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Suppose we expect there to be p{ab) phone calls between locations a and b, for all choices of
a, b from some set L of locations. We wish to design a network to optimally handle these calls.
More precisely, a “routing tree” is a tree T with set of leaves L, in which every other vertex has
valency 3. It has “congestion” < k if for every edge e of T, there are fewer than k calls which
will be routed along e, that is, between locations a, b in different components of T\e. Deciding if
there is a routing tree with congestion < k is NP-hard, but if the pairs ab with p{ab) >0 form the
edges of a planar graph G, there is an efficient, strongly polynornial algorithm.

This is because the problem is equivalent to deciding if a ratcatcher can corner a rat loose
in the walls of a house with floor plan G, where p(ab) is a thickness of the wall ab. The ratcatcher -
carries a noisemaker of power k, and the rat will not move through any wall in which the noise
Ievel is too high (determined by the total thickness of the intervening walls between this one and
the noisemaker). .

It follows that branch-width is polynomially computable for planar graphs — that too is
NP-hard for general graphs. :

1. Introduction

Let G be a graph (all graphs in this paper are finite, and may have loops or
multiple edges) and for every edge e of G let p(e) >0 be an integer. A routing tree
is a tree T with V(G) C V(T), such that every v € V(G) has valency 1 in T and
every v € V(T) —V(G) has valency 3 in 7. (V{G) denotes the vertex set of G.) If
k>0 is an integer, we say that T has congestion <k if 3 p(e) <k for every f ¢
E(T), where the sum is taken over all e € £(G) with ends in different components
of T\f. (E(G) denotes the edge set of G, and we use \ for deletion.) As explained
in the abstract, the problem of deciding if there is a routing tree of congestion <k
is relevant to telephone network design. ' _

Our main result is that there is a strongly polynomial algorithm with running
time O(m?), which, with input G, p and k as above with G planar and |V(G)|-+
|E(G)| = m, decides if there is a routing tree with congestion < k. We shall also
show that for general graphs G the problem is NP-hard, even if p(e) =1 for all
edges e.

It is convenient to work with “carvings” rather than with routing trees. These
are related objects, and are defined as follows. Let V' be a finite set with |[V]>2.
Two subsets A, BCV cross if ANB, A— B, B—A, V—(AUB) are all non-empty.
A carving in V is a set 6 of subsets of V such that

(i)0, Ve
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(ii) no two members of € cross, and

{iii) ¥ is maximal subject to (i} and (ii}.
It is sometimes helpful to view a carving as arising {rom a tree, as follows. (The
leaves of a tree are its vertices of valency 1.)

(1.1) Let V be a finite set with |V|> 2, let T be a tree in which every vertex has
valency 1 or 3, and let T be a bijection from V onfo the set of leaves of T'. For each
edge e of T Iei Ty(e), Ta(e) be the two components of T\e; and let

E={{veV :1(v)e V(Ti{e)} : ec B(T}, i=1,2}.

Then € is a carvmg in V. Conversely, every carving in V arises from some tree T
and bijection T in this way.

We omit the proof, which is easy. .

Now let G be a graph. For ACV((G), we denote by 6(A} or §z(A) the set of
all edges with an end in A and an-end in V(G)— A. For each ec E(G), let p(e) >
0 be an integer. For X C E{G) we denote Y, p(e) by p(X), and if |V(G)] =2 we

ecX

define the p-carving-widih of G to be the minimum, over all carvings 6 in V{(G),
of the maximum, over all A€§, of p(6(A)). It is easy to see, via (1.1), that & has
p-carving-width < % if and only if G has a routing tree of congestion < % and so our
basic problem may be reformulated in terms of carvings. The carving-width of G
is the p-carving-width of G where p(e) =1 for every edge e. It is easy to see that in
general, the p-carving-width of (& equals the carving-width of the graph obtained
from ¢ by replacing each edge e by p(e) parallel edges; but we do not use this
reduction at this stage because we wish to design an algorlthm which is strongly
polynomial.

Again, let & be a graph. For A C F(G) we denote by 8(A) or dz(A) the set
of all v € V(@) incident with an edge in A and with an edge in E(G)— A. The
branch-width of G is the minimum, over all carvings € in E(G), of the maximum,
over all A€, of [8(A)| (or zero, if IE (G)\ <1). Branch-width has been mvestlgated
in other papers, particularly [4 ], and is closely connected with “tree-width”. We
shall show that one can compute the branch-width of a planar graph in polynomial
time, but computing it for general graphs is NP-hard.

Our method for branch-width is simply to prove that for a connected planar
graph (7, its branch-width is half the carving-width of a derived planar graph called
the medml graph’ of G; and so we can use our carving-width algorithm. On the
other hand, our method for computmg the carving-width of a planar graph is quite
indirect. We do not search for a low width carving, but for an obstruction to its
existence called an antipodality. (Antipodalities are escape strategies for the rat,
while low width carvings are search strategies for the ratcatcher, in a ratcatching
game played on the graph which we discuss in section 3.) This is easy to search for;
but proving that G has carving-width < k& if and oaly if ¢ has no antipodality of
“range” k iz difficult, and uses some hard theorems from the “Graph Minors” series
of papers of Robertson and Seymour. Fortunately, this means that the algorithm
for computing carving-width is easy; it is only the proof of its correctness that is
difficult.
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2. Antipodalities

A walk in a graph G is a sequence vg,€1,v1,€2,...,6k, Vg, Where vg,v3,...,0% €
VI(G), e1,...,e; € E(G), and {v;_1,v;} is the set of ends of e;(1<i<k). It is closed
if vg = vg. Let & be a sphere, and let G be a graph drawn in 2. We denote the
set of regions of the drawing by R(G). {Each region is an open set.) An edge e is
incident with a region r if e CT (for X €3, X denotes the closure of X). Now let
G be non-null and connected, and let G* be a dual graph also drawn in ¥, in the
usual sense of geometric duality. For each v € V{(G) there is a unique r € R(G*)
with v €, and we define v* =7. Similarly, for r € R(G), r* € V(G*) is the unique
vertex of G* in r; and for e€ E(G), €” is the unique edge of G* crossing e.

Let p: E(G)—Z4 (the set of non-negative integers). A walk '

V0,61, U1, €2y -+ €k, VU

in G* has p-length p(f1}+...-+p(fi), where ;= f* (1<i<k). An antipodality in
G of p-range >k is a function « with domain E(G)U R(G), such that for all e €
E(G), afe) is a non-null subgraph of G, and for all r € R(G), a{r) is a non-empty
subset of V (), satisfying: ‘
(A1) If e€ E(G) then no end of e belongs to V(a(e)),

(A2) If e€ B(G), r€ R(G), and ¢ is incident with r, then a(r) SV (a(e)), and every
component of a(e) has a vertex in a(r), .

(A3) If e€ E(G) and f € E(a(e)) then every closed walk of G* using ¢* and f* has
p-length > k.

