z1,...,2.}) = r({y1, .-, yn}) iff ; = y; for every i € k. Now we
define a 2"-sheaf C" = (C})ucqa,....n} Dy

Cr :={a € U?|a is (v, k)-canonical}

and put
Con :={C"|r: (U™ - [U]"}.

It is easily seen that C™ is a standard 2™-system, it has the R-property by
the canonical Ramsey theorem of Erdds and Rado.

Definition 7.2. Let b € U<¥, let ¢ = {21 < ... < 2o}, ¥ = {11 < ... < ¥},
w = {u1,...,un} and v = {v1,...,v,} be sets consisting of terms of b. We put
z:y=wu:v if we have

z; <y; iff ug < v, and ;> y; iff u; > v

Let r : [U]™ — [U]™. We say that b € U<¥ is r-invariant if for any sets z,y,u, v
consisting of terms of b such that ¢ : y = u : v and r(z) = r(y) we have
r(u) = r(v).

Lemma 7.3. Let r : [U]™ — [U]™ and b € U<“. If b is r-invariant and contains at
least 2n +1 distinct elements, then it is (r, k)-canonical for some & C {1,...,n}.

Proof. This is a standard argument. See e.g. Rado’s paper in this volume.
O
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Theorem 7.4. Let k be the number of equivalence relations on the set [{1,...,2n}]"™.
Then

éC"((’)’I‘z)ﬁ,g{l,...,‘n}) < é27‘1'((")/16 +2n — 1)ng{1,...,n}7 377', "')3n)7

where the argument 3n is repeated (k — 2™) times.
Proof. Since the system C™ is standard, we may use Lemma 3.15 and choose
a simple subtree T of the germ tree T'(Cy;(7x)x) such that yp = Do ((Ys)r)-
Now if (a,g) € T, then a is an injective sequence.

Let £ designate the set of all equivalence relations on [{1,...,2n}]". For
k C{L,...,n} let E, € £ be defined by

{or <o < @n}Ee{Br < ... < Bn} iff a; = B; for every i € .

Let (a,g) € T and let g = (gx)x be a (C™,(¥x)x)-germ on a, where C™ = (Chx
and r : [U]™ — [U]™. We define

7 UP™ = €
so that 7({21, ..., 22, }) = F if and only if it holds

{a1 < .. <@ }E{f < .. < Br} iff P({Zayy oo 20, }) = ({2,528, }),

where z; < ... < 22, in the ordering on U. Finally, we define h = (hg)ECce by
the rule

he(b)=vx+2n—1-1b if E = E, for some « and |b| < 2n
= gx(b) it E = E, for some « and |b| > 2n

= max(3n — [b],0) otherwise .

We are going to show that H : T — T(R}™; (x + 2n — 1)., 3n, ..., 3n) defined
by H(a,g) = (a,h) is a tree homomorphism, which will give the theorem. To
this end we must show that h is an (R"; (v, + 2n — 1), 3n, ..., 3n)-germ on a.
To see this it is sufficient to show that

(74a)  ifbe RG n | aand [b > 2n then b e CT, and
(7.4b) ifb€ RG. | aand |b| > 3n + 1, then E = E,, for some «.

To prove (7.4a)let b € Ry n | a and [b] > 2n. Let 21 < ... < Zp, 1 < ... < yn
be terms of b. Let 23 < ... < 23, be terms of b such that z; = Zagy Yi = 28;,
a1 < .o < @, 01 < ... < Br. Now we have r({z1y e 2n}) = r({y1, o Yn}) <
T({zau ceey zan}) = T({zﬁn'“)zﬂn}) < {ah '"7'an}Er;{,81) "'aﬂn} & a; = @; for
every i € k & x; = y; for every ¢ € «, which shows that b € C7.

To prove (7.4b) let b € Rpn | a and |b] > 3n + 1. Let ¢ = (g < ... < Can)
be a sequence consisting of 2n + 1 terms of b such that the remaining n terms
of b are all < ¢y (recall that b is injective since a is). We claim that ¢ is r-
invariant. Solet z = {z1 < ... < 2.}y ={y1 < ... <yuhu ={u1 < ... <
Un},v = {v1 < ... < v,} be subsets of {cp,...,c2,}, let & : y = u : v and
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r(z) = r(y). It follows from z : y = u : v that we can find 4n terms 2, <
oo < Z2n, W1 < ... < Wap Of b (here we need that |b] > 3n + 1) and sets {a; <
we < an} C{1,.,2n}, {B1 < ... < B} € {1,...,2n} such that &; = 24,,y; =
Zp; Ui = Wq, and v; = wg,. Since F({z1,...,20n}) = F({w1,...,wa,}) = E we
have r({Z1,..,2n}) = r({¥1, -, Un}) = r({Zass -, 200 }) = 7({28y5 0y 28, }) =
{ar, . an}B{B1,.... Br} = r({way, -y Wa, }) = r({wp,, -y wp, }) = r({w1, 0oy un}) =
r({v1,...,9}), which proves that ¢ is r-invariant.

Now by Lemma 7.3 there exists a £ C {1,...,n} such that ¢ is (r,x)-
canonical. Hence E = E,, which proves (7.4b) and thus completes the proof of

the theorem.
O

Corollary 7.5. We have forn > 1
wH#lreleC{l,...,n}}

w’ #w 2n—1)time
Ben(Te)ecitm) < @ pan—times
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