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Abstract. A graph is perfect if for every induced subgraph, the chromatic number is equal to
the maximum size of a complete subgraph. The class of perfect graphs is important for several
reasons. For instance, many problems of interest in practice but intractable in general can be
solved efficiently when restricted to the class of perfect graphs. Also, the question of when a
certain class of linear programs always have an integer solution can be answered in terms of
perfection of an associated graph.

In the first part of the paper we survey the main aspects of perfect graphs and their
relevance. In the second part we outline our recent proof of the Strong Perfect Graph Conjecture
of Berge from 1961, the following: a graph is perfect if and only if it has no induced subgraph
isomorphic to an odd cycle of length at least five, or the complement of such an odd cycle.
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1. Introduction

In this paper graphs are finite and simple; that is, they have no loops or multiple
edges. Let G be a graph. A hole in G is an induced cycle of length at least four.
An antihole in G is an induced subgraph isomorphic to the complement of a hole.
(The complement of a graph G is the graph with vertex-set V (G) and edge-set
consisting precisely of all distinct pairs of vertices that are not adjacent in G.) A
clique in G is a set X ⊆ V (G) of pairwise adjacent vertices, and a stable set is a
set of pairwise non-adjacent vertices. The size of a maximum clique of a graph G
is denoted by ω(G) and the size of a maximum stable set is denoted by α(G). The
chromatic number of G, denoted by χ(G), is the least number of colors needed
to color the vertices of G in such a way that adjacent vertices receive different
colors. In other words, χ(G) is the minimum number k such that the vertex-set
V (G) of G can be partitioned into k stable sets. Clearly χ(G) ≥ ω(G) for every
graph G, but equality need not hold. For instance, if G is an odd hole (i.e., a
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hole with an odd number of vertices), then χ(G) = 3 > 2 = ω(G). Similarly, if
G is an odd antihole, say on 2k + 1 vertices, then χ(G) = k + 1 > k = ω(G).

A graph G is perfect if χ(H) = ω(H) for every induced subgraph H of G;
that is, the chromatic number of H is equal to the maximum size of a clique
of H . Thus odd holes and odd antiholes are not perfect, and neither is any
other graph that has an odd hole or an odd hole antihole. Are there any other
imperfect graphs? Berge [1] conjectured in 1961 that there are not, and a proof
of that is our main result:

1.1 A graph is perfect if and only if it has no odd hole and no odd antihole.

In the second half of the paper we will outline our proof. The first part is
devoted to discussing the relevance of perfect graphs. This survey is not intended
to be exhaustive—we concentrate on the aspects of perfect graphs that we find
the most interesting. The subject is much broader than can be covered in our
short survey. We refer the reader to the excellent book by Ramı́rez Alfonśın and
Reed [34] for further reading.

2. Examples of perfect graphs

A graph B is bipartite if its vertex-set V (B) can be partitioned into two disjoint
sets X, Y in such a way that every edge of B has one end in X and the other
end in Y . In other words, B is bipartite if and only if χ(B) ≤ 2. It follows
immediately that every bipartite graph is perfect.

Now let G be the complement of a bipartite graph B, in symbols G = B. We
claim that G is perfect. Since every induced subgraph of G is the complement
of an appropriate subgraph of B, it suffices to show that χ(G) = ω(G). But
ω(G) = α(B), the maximum size of a stable set of B, and χ(G) is equal to the
minimum number of cliques of B covering the vertices of B. Thus the statement
χ(G) = ω(G) is equivalent to the assertion that the vertices of the bipartite
graph B can be covered by α(B) edges and vertices. The latter is a classical
result of König [23] and can be found in almost every graph theory textbook.

Another two classes of perfect graphs can be obtained from bipartite graphs
by means of line graphs. Let G be a graph. The line graph of G is the graph L(G)
with vertex-set E(G) in which e, f ∈ E(G) are adjacent if they share an end in
G. Now if B is a bipartite graph, then G = L(B) is perfect. To see this, it again
suffices to show that χ(G) = ω(G). Now ω(G) is equal to the maximum degree of
B, and χ(G) is equal to the edge-chromatic number of B, the minimum number
of colors needed to color the edges of B in such a way that adjacent edges receive
different colors. The latter two numbers are equal in any bipartite graph B by
a well-known theorem of König [23].

Similarly, if B is a bipartite graph, then G = L(B), the complement of L(B),
is perfect. To see this it again suffices to show that χ(G) = ω(G). But χ(G) is
the minimum number of cliques of L(B) that cover the vertices of L(B), which
in turn is equal to the minimum number of vertices of B that meet all the edges
of B. On the other hand, ω(G) is the size of a maximum stable set in L(B),
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which is equal to the maximum size of a matching of B. But the maximum size
of a matching in a bipartite graph is equal to the minimum number of vertices
meeting all the edges of B by another classical theorem of Egerváry [13] and
König [24].

Thus we have seen four classes of perfect graphs. The perfection of the first
class is easy, and for the other three classes their perfection is equivalent to an
old and well-known result in graph theory. By now many more classes have been
discovered; by the last count there are 96 known classes of perfect graphs.

3. The perfect graph theorem

Notice that in the above examples of perfect or imperfect graphs it was always
the case that a graph is perfect if and only if so is its complement. This is not a
coincidence, due to the following theorem of Lovász [26], originally conjectured
by Berge [1].

3.1 (Perfect Graph Theorem) A graph is perfect if and only if its comple-
ment is perfect.

For the proof we will need two lemmas. The first is easy.

3.2 A graph G is perfect if and only if every induced subgraph H of G has a
stable set that intersects every maximum clique of H.

The second lemma we need is due to Lovász [26].

3.3 (Replication Lemma) Let G be a perfect graph, and let v ∈ V (G). Define
a graph G′ by adding a new vertex v′ and joining it to v and all the neighbors of
v. Then G′ is perfect.