For example, let G be the graph of the octahedron (that is, K¢ with a perfect
matching deleted), drawn in the plane. For each region 7, let a(r) be the three
vertices not incident with r, and for each edge e, let a{e) be the graph obtained
from G by deleting the ends of &. Then « is an antipodality of p-range 6 in G
{where p=1).

The main result of this paper is that a connected planar graph with > 2 vertices
has p-carving-width > k if and only if either it has an antipodality of p-range >
k or p(6(v)) > k for some v € V(G). (We write §(v) for §({v}).) In other words,
the minimum % such that there is a carving 8 of G with p(§(A)) > &k for all A€
$ equals the maximum k such that G has either an antipodality of p-range > k
or a vertex v with p(é(v)) > k. This is quite a difficult theorem, but it provides
a simple algorithm to determine p-carving-width, because one can test easily if G
has an antipodality of p-range > k. Explaining how to do so is the objective of this
section. ‘

Let N be a simple graph, with vertex set 7 say. Let M be a simple graph, and
let {X;:i€ 1) be a partition of V (M), such that if u € X;, v€ X; are adjacent in
M then i+ 4 and i, j are adjacent in N. A set RCV (M) is round if for all 4, €
- I adjacent in N, every vertex in X;NR is adjacent to some vertex in X; NK. We
need to be able to test if there exists a non-null round set. To do so, we use the
following lemma.

(2.1) Let RCV{(M) be round, and let RCSCV(M). Suppose that uwe SN X; hag
no neighbour in SNX;, and yet ¢ and j are adjacent in N. Then RC S {u}.
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Proof. If © € R then since R is round, u has a neighbour in RNX; CSNXj, a
contradiction. Hence u ¢ R. |

Because of (2.1) there is a greedy algorithm to test if there exists a non-null
round set. Initially we set S=V{H), and in general we will have some subset SC
V(M) which is guaranteed to include every round set. We check if for some %, j
adjacent in N, some %€ SNX; has no neighbours in SNX;. If so, we replace by
8~ {u} and repeat; this is still guaranteed to include all round sets, by (2.1). If
there is 1o such u then S itself is round. If §#® then there is a non-empty round
set, and if =0 there isn’t.

We see that the algorithm finds a round set which includes all other round sets.
That such a set always exists is clear, because the union of any two round sets is
round, and so there is a unique maximal round set.

This process is obviously polynomially-bounded, but it is important for us to
do it very quickly, and so we give a more careful description. Let H be the bipartite
graph with vertex set V(M)UI, in which for all ¢, j €I adjacent in N, every v€ X;
is adjacent in I to j. We refer to the edges of H as pairs vj.

(2.2) Algorithm.

Input: Graphs M, N, H and a partition (X;:i€I) as above; and for aH uj EE(H ),
the number d(vj) of vertices in X; adjacent tov in M.

Qutput: The maximal round subset; of V(M).

Running time: O(|E(H)|+|V(M)|+|E(M)]).

Description:

Step 1. Construct a stack L of all vertices ve V(M) such that d(vj)=0 for some
j eI, without repetition. In G, label every vertex occurring in L “observed”, and
the remainder “unobserved”.

Since we are given the numbers d{vj) we can construct I and the labelling in
time O(|E(H)|}.

Step 2. Set S=V{(M). Set c(vj)=d(vy) for all vj€ E(H).

Now we begin a recursion. At the beginning of the ith iteration, S will have
cardinality V(M) —i+1, and will include the maximal round subset of V(M). For
v € 8 and vj € B(H), the number ¢(vj) will be the number of neighbours of v
in SNX;, and L will consists precisely of all v € S such that ¢(vj) =0 for some
vj € E(H), without repetition. Every vertex of § will be labelled “observed” or
“unobserved”, and the former will be those which occur in L. The purpose of the
labels is to avoid adding a vertex to L more than once; once a vertex is added to
L we label it “observed”, to warn ourselves not to add it again. The ith iteration
proceeds as follows.

Step 3. If L is empty, output S and stop.

This works because if I is empty then 5 is round, and hence-is the maximal
round subset.

Step 4. If L is non-empty, select u € L. Let u€ X; where ¢€ 1. Find the set Y C
S of all neighbours of u in 8. Remove v from L; remove v from S; for each v €Y
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labelled “unobserved”, if c(vi) =1, change the label of v to “observed” and add v
to L; and for each veY, reduce ¢(vi) by 1. Return for the next iteration.

It is easy to check that this algorithm outputs what it claims. For its running
time, we observe that there are at most |V (M)[41 iterations, since in each iteration
|5] is reduced by 1. The time spent in the ith iteration is < ki +kad(u), where u is
the vertex chosen in step 4, d(u) is the valency of win M, and k1, &y are constants
Thus the total time spent in step 4 is

< ki|V(M)| + 2k2| E(M))] -‘
and hence the algorithm has running time O(|E(H)|+ |V (M)|+|E(M)|). 1

Let us see how to use (2.2) to test if a connected planar graph has an antlpo—
dality of p-range > k. We need the following.

(2.3) Let G be a non-null connected planar graph with a dual graph G*, let p
E(G)Y—Zy4, and let k>0 be an integer. For each e€ E(G) let ¢(e) be the subgrapl;
of (7 consisting of all vertices of G except the ends of e, and all edges f such that f
is incident with no end of e and no closed walk of G* of p-length <k contains both
e* and f*. If there is an antipodality in G of p-range >k, then there is one, o Say,
such that ale) is a union of components of ¢(e) for each e € E{G).

Proof, Let 8 be an antipodality of p-range > k. Then for all e € E{(G), B(e) is a
subgraph of ¢(e), by (Al) and (A3). Let afe) be the union of all components of
#(e) which intersect A(e), for each e€ E(G), and for each r € R(G) let a(r)=4(r):
Clearly « satisfies (A1) and (A3). For (A2), let e€ E(G) be incident with r € R(G),
Then a(r) = B(r) C V(8(e)) C V(a(e)}); and every component of a(e) includes 4
component of 3(e) and hence intersects A(r)=a{r). Thus, & is an antipodality of
p-range >k, as required. |

We use (2.2), (2.3) for the following.

(2.4) Algorithm.

Input: A non-null connected planar graph G, a dual graph G, a function p E(G)
Zit, and an integer k> 0.

Qutput: Decides whether there is an antipodality in G of p-range > k. -

Running time: O{m?) where m={V(G)|+|E(G)|, if arithmetic operations can be
performed in unit time. T
Description:

Step 1. For all u, ve V{G*), compute d*(u,v), the minimum p-length of all paﬂ._ls'-E
G™ between u and v. : )

This can be done using the algorithm of [2]. _
If e, f € E(G) are distinct and e*, f* have ends w1, ug and vy, vp say in G,
then there is a closed walk of G* of p-length < k& using * and f* if and only if either.
d*(u1,v1) +d*(u2,v3) <k —p(e) —p(f) or d*(uy,v2) +d”(uz,v1) <k—ple} —p(f).
Thus we can use the numbers d”(u,v) computed in step 1 to perform
Step 2. Compute the graph ¢(e) of (2.3), for each e € E(G). Compute the set Ce
of components of ¢(e). :

For each e € BE(G), let X, be the set of all pairs {(e,C): CEO’e} For each r e
R(G), let X, be the set of all pairs {(r,v):v€V(G)}. Let I=E(G)UR(G).
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Step 3. Construct the graph M with vertex set |J(X;:4€T), in which (e,C) € X,
is adjacent to (r,v) in X, if e€ E(G), r € R(G), ¢ is incident with r, and v V(C);
and construct the partition (X;:i€l ) of V(M).

Step 4, Construct the graph N with veriex set E(G)UR(G)=1, in which e € E(G)
is adjacent to r€ R{G) if e is incident with r in G.

Step 5. Construct the graph H with vertex set V(M)UV (N), in which if e€ E(G}
and 7€ R(G) are adjacent in N then e is adjacent in H to every vertex in X, and
r is adjacent in H to every vertex in X,.

Step 6. For each edge vj of H, set
[V(C)| ifj € R(G) and v = (e, C) for some e € E(G) and C € C,

1 if j € B{G) and v = (r,u) for some r € R(G)} and v € V(G),
dlvjy = where u is not an end of j
0 if § € E(G) and v = (r,u) for some r € R{(G) and u € V(G),

where u Is an end of j.

Step 7. Use (2.2) to decide if V(M) has a non-empty round subset. Ouiput “yes”
r “no” accordingly. Stop.

Step 7 is permissible because, by our definition of d(vj} instep 7, M, N, H, the
numbers d(vj) and the sets X;(i€I) satisfy the hypothesis of (2.2}, The algorithm
works correctly because V{M) has a non-empty round subset if and only if G has
an antipodality of p-range >k, as we show as follows. Let RCV(M); then for e€
E(G@) we may correspondingly define a(e) to be the union of all '€ (e such that
(e,C) € R, and for r € R(G) define a(r) to be

{v e V(G): (r,v) € R}.

For any choice of R the function o satisfies (A1) and (A3); it satisfies (A2) if and
only if R is round; and the selected a(e), «(r) are non-null (one is non-null if and
only if they all are, by (A2)} if and only if B 7& #. Since by (2.3) if there is an
antipodality of p-range >k then there is one arising in this way from some choice
of R, we deduce that V(M } has a non-empty round subset if and only if G-has an
ant1poda,11ty of p-range > k. Thus the algorithm works correctly.

To estimate running time, let m = |V(G)| +|E(G)|. Then |V(G*| <m, by
Euler’s formula. Steps 1-6 each take time O(m?). Step 7 takes time O(|E(H)|+
V(M)|+|E(M)]) < ®(m?). Thus, the Whole algonthm takes time < O(mz) |

3. Ratcatching

An antipodality is nothing more than an escape strategy in a certain searching
game, and in this section we discuss the game. This is not relevant to the algorithm,
or to the proof of its' correctness, and is included for its own interest.

Let G be a connected planar graph drawn in a sphere %, with dual graph G*,
and let p: B(G)—Z, be a function. We regard G as the floor-plan of a one-storey
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house; its region are rooms, its edges are walls, and its vertices are corners. For
each e € E(G), the wall e has thickness p(e). Here is a full-knowledge game for
two players (ratcatcher and rat). Au integer k>0 is fixed, the ratcatcher selecis a
room, and the rat select a corner, and the first move begin. The ratcatcher moves
first, and the players move in turn, unless the ratcatcher wins when the game stops.
When it is the ratcatcher’s turn, if he is currently in a room, he moves to an incident
wall; or if he is currently in a wall {the walls have doorways) he moves to the room
incident with the wall on the other side from which he entered the wall. (In other
words, once the ratcatcher moves to a doorway out of a room, he has to go through
it in his mext turn to the next room; he cannot move to the doorway and then
change his mind and return to the first room.) When it is the rat’s turn, and it is
currently in a corner v, it moves to a corner u (possibly u=v) such that there is a
path P of (G with ends u, v, and every edge of P is currently “quiet”. We say an
edge e of G is quiet if there is no closed walk in G* of p-length <k using e* and r*
if the ratcatcher is in room r, or using e* and f* if the ratcatcher is in wall f. (In
terms of ratcatching, the rat runs from corner to corner inside the walls; but the
ratcatcher has a noise-maker, and the rat only moves along walls in which the noise
level is acceptable.) The ratcatcher wins if the rat is in a corner v with p(8(v)) <k,
and the ratcatcher is in a room incident with v. The rat’s objective is to stop the
ratcatcher winning,.
We claim that:

(8.1) If [V(G)| = 2, then the ratcatcher has a winning strategy if and only if
p(8(v)) <k for every ve V(G) and there is no antipodality of p-range >k.

Proof. Certainly if p(8(v)) > k for some v, the rat can survive by remaining ai v,
and so we assume that there is no such ». If o is an antipodality of p—range >k,
the rat can survive by obeying the following rules: :
(1) Initially, if the ratcatcher selects room r, the rat selects a corner in a(r)
(2) In general, if the ratcatcher moves from a room 7 to a doorway in a wall e,
incident with rooms r and s, the rat moves into o(s).
(3) If the ratcatcher moves from a doorway in a wall to a room, the rat remains
still.
It is possible to obey these tules, because in (2) the rat is currently in a(r) and
hence in some component ¢ of a(e); and every edge of C is quiet, and some vertex
of C is in «{s). Moreover, it follows from (A1), (A2) that the ratcatcher does not
win if the rat obeys these rules.
Conversely, suppose the rat has an escape strategy. We may assume that the
rat only moves when the ratcatcher is in a doorway; for when the ratcatcher is in a
doorway and is about to move into room s, the rat knows which room the ratcascher
is about tor enter, and every edge which will be quiet when the ratcatcher is in s is
quiet already, and so there is nothing o be gained by waiting to move. For each
room r, define «(r) to be the set of all corners v such that the rat can guarantee
to survive if the game starts with ratcatcher in r and rat in v, with ratcatcher
to move. For each wall e, incident with rooms 7, s, let H be the subgraph of G
with vertex set V(G) and edges the currently quiet edges of &, and let a(e) be the
union of those components of I which meet a(r) and a(s). We claim that o is an
antipodality of p-range > k. Now (A1) holds since p(6(v)) <k for all ve V(G), and
(A3) from the definition of H. To see (A2), let e € F(G) be incident with r,s €
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R(G). Certainly every component of a{e) meets a(r) from the definition of a(e).
Let » € a(r), and suppose that the rat is in v, and the ratcatcher moves from r to
e. By definition of a(r), the rat can still guarantee to survive, and so there is a
path of H (defined as before) from v to a vertex in o(s). Hence v € V{a(e)}, and so
(A2) holds. Finally, a(r}s£# for each r€ R(G) since otherwise the ratcatcher wins
by moving to r; and consequently each «(e) is non-null, by (A2). |

4. Slopes

The next three sections are devoted to proving the followmg (N denotes the
set of positive integers.)