Proof. By (3.2) it suffices to prove that G′ itself has a stable set that intersects
every maximum clique of G′. Since G is perfect, it has a coloring using ω(G)
colors; let S be the color class containing v. Then S is as desired. ut

In the proof of (3.1) we will give another characterization of perfect graphs in
terms of certain polytopes associated with graphs. Let G be a graph. The stable
set polytope of G, also known as the vertex packing polytope of G, denoted by
STAB(G), is the convex hull in RV (G) of all incidence vectors of stable sets of
G. A related polytope is the fractional stable set polytope or fractional vertex
packing polytope QSTAB(G) ⊆ RV (G) defined by the constraints

xv ≥ 0 for every v ∈ V (G), (1)
∑

v∈V (K)

xv ≤ 1 for every clique K in G. (2)

Since the incidence vector of every stable set satisfies (1) and (2), we have
STAB(G) ⊆ QSTAB(G). The following theorem, which also incorporates re-
sults of Chvátal [2] and Fulkerson [14,15], implies the Perfect Graph Theorem.
Our treatment follows [28].
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3.4 For any graph G, the following conditions are equivalent.

(i) G is perfect,
(ii) STAB(G) =QSTAB(G),
(iii) G is perfect,
(iv) STAB(G) =QSTAB(G).

Proof. (i) ⇒ (ii). Let x satisfy (1) and (2). By rational approximation we may
assume that x is rational. Take an integer N such that y = Nx is an integer
vector. By (1), yv ≥ 0 for all v ∈ V (G). Let Yv (v ∈ V (G)) be disjoint sets with
|Yv| = yv, and let H be the graph with vertex–set

⋃
v∈V (G) Yv in which a vertex

of Yv is adjacent to a vertex of Yu if and only if either v = u or v is adjacent
to u in G. By a repeated application of the Replication Lemma (3.3) the graph
H is perfect. By (2) we have ω(H) ≤ N , and hence V (H) can be covered by
N disjoint stable sets of H . Let q1, q2, . . . , qN be the incidence vectors of the
corresponding stable sets of G. Then x = 1

N (q1 + q2 + · · · + qN ), as desired.
(ii) ⇒ (iii) Since condition (ii) is inherited by induced subgraphs of G, by (3.2) it
suffices to prove that G has a clique that intersects every maximum stable set of
G. We prove this assertion by induction on |V (G)|. We may assume that every
vertex belongs to a maximum stable set of G, for otherwise we may delete such
vertex and proceed by induction. Let X be the subset of STAB(G) consisting
of all vectors x with

∑
v∈V (G) xv = α(G). Then X is a face of QSTAB(G), and

hence one of the inequalities (1), (2) is satisfied with equality for every vector in
X . Since every vertex of G belongs to a maximum stable set of G, it follows that
none of the inequalities (1) is satisfied with equality for all x ∈ X , and hence
one of the inequalities (2) is. Thus there exists a clique of G which meets every
maximum stable set of G, as desired.

The remaining two implications follow by applying the previous arguments
to the complement of G. ut

4. Integrality of polyhedra

Let A be a 0, 1-matrix and consider the following linear program:

max c · x subject to x ≥ 0 and Ax ≤ 1. (3)

For which matrices A is it true that for every objective function c, the linear
program has integral optimum solution? This is an important question, because
solving integer programs is an NP-hard problem, whereas efficient algorithms
exist to solve linear programs. It turns out that the answer to our question leads
directly to perfect graphs.

We say that the ith row of a matrix A = (aij) is undominated if there
is no row index j 6= i such that ail ≤ ajl for all l. Let G be a graph with
V (G) = {v1, v2, . . . , vn}, and let K1, K2, . . . , Km be its (inclusion-wise) maximal
cliques. We define the maximal clique versus vertex incidence matrix of G to be
the m × n matrix A = (aij), where aij = 1 if vj ∈ Ki, and aij = 0 otherwise.
The following is a result of Chvátal [2].
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4.1 The linear program (3) has an integral optimum solution for every objective
function c if and only if the undominated rows of A form the maximal clique
versus vertex incidence matrix of a perfect graph.

Proof. To prove “only if” let A = (aij) be an m × n matrix, and assume that
(3) has an integral optimum for every nonnegative objective function c. We may
assume that A has no dominated rows (by deleting them). Let G be the graph
with vertex-set {1, 2, . . . , n} in which i is adjacent to j if and only if ali = alj = 1
for some row index l. We first show that A is a maximal clique versus vertex
incidence matrix of G. Indeed, if that were not the case, then G has a clique K
such that no row of A has ones in the positions corresponding to the vertices of K
and possibly elsewhere. Choose such K with |K| minimal. Then clearly |K| ≥ 3
by construction. By the minimality of K, for every v ∈ K there exists a row with
ones in columns corresponding to K − {v}. Let c be the incidence vector of K.
Then c · x ≤ 1 for every integral vector x ∈ RV (G) satisfying x ≥ 0 and Ax ≤ 1,
for such x must be the incidence vector of a stable set. Now let y ∈ RV (G) be
the vector whose coordinates are 1

|K|−1 in positions corresponding to elements

of K, and all other coordinates are 0. Then Ay ≤ 1, and yet c · y = |K|
|K|−1 > 1,

a contradiction. This proves that A is a maximal clique versus vertex incidence
matrix of G, and hence the polyhedron {x ∈ RV (G) : x ≥ 0 and Ax ≤ 1} is
precisely QSTAB(G). Now the integrality of optima implies that every vertex of
QSTAB(G) is integral, and hence is a characteristic vector of a stable set. Thus
STAB(G) = QSTAB(G), and hence G is perfect by (3.4).

To prove the “if” part, let G be perfect. We may assume that A itself is the
maximal clique versus vertex incidence matrix of G. By (3.4) the linear program
(3) is equivalent to maximizing c · x subject to x ∈ STAB(G), which clearly
attains its optimum at a characteristic vector of a stable set, and hence has an
integral optimum solution, as desired. ut

5. Berge’s motivation: Shannon capacity

Let us go back in history and review what motivated Berge to introduce perfect
graphs. Let us consider the transmission of symbols from some finite input alpha-
bet Σ through a discrete memoryless channel. Certain symbols may be confused
during transmission, and we are interested in how many n-symbol error-free
messages there are.