(4.1) Let G be a connected planar graph with |V (G)|>2, let p: E(G) —N, and let
k>0 be an integer. Then G has p-carving-width >k If and only if either p(§(v)) >
k for some vertex v, or (G has an antipodality of p-range > k..

In this section we prove “only if”. The proof is in severa.l'steps We shall need
the following theorem; it is [4, theorems {3.5) and (3.6)] in the case when = {{v}:
veV}, rephrased in terms of carvings via (1.1).

(4.2) Let V be a finite set with |V|>2, and for each X CV let K.(X) be.an integer,
such that
(D) s(X)=w(V-X) foral XCV
(i) e(XUY)+r(XNY)<k(X)+r(Y) for all X, Y CV
(iii) £(X) <0 for all X CV with | X|=1
Then exactly one of the following holds:
(a) there is a carving € in V such that x(X)<0 for all X €€
(b) there is a set of B of subsets of V', such that
(i} for XCV, B contains one of X, V—X if and only if s(X} <0
(i) if X, Y, Z€B then XUYUZ#V
(ifl) X €B for all X CV with | X|=1.

Let G be a graph, and p: F(G) — N a function. Let us say a tilt in G of p-order
k is a colleciion & of subsets of V() such that ' '
(B1} for X CV(Q), B contains one of X, V(G)—X if and only if p(6(X)) <k
(B2) if X, Y, Ze® then XUY UZ#V(G) '
(B3) X €& for all X CV(G) with | X|=
From (4.2), we deduce
(4.3) Let G be a graph with |V (G)>2, let p: E(G}—N; and let k> 1 be an integer,

such that p(§{v)) <k for all ueV(G). "Then G has p- carvmg—w;dth >k if and only
if G has a tilt of p-order k. )

Proof. For each X CV(G), let k(X )=p(6(X)—k+1. Thus x(X) <0 if and only if
p(6(X))<k. Then « satisfies the hypothesis (i), (ii), (iii) of (4.2). By (4.2), exactly
one of {4.2)(a), (4.2)(b) hold. But (4.2)(a) holds if and only if G has p-carving-
width <k, and (4. 2)(b} holds if and only if G has a tilt of p-order k. ]

Now let & be a graph drawn in a sphere %, and let k> 1 be an integer. A slope
in G of order k/2 is a function ins which assigns to every circuit C of G of length
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<k a closed disc ins(C) C X that is one of the two closed discs bounded by ' in
the drawing, such that

(S1) if C, C' are circuits of length < k, and C is drawn within ins(C’) then
ins(C) Cins(C)

(S2) Tf Py, P», Py are three paths of G joining the same pair u, v of distinct
vertices but otherwise disjoint, and the three circuits PLU P, PoUPy, PsU P all
have length <k, then

ins(Py U Po)Uins(Py U Pg) Uins(Py U Pp) #£ X,

A slope is uniform if for every r € R(G) there is a circuit € of G with length <k
such that » Cins(C). If X CV{(G) we denote by G| X the subgraph of @ induced
by X, that is, G\(V(GF)—-X). If G is connected, and X, Y CV({) are disjoint with
union V{(G&), and G1X, G|Y are both non-null and connected, we call §(X) a bond
of G.

Let G be a graph drawn in ¥ and let e be an edge of G, with ends u, v. If we
select t points of & from the open line segment of the drawing representing e, and
declare them to be vertices, we obtain a drawing of a neWw graph in which the edge
e has been replaced by a (t+ 1)-edge path. This process is called subdividing e ¢
times.

(4.4) Let G be a non-null connected graph drawn in a sphere &, and let G* be a
dual graph. Let p: E(G) — N, and let G' be obtained from G* by subdividing e*
p(e) —1 times, for each e€ E(G). Let k> 1 be an integer, such that p(6(v)) <k for
all ve V(G). If G has a tilt of p-order k, then G’ has a uniform slope of order k/2.

Proof. Let & be a tilt in G of p-order k. For each circuit €' of G’ of length
< k, let A1, Ay be the two closed discs bounded by € in the drawing. Then
p(8(V(G)NA))Y=|E(C)| <k (i=1,2), and so exactly one of V(G)NA{, V(@)NA,
belongs to B, say V(G)NA1. We define ins(C)=4A1. It is easy to see that ins is
a slope in (¢ of order k/2, because of (B1), (B2). To see that ins is uniform we
proceed as follows. Let r € R{G"); then r € R(G*), and r =v* for some v € V(G).
Now {v} €%® (by(B3)) and G|{v} is connected. Choose X € B maximal such that
vEX and G} X is connected. Let Y =V (G)— X, and let Y3,...,Y; be the vertex
‘sets of the components of G|Y. We shall show that t=1. Now for 1 <i<t, G| XUY;
is connected, because G| X and G|Y; are both connected and 6(¥;)#£® (since G is
connected), and §(1;)} C8(X) (since Y; is the vertex set of a component of G |Y).
From the maximality of X it follows that X UY; ¢%. But §(XUY;) CHX), and so
p{6(X UY;)) <k; and hence

Y- Y= V(@) - (XUY) e B,

from (Bl). H¢t>22then Y -¥1, Y -7, X €, and (Y -¥VNDHU (Y -RIUX =
V{@G), contrary to (B3). Thus £<1, and 50 by (B2). Hence G|Y is non-null and
connected, and so 6(X) is a bond of G. 1t follows that {e*:e€6(X)} is the edge-set
of a circuit C of G*. Let C’ be the corresponding circuit of ; then |E(CY)| <k,
and rCins(C), since X €B. Thus ns is uniform, as required. |

We shall need the following theorem, which follows from [5, theorems (8.7) and

(8.9)].
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(4.5) Let G be a graph drawn in a sphere T, let k> 1 be an integer, let ins be a
slope in G of order k/2, and let z € X. Let Ny be the set of all y € X such that
there is a closed walk in G of length <k capturing x and y. Then either X — Ny Is
an open disc or Ny =0; and if ins is uniform then Nz #0.

(A walk W captures x € X if either it passes through z, or there is a circuit C of
length <k every edge of which belongs to W, with z €ins(C).)

An antipodality o is connected if a(e) is connected for all edges e. From (4.5)
we deduce the following,.