To be more precise, with every a ∈ Σ we associate symbols a1, a2, . . . of some
output alphabet. The meaning of this is that when a is sent through the chan-
nel, one of a1, a2, . . . is received, say according to some probability distribution.
However, in this model we are interested in transmissions that are 100% error-
free, and so we define confoundability as follows. Let a ∈ Σ be as above, and
let b ∈ Σ have b1, b2, . . . as the corresponding members of the output alphabet.
We say that a and b are confoundable if ai = bj for some i, j, and otherwise we
say that they are unconfoundable. Finally, we say that two words x, y ∈ Σt of
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length t are unconfoundable if for at least one coordinate i the corresponding
entries xi and yi are unconfoundable.

As an example, let Σ = {a, b, c, d, e}, where the confoundable pairs are pre-
cisely ab, bc, cd, de, ea. In that case the symbols a, c may be sent without danger
of confusion, and hence there are at least 2n n-symbol error-free messages ob-
tained by taking all n-element sequences of the symbols a and c. But we can do
better. The 2-symbol messages ab, bd, ca, dc, ee are pairwise unconfoundable (for
instance a may be confused with b, but b cannot be confused with d, and hence
the pairs ab and bd are unconfoundable), and by forming arbitrary words com-
posed of those two-letter words we see that there are at least 5bn/2c n-symbol
error-free messages, an improvement over the earlier bound. An asymptotic study
of the bit-per-symbol error-free transmission rate leads to the notion of Shannon
capacity of a graph [39], as follows.

Let G be the graph with vertex-set Σ and edge-set all pairs of unconfoundable
elements of Σ. Thus we are interested in maximum cliques of Gt, where Gt is
the graph with vertex-set all t-tuples of vertices of G in which two such t-tuples
are adjacent if and only if for some coordinate the corresponding entries are
adjacent in G. The Shannon capacity of G is defined as

lim
n→∞

1
n

log ω(Gn).

It is easy to see that the limit exists. Moreover, we have the following inequalities:
ωn(G) ≤ ω(Gn) ≤ χ(Gn) ≤ χn(G). Thus it follows that if χ(G) = ω(G), then
the Shannon capacity is equal to the logarithm of this value. This raises the
question of what are the minimal graphs that do not satisfy χ(G) = ω(G), and
that lead Berge to formulate his influential conjectures.

The Shannon capacity is a notoriously difficult parameter to compute. For
instance, a celebrated result of Lovász [27] says that the Shannon capacity of the
cycle of length five is 1

2 log 5. The lower bound follows from our discussion two
paragraphs above, but the upper bound is a deep result. Lovász’ proof uses a
new parameter, based on geometric representation of graphs, the so-called theta
function of graphs. The theta function played a crucial role in the theory of
Grötschel, Lovász and Schrijver that we discuss in the next section.

Incidentally, the Shannon capacity is not known for many small graphs. For
instance, it is not known for odd cycles of length at least seven.

6. Miscellaneous connections

Grötschel, Lovász and Schrijver [19] developed a general theory of geometric
optimization based on the ellipsoid method [22]. One consequence of this theory
is that an optimal coloring and a maximum clique of a perfect graph can be found
in polynomial time. More generaly, the theory provided the first theoretically
efficient algorithm for semi-definite programming. Semi-definite programs are
linear programs over the cones of semi-definite matrices. Practitioners have been
formulating and solving semi-definite programs for decades, although they knew
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of no theoretically efficient algorithm to solve them. As pointed out in [35],
algorithms to solve semi-definite programs grew out of the theory of perfect
graphs.

An application of perfect graphs to municipal services is described in [41]
and [42]. A more recent application area of perfect graphs has been investigated
by Gerke, McDiarmid and Reed [16–18,31,32]. Motivated by the radio channel
assignment problem they introduced and studied a new parameter, called the
imperfection ratio. There are several equivalent definitions, but the easiest for us
to state is the following: the imperfection ratio of a graph, denoted by imp(G),
is the minimum number t such that QSTAB(G) ⊆ tSTAB(G). Thus by (3.4)
imp(G) = 1 if and only if G is perfect. Furthermore, imp(G) = imp(G), gen-
eralizing (3.1). We refer to [31] for more details, including background on the
channel assignment problem.

7. Graph entropy

Körner [25] studied the following problem. Let G be a graph, and let P = (pv :
v ∈ V (G)) be a probability distribution on V (G). We will think of V (G) as
a finite alphabet whose elements are being emitted by a discrete memoryless
and stationary information source according to the probability distribution P .
Adjacency in G is interpreted as distinguishability. Two t-tuples of vertices of
G are distinguishable if they are distinguishable in at least one coordinate, and
are indistinguishable otherwise.

We wish to examine the performance of a best possible encoding. Here for
ε > 0 an ε-encoding is a mapping from V (G)t → M , where M is some set, such
that there is a set Ω ⊂ V (G)t of probability (in the product space) at least 1− ε
such that every two distinguishable t-tuples from Ω are mapped onto different
elements of M . The rate of this encoding is defined as log |M|

t . Let R(G, P, t, ε)
denote the smallest possible rate over all possible ε-encodings. Of interest is the
value lim infε→0 lim inft→∞ R(G, P, t, ε). This is the graph entropy H(G, P ), in-
troduced by Körner [25]. Körner gave several descriptions of H(G, P ), including
the following.

7.1 Let G be a graph, and let P be a probability distribution on V (G). Then
H(G, P ) = minx∈STAB(G)

∑
v∈V (G) pv log 1

pv
.

If G is the complete graph, then H(G, P ) specializes to the classical no-
tion of entropy of a probability distribution, namely H(P ) =

∑n
i=1 pi log 1

pi
.

From an information theory point of view it is interesting to study graphs for
which H(G, P ) + H(G, P ) = H(P ) for every probability distribution P . By
a theorem of Cziszár, Körner, Lovász, Marton and Simonyi [12] this holds if
and only if G is perfect. Simonyi [40] recently generalized this by showing that
maxP

(
H(G, P ) + H(G, P ) − H(P )

)
= log imp(G), where imp(G) is the imper-

fection ratio mentioned earlier.
Finally, let us mention that graph entropy and perfection played important

roles in the sorting algorithm of Kahn and Kim [21].
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8. Outline of the proof

We now come to the second part of the paper. In the remainder of the text we will
outline our proof of (1.1). It is customary to call a graph Berge if it has no odd
hole and no odd antihole. Thus in order to prove (1.1) we must show that every
Berge graph is perfect. We use a strategy originated by Conforti, Cornuéjols and
Vušković. They conjectured that every Berge graph either belongs to one of the
four classes introduced in Section 2, or has a separation of one of two kinds.
This is a reasonable plan, because similar approach was successful for many
other graph theory problems, for instance [29,30,36,37,43], and many others.
We were able to prove this conjecture, but to deduce (1.1) we needed to prove
a minor modification of it. Let us first introduce the two kinds of separation. A
2-join in G is a partition (X1, X2) of V (G) so that there exist disjoint nonempty
sets Ai, Bi ⊆ Xi (i = 1, 2) satisfying:

• every vertex of A1 is adjacent to every vertex of A2, every vertex of B1 is
adjacent to every vertex of B2, and there are no other edges between X1 and
X2,

• for i = 1, 2, every component of G|Xi meets both Ai and Bi, and
• for i = 1, 2, if |Ai| = |Bi| = 1 and G|Xi is a path joining the members of Ai

and Bi, then it has odd length ≥ 3.

Cornuéjols and Cunningham [11] (see also [10]) proved that no minimal coun-
terexample to (1.1) has a 2-join. More precisely, they proved:

8.1 No minimally imperfect graph has a 2-join.

Moreover, 2-joins afford a decomposition into two smaller graphs such that
the original graph is Berge if and only if both the new graphs are Berge, and the
same holds for perfection. By (3.1) it follows that the complement of a minimal
counterexample to (1.1) also has no 2-join.

Let us discuss skew partitions now. A set X ⊆ V (G) is connected if G|X
is connected or if X is empty; and anticonnected if G|X is connected. A skew
partition in G is a partition (A, B) of V (G) so that A is not connected and B is
not anticonnected. Chvátal [3] conjectured that no minimal imperfect graph has
a skew partition. This follows from (1.1): by (1.1) the only minimal imperfect
graphs are odd holes and odd antiholes, and it is easy to check that those graphs
have no skew partition. But in order to be able to use Chvátal’s conjecture
we would need a proof from first principles, and we were unable to find one.
However, it turned out that for our purposes a restricted class of skew partitions
sufficed, what we call even skew partitions.

An antipath is a subgraph whose complement is a path. The length of a path
is the number of edges in it and the length of an antipath is the number of
edges in its complement. A skew partition (A, B) is even if every induced path
of length at least two with ends in B and with interior in A is even, and every
induced antipath of length at least two with ends in A and with interior in B is
even. The significance of even skew partitions is that we can prove a variant of
Chvátal’s skew partition conjecture for them. Let us say a minimum imperfect
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graph is a Berge graph G such that G is not perfect, but every Berge graph H
with |V (H)| < |V (G)| is perfect.

8.2 No minimum imperfect graph has an even skew partition.

We give a proof of (8.2) at the end of this section. Our main result is a version
of the conjecture of Conforti, Cornuéjols and Vušković, with skew partitions
replaced by even skew partitions. It turns out that if we do that, then we need
another basic class, the following.

Let H be a bipartite graph, with bipartition (A, B). For each vertex v ∈ V (H)
take two new vertices sv, tv, and make a graph G with V (G) = {sv, tv : v ∈
V (H)}. The edges of G are as follows:

• for v ∈ V (H), sv is adjacent to tv if v ∈ A, and sv is nonadjacent to tv if
v ∈ B.

• for distinct u, v ∈ A, there are no edges between su, tu and sv, tv
• for distinct u, v ∈ B, both su, tu are adjacent to both sv, tv.
• for u ∈ A and v ∈ B, there are exactly two edges joining one of su, tu to one

of sv, tv; if uv ∈ E(H) then susv and tutv are edges of G, and otherwise sutv
and tusv are edges of G.

We call such a graph G a double split graph. Let us say a graph G is basic if
either G or G is bipartite or is the line graph of a bipartite graph, or is a double
split graph. (Note that if G is a double split graph then so is G.) It is easy to
see that all double split graphs are perfect, and thus all basic graphs are perfect
by the results discussed in Section 2.

If X, Y ⊆ V (G) are disjoint, we say X is complete to Y (or the pair (X, Y )
is complete) if every vertex in X is adjacent to every vertex in Y ; and we say X
is anticomplete to Y if there are no edges between X and Y . An M -join in G is
a partition of V (G) into six nonempty sets, (A, B, C, D, E, F ), so that:

• every vertex in A has a neighbor in B and a nonneighbor in B, and vice versa
• the pairs (C, A), (A, F ), (F, B), (B, D) are complete, and
• the pairs (D, A), (A, E), (E, B), (B, C) are anticomplete.

M-joins are closely related to “homogenous sets” of Chvátal and Sbihi [4], and it
follows from their work that no minimally imperfect graph has an M-join. Our
main result is as follows.

8.3 For every Berge graph G, either G is basic, or one of G, G admits a 2-join,
or G admits an M-join, or G admits an even skew partition.