(4.6) Let G, G*, G', p, k be as in (4.4). If G’ has a uniform slope of order k/2 then
(3 has a connected antipodality of p-range >k,

Proof. For each z€ X let Ny be as in (4.5) (with G replaced by G'). For 7€ R(G)
let ofr) ={v e V(G):v* T~ N}}. For e E(G), we define a(e) as follows. Let
z(e) be the point of intersection of the edges ¢, ¢* in X. Let a(e) be the subgraph
of G consisting of all v € V(G) with v* C T — Ny, and all f € B(G) with f* C
T~ Ny(e)- (This is a subgraph, for if f € F(Q) is incident with v € V(@) and f*C
L — Ny(e) then v* CX—Ny(e)-) Since Ny, is an open disc by (4.5), it follows that
a(e) is a non-null connected subgraph of G. We claim that o is an antipodality of
range > k. To see (Al}, let e € F(@), and let v be an end of € in G. Since ins is
uniform, there is a circuit € of G of length <k with v* Cins(C), and hence with
¢* Cins(C). Thus there is a closed walk of G/ with length <k capturing each point
of v* and capturing z(e), and so v* C Ny(,). Hence v¢ V(ale)). This verifies (A1).

For (A2), let e € E(G) be incident with 7 € R(G}. Then e* is incident with
r* in G%, and s0 Ny C Ny, for any walk of @' capturing z(e) also captures v*.
Thus & — Nyx ©E— Ny, and so ar) € V{a{e)). Since a(r) is non-null and af(e)
is connected, this proves {A2).

For (A3), let e€ E(G) and let f€ E(a(e)). No closed walk of G’ of length <k
captures both z(e) and z(f), and in particular no closed walk of G* of p-length <
k contains both e* and f*. This proves (A3), as required.

In summary, then, we have shown the following, by (4.3), (4.4) and (4.6).

(4.7) Let G be a connected graph with [V(G)| > 2, drawn in a sphere X, lel G*
be a dual graph, let p: E(G) — N, and let k> 1 be an integer. Then each of the
following statements implies the next:

(i) p(8(v})) < k for every vertex v, and G has p-carving-width > &

(ii) p(6(v)) <k for every vertex v, and G has a tilt of p-order k

(iii) G' has a uniform slope of order k/2, where &' is obtained from G* by
subdividing e* p{e) —1 times, for each e € B{G) ' ' '

(iv) G has a connected antipodality of p-range >k

(v) G has an antipodality of p-range > k.

In particular, since (i)=>(v) we see the “only if” part of (4.1) holds.




CALL ROUTING AND THE RATCATCHER

5. Bond carvings

Now we begin the proof of the “if” part of (4.1); it will be completed in the
next section. Let G be a connected graph. A carving % in V{G) is a bond carving
if 8(X) is a bond for all X €¥. The main result of this section is the following.

(5.1) Let G be a 2-connected graph with |V (&)|> 2 and with p-carving-width <k,
where p: E(G)—N. Then there is a bond carving 8 in V() such that p(6(X)) <k
for all X €8.

Let us say that X CV(G) is connected if G| X is connected. Then a carving
6 in V(&) is a bond carving if and only if each X €€ is connected. We shall need
the following easy lemma (implied by (1.1)), the proof of which we omit.

(5.2) If € is a carving in a set V then

() if X €% then V - X%

(ii) if X € € and {X| > 2 then there is a unique choice of Y, Z € € such that
YUZ=X and YNZ=0.

If X, Y CV(G) are disjoint we denote by 6(X,Y") the set of all edges of G
with one end in X and the other in Y. Thus §( X,V (G}—X)=4(X). Now let G be
connected; then if X, Y, ZC V() are mutually disjoint and nonempty, and have
union V(G), then at most one of §{X,Y), 6(Y,Z) 6(Z,X) is empty. If §(X,Y)=0
we define p({X,¥,Z})=|Z| -1, and similarly if §(¥,Z)=0 or §(Z,X)=0. If none
of the three is empty we define p({X,Y,Z})=0.

Let € be a carving in V(G). A triad of € is a set {X,Y,Z} of three members
of €, mutually disjoint and with union V{G). By (5.2) (ii), every member X of &
is in at most one triad of 8, exactly one if and only if |X| <|V{(G)| —2. We defline
p{C) to be Tu({X,Y,Z}), the sum being taken over all triads {X,Y¥,Z} of 6. We
need the following lemma.

(5.3) Let (G be a connected graph with |V (@)| > 2, and let € be a carving in V(G).
Let Ay, Ao, By, Bo €8 be mutually digjoint, with union V (&), and with AjUAs€
6. Let §(A1,B1)£0#£6(Ag, Ba), and let §(Aq,A2)=0. Let ' be the carving

6 = (6 —{A1 U Ay, BiU B2} ) U{A1 U By, A2 U Ba}. -
Then p{E") <u(8).
Proof. Clearly €' is a carving, and

u(B) — () = p({A1 U Ag, B, Bo}) + p({ A1, Ag, B1 U Ba})—
—p({A1 U By, Ag, Ba}) — p({A1, By, A2 U Ba}).

Moreover, u{{A1,A42,B1 U By}) =|B1 U Bg| —1 since §(A;,Az) = 0, and we may

therefore assume, for a contradiction, that

(1) p{{A1UB1, Ag, Ba})+p({ A1, B1, A2UBa}) > u({A1UAg, By, Ba})+|B1UBz| - 1.
Tn particular, from (1) it follows that

#({A1U By, Az, Ba}) — ({Be| — 1) + p{{A1, By, A2 U Ba}) — (|B1[ =1} > 0
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and so from the symmetry between A1U B and AaU Ba, we may assume without
loss of generality that

p({A1, By, As U Ba}) > |B1]— 1.

We deduce that §(Ay, AgU Ba) 7 B; but since §( A1, B1}#0 by hypothesis, it follows
that u({Al,Bl,AzUBQ}) = IAll —1 and 5(Bl,A2 UB3) =1{). Since

6(31, Bz) C 5(31,}12 U BQ} =0
we deduce that p({A3UAg, B1,Ba})=|A3 UAs|—1. From (1), we find that
w({A1 U By, Ag, Bo})y + 41| -1 2 |4 UAg|—14|B1UBs| -1,
and hence
1({A1 U By, Ag, Bo}) > |A2 U By U Ba| — 1 > max(|Az] — 1,|Bs| — 1).

But since §(As, Ba) #0, it follows that u(A1UBy, A2, By) is one of |Aa| -1, | Ba| 1,
0. This is a contradiction, as required. |

Proof of (5.1). Choose a carving € in V(&) such that
(1) p(6(X)) <k for all X €€, and
(2) subject to (1), p(¥6) is minimum.

We claim that € is a bond carving. Suppose not; then some X € % is not
connected, and we may choose such an X, minimal. Then |X| > 1, and by (5.2)
there exist X1, Xo €6 with Xy NXy=0 and X1 UX9=X. From the minimality
of X it follows that X1, X are both connected, and hence §(X1,X2) =0. Now
{V(G)-X, X1, Xz} is a triad of 8, and we may therefore choose a triad {41, A2, B}
of 8 such that
(3) 6(A1,A2)=Y, and
(4) subject to (3), |B| is minimum. _

Since V(G) — B is not connected and G is 2-connected, it follows that |B|>2.
By (5.2), there exist By, By €% with BN By=0 and BiUBs=58.

(5) For i=1,2 at least one of §(Ay,B;), (A2, B;) is non-empty.