The introduction of double split graphs is necessary, because, in general, even
though double split graphs have skew partitions, they do not have even ones.
The first author has shown in her PhD thesis [5] that M-joins are not needed
in the sense that the above theorem remains true if we omit the outcome that
G has an M-join. However, to prove this strengthening required an amount of
effort comparable to the proof of (8.3) itself. By (8.1), (8.2) and the preceding
discussion, theorem (8.3) implies (1.1).
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In the remainder of this section we prove (8.2). In fact, we prove something
seemingly stronger. Let us say a skew partition (A, B) in a graph G is rigid if
there exists a maximal anticonnected set B1 ⊆ B such that the graph obtained
from G by adding a new vertex joined precisely to all the vertices in B1 is Berge.
It follows that (A, B) is rigid if and only if every induced path of length at least
two with both ends in B1 and interior in A is even, and every induced antipath
of length at least two with both ends in A and interior in B1 is even. Thus every
even skew partition is rigid, and hence (8.2) is implied by the following. Our
proof incorporates results of Chvátal [3] and Hoàng [20].

8.4 No minimum imperfect graph has a rigid skew partition.

Proof. Suppose for a contradiction that G is a minimum imperfect graph with
a rigid skew partition (A, B), and let B1 be as in the definition of rigid. If one
component of A has only one vertex, then by considering the vertex-set of that
component we find that (B, A) is a rigid skew partition of G. Thus we may
assume that if some component of A has only one vertex, then |B1| = 1.

Let A1 be the vertex-set of a component of G|A, and let A2 = A − A1. For
i = 1, 2 let Gi be the subgraph of G induced by Ai ∪ B. Let k = ω(G) and
s = ω(B1). (For Z ⊆ V (G) we define ω(Z) to be the size of a largest clique
contained in Z.) We need the following claim.

Claim. For i = 1, 2 there exists a set Xi ⊆ V (Gi) such that Xi ∩ B = B1,
ω(Xi) = s and ω(Gi\Xi) ≤ k − s.

It suffices to prove the claim for i = 1. Assume first that |B1| = 1. Since G1

is perfect by the minimality of G, it has a coloring using k colors. Let X1 be the
color class containing the unique element of B1. Then X1 is as desired, because
B1 is complete to B−B1. Thus we may assume that |B1| > 1, and hence by the
choice of (A, B) above we have |A1| ≥ 2 and |A2| ≥ 2.

Let G′
1 be the graph obtained from G1 by adding a vertex z joined to precisely

the vertices of B1. Then G′
1 is Berge by the rigidity of (A, B), and hence is perfect

by the minimality of G and the fact that |A2| ≥ 2. Let G′′
1 be obtained from G′

1

by replacing z by a clique K of size k−s, all of whose vertices are adjacent to B1

and to no other vertex of G1. Then G′′
1 is perfect by (3.3). We have ω(G′′

1 ) ≤ k
by construction, and hence G′′

1 has a coloring using k colors. Exactly k − s of
those colors appear on K, and hence exactly s colors appear on vertices of B1.
Let X1 be the set of all vertices of G1 colored using one of those s colors. Since
B1 is complete to B−B1, it follows that X1 is as desired. This proves the claim.

Now let X1 and X2 be as in the claim. It follows that ω(X1 ∪ X2) = s and
ω(G\(X1 ∪ X2)) ≤ k − s. Thus G|(X1 ∪ X2) can be colored using s colors, and
G\(X1 ∪ X2) can be colored using k − s colors, because both those graphs are
perfect by the minimality of G. It follows that G is k-colorable, contrary to the
fact that G is minimum imperfect. ut
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9. Line graphs

In the rest of the paper we outline the proof of (8.3). The first step is to show
that if G contains a line graph of a bipartite subdivision of a “large” 3-connected
graph, then either G is itself a line graph of a bipartite graph, or it has one of
the separations mentioned in (8.3).

9.1 Let G be a Berge graph, let J be a 3-connected graph, let H be a bipartite
subdivision of J , and let L(H) be an induced subgraph of G. Assume further that
H 6= K3,3, and that if J = K4, then some edge of every 4-cycle of J is subdivided
in H. Then G is a line graph of a bipartite graph, or has a 2-join or has an even
skew partition.

Let us sketch the main steps in the proof of (9.1). First, it is convenient to
enlarge L(H) into a certain auxiliary structure, which we call a J-strip system.
Let J be 3-connected, and let G be Berge. A J-strip system in G is a pair (S, N),
where Suv = Svu ⊆ V (G) for each edge uv of J , and Nv ⊆ V (G) for each vertex
v of J such that (for uv ∈ E(J), a uv-rung means an induced path R of G with
ends s, t say, where V (R) ⊆ Suv, and s is the unique vertex of R in Nu, and t is
the unique vertex of R in Nv)

(i) the sets Suv (uv ∈ E(J)) are pairwise disjoint,
(ii) for each u ∈ V (J), Nu ⊆ ⋃

(Suv : v ∈ V (J) adjacent to u),
(iii) for each uv ∈ E(J), every vertex of Suv is in a uv-rung,
(iv) if uv, wx ∈ E(J) with u, v, w, x all distinct, then there are no edges between

Suv and Swx,
(v) if uv, uw ∈ E(J) with v 6= w, then Nu ∩ Suv is complete to Nu ∩ Suw, and

there are no other edges between Suv and Suw.

Now L(H) gives rise to a J-strip system (S, N) as follows. First notice that
V (J) ⊆ V (H), and that each edge uv ∈ E(J) corresponds to a path in H . Let
f1, f2, . . . , fk be the edges of that path, in order, such that f1 is incident with u.
Then f1, f2, . . . , fk is the vertex-set of an induced path of L(H). We put f1 into
Nu, fk into Nv, and define Suv := {f1, f2, . . . , fk}. By repeating this for every
edge of J we arrive at a J-strip system, which we call the J-strip system derived
from L(H).

If (S, N) is a J-strip system in G, we define V (S, N) to be the union of Suv

over all edges of J . Thus Nv ⊆ V (S, N) for every v ∈ V (J). We say that a set
X saturates the J-strip system (S, N) if for every u ∈ V (J) there is at most one
neighbor v of u in J such that Nu ∩ Suv 6⊆ X . A vertex u ∈ V (G) − V (S, N)
is major if its neighbors in V (S, N) saturate (S, N), and minor otherwise. A set
X ⊆ V (S, N) is local if either X ⊆ Nv for some v ∈ V (J), or X ⊆ Suv for some
edge uv ∈ E(J). For the proof of (9.1) we first choose J with |V (J)| maximum,
start with the J-strip system derived from L(H), and enlarge it to a J-strip
system with V (S, N) maximum. The advantage of that is that now we have the
following lemma:

9.2 Let F ⊆ V (G)−V (S, N) be connected and contain no major vertices. Then
the set of neighbors in V (S, N) of vertices in F is a local set.
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Fig. 1. J , H, L(H) and G

We will not give a proof of this lemma, but let us point to Figure 1 for
illustration. Let (S, N) be the J-strip system derived from L(H), where J and
H are as in Figure 1. There is a unique component F of V (G) − V (S, N), and
the neighbors of F do not form a local set. But the strip system is not maximal:
the set F can be added to the J-strip system (S, N).

Now for the proof of (9.1). Suppose first that there is a major vertex, and
let Y be a maximal anticonnected set of major vertices. Let X be the set of
common neighbors of vertices in Y . It can be shown that X saturates the strip
system, and from there it is not hard to produce first a skew partition, and then
an even skew partition.

Thus we may assume that there are no major vertices. If there is a component
F of G\V (S, N) whose set of neighbors is a subset of Nv for some v ∈ V (J),
then (V (G)−Nv, Nv) is a skew partition, and it is not hard to convert it into an
even skew partition. On the other hand we may assume that G 6= L(H), and so
by (9.2) there is an edge uv ∈ E(J) such that either Suv is not a path, or some
component of G\V (S, N) has all its neighbors in Suv. Let F be the union of all
such components. Then the partition (F ∪ Suv, V (G) − F − Suv) is a 2-join in
G. This completes the sketch of the proof of (9.1).

If H = K3,3, then the same argument works, except for the step where we
deduce that the set of common neighbors of a maximal anticonnected component
of major vertices saturates the strip system. However, if that outcome does not
hold, then we find that there is a bipartite subdivision H ′ of K3,3, itself not
equal to K3,3, such that L(H ′) is an induced subgraph of the complement of G.
In that case we apply (9.1) to H ′ and G. This proves

9.3 Let G be a Berge graph, let J be a 3-connected graph, let H be a bipartite
subdivision of J , and let L(H) be an induced subgraph of G. Assume further that
if J = K4, then some edge of every 4-cycle of J is subdivided in H. Then G or
its complement is a line graph of a bipartite graph, or has a 2-join or has an
even skew partition.

Let us now assume that J = K4, and that no edge of some 4-cycle of J is
subdivided in H . Then L(H) is pictured in Figure 2; let P1, P2 and v1, v2, v3, v4

be as in that figure. Let Q1 denote the antipath with vertex-set {v1, v3}, and
let Q2 denote the antipath with vertex-set {v2, v4}. Notice that if one of P1,
P2 has length at least two (and hence at least three, because they are odd),
then L(H) has a 2-join, whereas if they both have length one, then L(H) is a
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Fig. 2. Line graph of a subdivision of K4

double split graph. Thus our strategy is as follows. First, we collect all such paths
P1, P2, . . . and antipaths Q1, Q2, . . .. More generally, we enlarge them into strips
and “antistrips”, and maximize the resulting structure S. We divide vertices of
V (G) − V (S) into major and minor similarly as before. Here the situation is
nicer, because the structure is invariant under taking complements, and taking
complements turns minor vertices into major ones, and vice versa. As before,
if there is a major vertex, then a maximal anticonnected component of such
vertices gives rise to a skew partition, and similarly for connected components
of minor vertices. Finally, if all of G falls into the structure, then either the
structure proves that G is a double split graph, or G has a 2-join. Thus we have

9.4 Let G be a Berge graph, let H be a bipartite subdivision of a 3-connected
graph, and let L(H) be an induced subgraph of G. Then G is a double split
graph, or has an even skew partition, or it or its complement is a line graph of
a bipartite graph, or has a 2-join.

10. Prisms

A triangle in a graph G is a cycle of length three. Let a1a2a3 and b1b2b3 be
disjoint triangles, and let P1, P2, P3 be three vertex-disjoint induced paths in G,
where Pi has ends ai and bi, and at least one of P1, P2, P3 has length at least two.
Assume further that for 1 ≤ i < j ≤ 3 there are no edges between Pi and Pj ,
except for aiaj and bibj. In those circumstances we say that P1∪P2∪P3 is a prism
in G. Thus a prism is the line graph of the graph consisting of three internally
disjoint paths joining the same pair of vertices. A version of the following result
was suggested to the third author by Kristina Vušković.

10.1 Let G be a Berge graph containing a prism such that neither G nor G has
an induced subgraph isomorphic to the line graph of a bipartite subdivision of a
3-connected graph. Then either one of G, G admits a 2-join, or G admits an
even skew partition, or G admits an M-join.
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If G is Berge, and P1, P2, P3 are the paths of a prism in G, then it is easy to
see that P1, P2, P3 have the same parity. If they are all even, then (10.1) can be
proven by a method analogous to the proof of (9.1). However, the proof is much
harder when P1, P2, P3 are odd. We refer to [6] for the details.

There is another graph that can be excluded by similar methods. A double
diamond is the graph with vertex-set {a1, a2, a3, a4, b1, b2, b3, b4} and the follow-
ing adjacencies: every two ai’s are adjacent except for a3a4, every two bi’s are
adjacent except for b3b4, and ai is adjacent to bi for all i = 1, 2, 3, 4.