This is because {By, A1 U A2, Ba} is a triad of 6 and |By| < |B], and so from
(4), 6(A1UA2,BQ)?1:®, and similarly §(A1UA2,31)%@- :
(6) If 8(A1,B1), 6(Ag, Ba) are both non-empty then p{6(A1UB1)) > k.

To see this, define €' as in (5.3). By (5.3), u(€') < p(8), and so by (2),
p(6(X)) >k for some X €8, Since §(AyUB1)=56(A2UBs), the claim follows.

Similarly,

(7) If §(As,Bs), 8(Ag,B1) are both non-empty then p(6(A2UB2)) > k.

Now since G is connected and &(A43,As) = 0, at least one of §(A;, By),
§(A;,B) is non-empty, for 4 = 1,2. From (5) we may therefore assume that
§(A1,B1),6(As2, B2) are both non-empty. From (6), p(6(41U By)) > k. But
p(6(B1)) < k, and so §(A; UBy) € §(B1), and hence §(A;, By) # 0. Similarly,
since 6{ AsUBs) £ §(B1), it follows that §(As, B1)#0. From (7), p(8(A1UDB2}) > k.
Consequently,

2k < p(6(A1 U B1)) +p(6(A1 U Bg))
= p(6(A1, B2)) + p(6(A2, B1)} + p(6(B1, Ba))+

+ p(8(A1, B1)} + p(8(Az, B2)) + p(6(B1, B2))
= p(6(B1)) +p(6(B2)) < 2k
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a contradiction. Thus € is a bond carving, as required.

6. Carvings and antipodalities

The main result of this section is the following.

(6.1) Let G be a connected planar graph with [V(G)| > 2, drawn in a sphere T, let
G* be a dual graph and let p: E(G)—N. Let k>0 be an integer, and let o be an
antipodality in G of p-range > k. Then G has p-carving-width > k.

Proof. Let us say a limb of G is a pair (P,v), where v€ PCV(G), §(P)C{v), and
Via(e)) N P for some edge e incident with . (Thus if (P,v) is a limb and P+#
V(G) then v is a cutvertex of G.)
(1) If (P,v) is a limb then V(a(e))N(P—{v})#0 for every edge e incideni with v.
To prove this, let eq,...,e; be the edges of & incident with v, in their cyclic
order in the drawing (any loops incident with v occur twice in this sequence). We
miay assume that V{a{e1))NP#D. Suppose that there exists 4 > 1, minimum such
that V(a(e;))NP=0. Since i > 1 we deduce that V(a(e; 1))NP#@. Let H be a
component of a(e; 1) with V(H)NP#E. Since v£ V(H) by {Al), and §{P)C&{v),
and H is connected, it follows that V{H)C P. Let r € R(G) be incident with e;—;
and e;. Then V(H)Na(r}#0 by (A2), and by (A2} again, a(r) CV{a(e;)). Hence

0 V(H)Nalr) C Pnalr) € PnViale)),

contrary to the choice of 5. Thus there is no such 7 and so V{a{e;))NP#Q for 1<
i<t But v V(a{e;)) by (Al), and so (1) holds.

Now (V(@),v) is a limb, for any v € V((), because v has valency > 1 in G.
Hence we may choose a limb (P,s) with P minimal.

(2) P—{v} is connected.

Suppose not; then there exist Py, P CP such that PAUP=P, PN Py={v},
P —{v}, Py~ {v}) =0, and P, P # P. Choose e € E(G) incident with v, such
that PNV {a(e))#0. Then one of PNV {a(e)), PaNV{c(e}) is non-empty and so
one of (P1,v), (Pa,v) is a limb, contrary to the choice of (P,v). This proves (2).

Since (P,v) is a limb it follows that V{a(e)) N (P — {v}) # 0 for some edge
incident with v, and so P# {v}. Since §(P}Cé(v) it follows that §(P — {v},{v})#
). Let B be a maximal 2-connected subgraph of (¢ containing v and a neighbour of
v in P. {A single edge and its ends form a 2-connected subgraph.) Then V(B) C
P, because §{P)Cé(v).

(3 ) Every neighbour of v in P belongs to V(B).

To see this, certamly some neighbour u € P of v belongs to V(B) Let uo be
another neighbour of v in P. By (2), there is a circuit C of G| P such that v, u1,
ug € V() and hence |[V(BNC)| > 2. Consequently BUC is 2-connected, and so
BUC=25 from the maximality of B. Hence up € V{(B), and so (3) holds.

For X CV{B), let X be the unique subset of V(&) satisfying XV (B)=X and

§(X)=6(X,V(B)X). It is easy to see that if v¢ X then X CP—{v}. We suppose,
for a contradiction, that B has p-carving-width < k. Since B 'is 2-connected, there
is by (5.1) a bond carving € in V(B) such that for all X €€, p(6(X,V(B) —X)) <
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k. Hence p(6(X)) <k for all X €8. Let 8’ C# be the set of all X €% such that ve
X a,nd V(a(e))ﬂX’%[ﬂ for some e € 8§(X).
4
() To see this, let X =V (B)— {v}; then X € 6, since € is a carving in V{(B)
and [V(B)| > 2. By (3), X = P— {v}. Choose ¢ € E(B) incident with v; then
V(a(e))NX £0 by (1), and since e € §(X) it follows that X €%’. Hence €' #£0, as
required.

Choose X €6', minimal.

(8) 1 X|#1.

Suppose that X = {u} say. Then §(X) C 6(u), and V(a(e))NX #0 for some
e€§(X) because X €%, and so (X,u) is a limb. But X C P~ {v} contrary to the
choice of (P,w). This proves (5).

By (5.2) there exist X1, Xo € 8 with X3 UXs=X and X1 N X3 = . By the
minimality of X, neither X; nor X3 belongs to &,

(6) E(a(e))ﬂ(é(Xl)Ué(Xg)) B for all ec6(X1) U6(X2)

To see this, e,f € 6(X1) U6(X2) Then one of 8(X), 6(X1), 6(X2), say D,
contains both e and f. Since % is a bond carving of B it follows that D is a bond
of G, and hence .

{g" 19 € D} = E(C)
for some circuit.C of G*. Since e, f* € E(C) and C has p-length p(D) < %, we
deduce from (A3) that f¢ E(a(e)). This proves (6).
(1) V(a(e)NX; =0 for all e€6(X).
. To see this, let 6(X) {e1,...,et}, such that for 1<i<t there is a region r; of
G incident with e;_1, ¢; (where eq means e;). Such a numbering is possible since

§(X) is a bond of B and hence of G, and so {e*:e €8 (X)} is the edge-set of a
circuit of G*. Since V(B)—X2 is connected (becanse V{B)— X3 € 8) it follows that

§(X1)N6(X)#0, and so we may choose the numbering so that e; € §(X1). Since
X1 ¢ € it follows that V{a(e1)) N X, =0. If possible, choose 4 > 1 minimum such
that V(a(et))ﬂXl #0. Then i>1, and V(a(e;— i))ﬂf(l ={. Let H be a component
of a(e;) with V(H) NXy#0. Since e; € 8(X) C8(X1) U8(X3), it follows from (6)
that E(H)NS(X1)=0. Since H is connected we deduce that V(H) C X1. By {A2),
V() Nalr;) # 9, and hence a(r;)N X1 # 0. By (A2), afr;) € V{(e(ej_1)), and so
V(a(e;— 1))0X1 0, a contradiction. Thus there is no such i, and the result follows.