10.2 Let G be a Berge graph such that no induced subgraph of G or G is iso-
morphic to a prism or the line graph of a bipartite subdivision of a 3-connected
graph. If the double diamond is an induced subgraph of G, then either G or G
admits a 2-join, or G admits an even skew partition.

11. Skew partitions revisited

Let us say a Berge graph G is bipartisan if no induced subgraph of G or G
is isomorphic to the double diamond, a prism, or the line graph of a bipartite
subdivision of a 3-connected graph. In view of (9.4), (10.1) and (10.2) it suffices
to prove (8.3) for bipartisan graphs. From (8.1), (8.2) and the perfection of basic
graphs we deduce that every minimum imperfect graph is bipartisan.

It turns out that stronger theorems hold for bipartisan graphs, and in this
section we discuss one such result. It can be shown that if a bipartisan graph
has a skew partition, then it has an even skew partition. Thus in the remainder
of the proof of (8.3) we do not need to concern ourselves with checking whether
a particular skew partition is even. Here we confine ourselves to proving the
essential part of Chvátal’s skew partition conjecture:

11.1 No minimum imperfect graph admits a skew partition.

In the proof we will need the following beautiful and powerful theorem of
Roussel and Rubio [38]. (We proved it independently, in joint work with Carsten
Thomassen, but Roussel and Rubio found it earlier.) We use it many times in
our proof of (1.1). So far we have not shown enough detail to demonstrate its
usefulness, but its time has come.

11.2 Let G be a Berge graph, let X ⊆ V (G) be anticonnected, and let P be an
induced path in G\X of odd length, such that both ends of P are complete to X.
Then either

(i) some internal vertex of P is complete to X, or
(ii) the path P has length at least five and there exists an induced path Q with

both ends in X such that P and Q has the same interior, or
(iii) the path P has length three and there is an induced odd antipath joining

the internal vertices of P with interior in X.

Please note that if (ii) above holds, then G has a prism. Thus for bipartisan
graphs we have the following simpler version.
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11.3 Let G be a bipartisan Berge graph, let X ⊆ V (G) be anticonnected, and let
P be an induced path in G\X of odd length, such that both ends and no internal
vertex of P are complete to X. Then the path P has length three and there is an
induced odd antipath joining the internal vertices of P with interior in X.

Since, as noted above, every minimum imperfect graph is bipartisan, (11.1)
follows from (8.4) and the following result.

11.4 If a bipartisan Berge graph has a skew partition, then it has a rigid skew
partition.

Proof. Let G be a bipartisan Berge graph, and let (A, B) be a skew partition
in G chosen so that B is minimal with respect to inclusion. Assume first that
some v ∈ B has no neighbor in some component of G|A. Since (A∪{v}, B−{v})
is not a skew partition of G by the minimality of B, we deduce that B − {v}
is anticonnected. Thus v is adjacent to every vertex of B − {v}, and hence by
considering the anticonnected component {v} of G|B we deduce that (A, B) is
rigid, as desired. Thus we may assume that every v ∈ B has a neighbor in every
component of G|A.

We now prove the following claim.

Claim. Let B1 be a maximal anticonnected subset of B. If some vertex u ∈ A
is adjacent to every vertex of B1, then (A, B) is rigid.

To prove the claim let first P be an induced path of length at least two with
both ends in B1 and interior in A. We must prove that P is even. The interior
of P belongs to a component of G|A with vertex-set A1, say. If u 6∈ A1, then P
can be completed to a hole by adding u. Since this hole is even, it follows that P
is even. Thus we may assume that u ∈ A1. Let A2 be the vertex-set of another
component of G|A. Since every vertex of B has a neighbor in A2, there exists
an induced path P ′ with the same ends as P and with interior contained in A2.
By completing this path to a hole through the vertex u we see that P ′ is even.
Thus P is even, for otherwise P ∪ P ′ is an odd hole.

Now let Q be an induced antipath of length at least two with both ends in A
and interior in B1, and suppose for a contradiction that Q is odd. The ends of Q
belong to the same component of G|A. Let the vertex-set of that component be
A′

1, and let A′
2 be the vertex-set of another component of G|A. By (11.3) applied

in the complement of G to the path Q and anticonnected set A′
2 we deduce that

Q has length three. Thus Q is also a path of length three, with both ends in B1

and interior in A, contrary to the previous paragraph. This proves the claim.

To prove the theorem we may assume that (A, B) is not rigid, and hence
there exists a maximal anticonnected set B1 ⊆ B such that the graph obtained
from G by adding a vertex adjacent to precisely the vertices of B1 is not Berge.
This means that there is either an induced odd path of length at least two with
both ends in B1 and interior in A, or an induced odd antipath of length at least
two with both ends in A and interior in B1. Let B2 be a maximal anticonnected
subset of B other than B1.
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Assume first that there exists an induced path P of length at least five with
both ends in B1 and interior in A. By applying (11.3) to P and B2 we deduce
that some internal vertex of P is adjacent to every vertex of B2, and hence
(A, B) is rigid by the claim. Thus we may assume that no such path P exists.

If P is as in the previous paragraph, but of length three, then it is also an
antipath with both ends in A and interior in B1. Thus it follows that G has an
induced odd antipath Q1 with both ends in A and interior in B1. Let x1, y1 ∈ A
be the ends of Q1. Since they are adjacent, they belong to the same component
of G|A. Let the vertex-set of that component be A1, and let A2 be the vertex-set
of another component of G|A. By (11.3) applied in the complement of G to the
path Q1 and anticonnected set A2 we deduce that Q1 has length three (let its
internal vertices be b1 and b′1) and that there exists an induced odd path P2 with
ends b1 and b′1 and all internal vertices in A2. By the conclusion of the previous
paragraph the path P2 has length three; let its vertices be b1, x2, y2, b

′
1, in order.

By the claim and (11.3) applied to the path P2 and anticonnected set B2 we
may assume that there exists an induced odd antipath Q2 with ends x2, y2 and
interior in B2. The proof that Q1 has length three applies to Q2 as well, and
so Q2 has length three. Thus Q2 is also a three-edge path; let its vertex set
be b2, x2, y2, b

′
2, in order. Since Q1 cannot be completed to an odd antihole by

adding b2 or b′2, we deduce that each of them has a neighbor in {x1, y1}. But they
do not have a common neighbor in {x1, y1}, for otherwise Q2 can be completed
to an odd antihole using that common neighbor. Thus either b2 is adjacent to
x1 and not to y1 and b′2 is adjacent to y1 and not to x1, or b′2 is adjacent to
x1 and not to y1 and b2 is adjacent to y1 and not to x1. In the former case
the subgraph of G induced by {x1, y1, x2, y2, b1, b

′
1, b2, b

′
2} is a double diamond,

and in the latter case it is isomorphic to the line graph of the graph K3,3 with
one edge deleted. In either case this is a contradiction to the fact that G is
bipartisan. ut

We remark that (11.1) comes short of proving Chvátal’s skew partition con-
jecture in its full generality, because Chvátal conjectured the same conclusion
for minimal imperfect graphs. However, (11.1) is sufficiently strong for the proof
of (1.1), which in turn implies Chvátal’s conjecture.

12. Wheels

As we pointed out earlier, it suffices to prove (8.3) for bipartisan graphs. For
bipartisan graphs a stronger result holds.

12.1 Let G be a bipartisan graph such that G and G are not bipartite. Then G
has an even skew partition.

The proof of (12.1) is still fairly long, and perhaps somewhat less natural than
the earlier steps. Our strategy, originally initiated by Conforti and Cornuéjols
[7], is to use wheels. If Y ⊆ V (G), then we say that an edge of G is Y -complete
if both its ends are complete to Y . A wheel in a graph G is a pair (C, Y ), where
C is a hole in G of length at least six and Y ⊆ V (G) − V (C) is a non-empty
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Fig. 3. A non-separable odd wheel

anticonnected set such that there are two disjoint Y -complete edges of C. We
call C the rim and Y the hub of the wheel.

12.2 If (C, Y ) is a wheel in a Berge graph, then C has an even number of
Y -complete edges.

Proof. If not, then, since C is even, it has an odd subpath P of length at least
three with both ends but no internal vertex complete to Y . By (11.2) applied
to P and Y there exists either an induced odd path R as in (11.2)(ii) or an
induced odd antipath Q as in (11.2)(iii). Since C has two Y -complete edges, it
has a vertex z 6∈ V (P ) complete to Y . By adding z to R or Q as appropriate we
obtain an odd hole or an odd antihole in G, a contradiction. ut

Let (C, Y ) be a wheel in a Berge graph G. We say that two vertices u, v ∈
V (C) have the same wheel parity if a subpath of C joining them contains an
even number of Y -complete edges (in which case so does the other subpath of C
joining them, by (12.2)), and we say they have opposite wheel parity otherwise.
Now let X be the set of all common neighbors of vertices of Y . Let us say that
the wheel (C, Y ) is separable if some set Z ⊆ X ∪ Y intersects both X and Y
and separates a vertex of one wheel parity from a vertex of the opposite wheel
parity. This is a desirable property, because in this case (V (G)−Z, Z) is a skew
partition of G. Unfortunately, not all wheels are separable. First, let us point out
the significance of prisms. In the example of Figure 3 the wheel (C, {y1, y2}) (C
is shown thick) is not separable. If the path P joining the vertices u and v has
length at least two (in fact, it must be odd), then G has a prism, while if P has
length one, then the complement of G has a prism. This example illustrates that
the absence of prisms eliminates a large class of wheels that are not separable.

But even in bipartisan graphs not all wheels are separable. For instance, con-
sider the graph in Figure 4. It is tempting to replace C by the hole vv1v2v3v4v5,
but then {y} is no longer a hub. However, this argument does work when (C, Y )
is an “odd wheel”. A Y -segment is a maximal subpath of C whose vertices are
all complete to Y . We say that a wheel (C, Y ) is an odd wheel, if it has an
odd Y -segment. For odd wheels the above argument indeed works: if the diffi-
culty indicated in Figure 4 arises, then we can reroute the rim to obtain another
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Fig. 4. A non-separable wheel in a bipartisan graph

odd wheel, which is better in a certain way. Thus we can show that some care-
fully selected wheel is separable, and so we have the following result, obtained
independently by Conforti, Cornuéjols, Vušković and Zambelli [8].

12.3 If a bipartisan graph has an odd wheel, then it has an even skew partition.

How about wheels that are not odd? Those require a different approach. Let
(C, Y ) be such a wheel in a bipartisan graph. Then there are three consecutive
vertices u1, u0, u2 on C, all complete to Y . We now find a maximal sequence
u1, u2, . . . , ut of vertices complete to Y ∪ {u0} such that for all i = 3, 4, . . . , t

• there exists a connected subset of V (G) including V (C) − {u0, u1, u2}, con-
taining a neighbor of ui, containing no neighbor of u0 and containing no
vertex complete to {u1, u2, . . . , ui−1}, and

• the vertex ui is not complete to {u1, u2, . . . , ui−1}.
Let U = {u1, u2, . . . , ut}, and let V be the set of all U -complete vertices other
than u0. Now it is almost true that the set U ∪ V separates {u0} from V (C) −
{u0, u1, u2}, in which case (V (G) − U − V, U ∪ V ) is a skew partition. Thus we
show (see [6] for details) that either G has a skew partition, or G has a wheel
(C ′, Y ′), where Y is a proper subset of Y ′. By choosing the original wheel with
Y maximal we therefore obtain an extension of (12.3) to all wheels.

Finally, we must prove that for every bipartisan graph, either it satisfies the
conclusion of (12.1), or either it or its complement contains a wheel. We refer to
[6] for full details. A weaker result (using a less restricted definition of a wheel)
was obtained independently by Conforti, Cornuéjols and Zambelli [9].
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