Slrmlarly, V{c(e))NXy=0 for all e€ §(X). Since X3 UXy=X it follows that

V(a(e))NX =0 for all e€§(X), a contradiction, since X €%6'.
We deduce that B has p—carvmg-w1dth > k; and hence so does G, because B
is a subgraph of G. . 1

We deduce:

(6.2) Let G be a connected plapar graph with |V(G)| > 2, drawn in a sphere, let
G* be a dual graph, let p: E(G) —N, and let k>0 be an integer. Suppose that
p(6(v)) <k for all ve V(). Then:the. foﬂowmg are eqmvalent _

(i) G has p-carving-width >k

(ii) G has a tili of p-order k
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(ili} G' has a uniform slope of order k/2, where G’ is obtained from G* by
subdividing e* p(e)— 1 times, for each e€ E(()

(iv) G has a connected antipodality of p-range >k

(v) G has an antipodality of p-range > k.

Proof. Since p(§(v}) <k for all v€ V(G), and V(G) #£0, it follows that k>1. Hence
(D)= (it)=-(iil)=(iv)=-(v) by (4.7). But (v)=(i) by (6.1). , I |

Proof of (4.1). We have already proved the “only if” part of (4.1), as a corollary of
(4.7). For the “if” half, let G be a connected planar graph with |[V(G) >2. Since G
has p-carving-width > 0, we may assume that k>1. If p(6(v)) >k some v € V(G)
then @ has p—carvmg—mdth >k since {v} € € for every p-carving ¥ in V(G), as

required. We may assume then that p(d(v)) <k for all v € V (&), and that G has
an antipodality of p-range > k. But then by (6.2), G has p -carving-width > k as
required. |

From (4.1), we obtain an a,_lgorithm for p-carving-width in planar graphs, as
follows.

(6.3) Algorithm.

Input: A planar graph G with |V (G)| >2, a function p: E(G)—Z4, aﬂd an integer
k>1.

Qutput: Decides whether G has p-carving-width > k.

Running time: <O(m?), where m=|V(G)+|E(Q)), if anthmetzc operatjons can
be performed in unit time.

Description:

Step 1. Delete every edge e of G with p(e) =0, forming G’
Such edges have no effect on the p-carving-width.
Step 2. Compute all the components, G1,...,G say, of G' which have >2 vertices.

Step 3. Test if some vertex v of G1U... UG} has p(§(v)) 2 k. If so, output “yes”
and stop.

This is correct because by (4.1), if » € V(Gj;) has p(6{v)) > k then-G;, and
hence G, has p-carving-width > k. ’ : R

Step 4. For 1<i<t, find a drawing of G; in a sphere, and a dual graph. Test if_an;-z
of G1,.... Gy has an antipodality of p-range >k, using (2.4). If so, output “yes”,
and otherwise output “no”, and stop. ;

This is correct because if some &; has an antipodality of p-range >k then it
and hence G has p-carving-width > & by (4.1). Otherwise, by (4.1), each G; has
p-carving-width < k. Since the one-vertex components of G’ have no effect on p-
carving-width, it follows easily that G’ has p—carvmg -width <k, and hence so does
G, as required.

To estimate running time, we see that steps 1-3 can be performed in tlme
O(m). If m1—|V( O+ E(G; )| ‘then the application of (2.4) to (; in step 4 takes

time < O(m?), and since 3 m? <m? it follows that the total running time is <

O(m?). - |.§
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7. Branch-width and carving-width

In this section we describe how to compute the branch-width of a planar graph. -
In fact our method applies equally well to “planar hypergraphs”, and since in any
case we shall need to discuss hypergraph branch-width in the next section, we have
expressed our results in terms of hypergraphs. Thus, a hypergraph G consists of
a finite set V(G of vertices, a finite set E{G) of edges, and an incidence relation
between them. The vertices incident with an edge e are called the ends of e. For
X C E(G) we define 8(X) = 0g(X) to be the set of all v € V(G) incident with
an edge in X and with an edge in E(G)— X; and the branch-width of G is the
minimum, over all carvings 6 in E(G), of the maximum, over all X €8, of [3(X))|
(or zero, if |[E(G)| <1). If the hypergraph G is a graph (that is, if each edge has
one or two ends) this coincides with our previous definition.

A hypergraph H is a subhypergraph of a hypergraph G if V{H) CV(G), E(H}C
E(Q), and every edge of H has the same ends in A and in G. If H), Hy are
subhypergraphs of H, then so are H) NHy, Hy UHy defined in the natural way. A
separation of G is a pair (A, B) of subhypergraphs with AUB=G and E(ANB)=
@; and its order is |V (AN B)|. Let k>1 be an integer. A tangle in G of order & is
a set T of separations of G, such that ‘

(i) for any sepatation (A, B) of G, J contains one of (4, B), {B, 4) if and only
if (A, B) has order <k : -

(ii) if (A;,B;)€d (i=1,2,3) then A;UAUA3#G

(iii) if (A, B)€T then V{A)AV(G). : :
We define 7(G) to be the maximum, over all e € E(G), of the number of ends of e
(or v{G)=0 if B(G)=0). We shall need the following [4, theorem (4.3)).

(7.1) Let G be a hypergraph with 7{G) >0 and let k> 1 be an integer. Then G
has a tangle of order k if and only if either v(G) >k or G has branch-width > k.

Let G be a hypergraph; then I(G), the incidence graph of G, is the simple
bipartite graph with vertex set V(G)UE(Q), in which v € V(&) is adjacent to e &
E(G) if and only if v is an end of e in G. We see that G is determined by I(G);
and if G is a graph, then I(G) is obtained from G (up to isomorphism) by replacing
every edge of G by two edges in series. Thus, if G is a graph then G is planar if
and only if 7(G) is planar; and that motivates the definition that a hypergraph &
is said to be planar if I{G) is planar. (It is easy to see that this coincides with the
usual definition of planarity for hypergraphs, where edges are represented by closed
discs in a sphere, and their ends by points in the boundaries of the discs.)

Take a drawing of I(G) in a sphere. Let M be a graph with vertex set £(G),
and let Cp (v€V(G)) be circuits of M, with the following properties:

(i) the circuits €, (v€V(()) are mutually edge-disjoint and have union M

(ii) for each v € V(G), let the neighbours of v in I(G) be #1, ..., %, enumerated
according to the cyclic order of the edges vz1,..., vzt in the drawing of I(G); then
C', has vertex set {x1,...,7:}, and in Cy, z;—1 is adjacent to z; (1<é<t), where zg
means Iy. - :

In these circumstances M is called a medial graph of G. A hypergraph G is connected
if I{(?) is connected. It is easy to see that every connected planar hypergraph G
with F(G)# ¥ has a medial graph, and every medial graph is planar. We shall show
the following.
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(7.2) Let G be a connected planar hypergraph with |FE(G)|> 2, and let M be the
medial graph of G. Then the branch-width of (¢ is half the carving-width of M.

Proof. Let C, (v €V (G)) be circuits of M as in the definition of “medial graph”.
Let G have branch-width 8, and let M have carving-width x. We must show that

=x/2. First, we prove that §<x/2. For let € be a carving in V(M) such that-
|6m{X)| < & for all X € 8. Since V(M) = E(G) it follows that % is a carving in
E{(G). Moreover, for all X €8,

[8a(X) = |{v € V(G) : v is incident in G with an edge in X
and an edge in E(G) — X} .
= |{v e V(G)}: in I(G),v has a neighbour in X
and in E(G@) — X} _
=|{p e V(G): XNV(Cy) # 0 and (E(G) — X)NV(Cy) # B}

S Y IB(C) N8 (X))/2 = 63 (X)I/2 < /2,
wEV(G)

We deduce that g<x/2.

For the reverse inequality, suppose first that some v € V() is an end of exactly
one edge e of (. Let G’ be the hypergraph with E(G’) = E(G) and V(G") =
V(G) —{v}, in which u € V(G') and f € B{(G’) are incident if and only if they
are incident in G. It is easy to see that G and G’ have the same branch-width.
Moreover, Cy, is a 1-edge circuit of M, and a medial graph M’ for G/ can be obtained
from M by deleting the loop in E{C,). Clearly M and M’ have the same carving-

width, because loops do not affect carving-width. Hence it suffices to show that
G’ has branch-width half the carving-width of M’'. By repeating this process, it
follows that we may assume that i
(1) There is no ve V(&) incident with exactly one edge of G.

We may also assume that > 1, for otherwise 3> /2 as required. Consequently
E(M)#0. We claim that we may assume that :
{2} Each edge of G has <x/2 ends in G. '

Suppose that e€ E(G) has > £/2 ends in G. Now {e} € € for every carving ‘6
in B{G). Since [8g({e})| > x/2 by (1), we deduce that 8> k/2 as required. Hence
we may assume that (2) holds.

Now M has carving-width & and is planar and connected and E(M) # (B_,-
and so from (4.3) and (4.4), either |837(e)| > & for some e € V{M}, or M* has a
uniform slope of order #/2, where M* is a dual graph of M. In the first case, sincg
M ={}(Cy:v e V(G)) and each E(Cy} includes at most two edges in Spr(e), it
follows that e € V(CY) for at least x/2 values of v € V(G); that is, e has > x/2
ends in G, contrary to (2). We deduce that M* has a uniform slope of order &/2:
Consequently, by [5,theorems (6.1) and (6.5)], G has a tangle of order > /2 (for
in the terminology of [5], M™ is the graph of a “radial drawing” of G). If v(G)=Q
then because G is connected and F(G)30, it follows that |E(G)|=1 and V(G) =0,
and so M has carving-width 0, a contradiction. Thus ¥(G)>0. By (7.1) and (2);
G has branch-width > x/2, as requlred |

{7.2) yields the following.
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(7.3) Algorithm.

Input: A planar hypergraph G, and an integer k>1.
Output: Decides whether G has branch-width > k.
Running time: O{m?) where m=|V(G)|+|E(G)|-
Description:

Step 1. Compute I(G) and find its components, Hi,...,Hy say.

There correspond connected subhypergraphs G1....,,Gs of G with union G,
with V(G;NG;)=0=E(G;NGy)} (i#]), and where I, =I1(G) (1<i<t).

Step 2. For 1 < i <t, if V.(H;) contains at least two members of E(G), find a
drawing of H; in a sphere, and compute the corresponding medial graph M; of G;.

Step 3. For each medial graph M;, test if M; has carving-width > 2k. If some M;
~has carving-width > 2k, output “yes”, and otherwise ouiput “no”; and stop.

This is correct because if some M; has carving-width > 2k, then by (7.2) G4
has branch-width >k, and hence so does G. If no M; has carving-width > 2k, then
each corresponding G; has branch-width <k by (7.2). Since every other G; has at
most one edge, it follows that G1,...,Gy all have branch-width < k, and hence so
does G. '

Since (summingover all i with [V{H;)NE(G)|>2)

SUBQ) | + V)P < (3 IB(M)] + V(D

< (B + @)D < (BTG +EE)?

(3

and since [E(I(G))]| <2(|V(G)|+|E(G)|)—3 because I(G) is planar and simple and
has |V (G))|+ | E(G)]. vertices) we deduce that the algorithm has running time <
O(m?), as claimed. - ' S o 1

8. Some NP-completeness results

We have seen that for planar graphs and hypergraphs, one can compute branch-
width and carving-width in polynomial time. In this section we show that for
general graphs both problems are NP-hard. We begin with the following result of
Garey, Johnson and Stockmeyer [3]. .

(8.1) The following problem is NP-complete.

Instance: A graph G two vertices s, t of G, and an integer k>0.

Question: Is there a partition (A,B) of V(G) with |A[ = [B|, s € A, t€ B and
16(A)| <k? - | |

We deduce
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{8.2) The following problem is NP-complete.
Instance: A graph G, and an integer k> 0.
Question: is there a partition {A, B) of V(G) with |A|=|B| and |6(A)|<k?

Proof. We shall reduce the problem of (8.1} to that of (8.2). For let G, s, t, & be as
in {8.1). Let |V(G)|=2n. We may assume that » is an integer. Let G’ be obtained
from & by adding k+1 parallel edges joining u, v for every unordered pair {u,v}
{s,t} of distinct vertices. Let &' =n?(k+4-1)—1. Let (A,B) be-a partition of V(Q)
with |A|=|B]. We claim that
(1) b (A)| <K' if and only if A contains exactly one of s, t and |6g(A)|<k.

To show this, there are two cases. If A contains exactly one of s, ¢t then

6 (A)] = (n* = 1)(k +1) + 6 (a)|
and s0 6 (A)| <&’ if and only if [§¢(A)| <k. If A contains both or neither of s, &,
then : : _ ‘
|6 {A)| = n2(k+ 1) + |6(4)] > ¥
The claim follows.

From (1) we see that the problem of (8.1) is polynomially reducible to that of
(8.2), and so the result follows from (8.1). _ |

Actually, the proof given in [3] of {8.1) can also serve as a proof of (8.2). - -

(8.3} The following problem is NP-complete.
Instance: A graph (I, and an integer k> 0. .‘
(Question: Is there a partition (A,B,C) of V(G) with |A| = |B| = |C| such that

|6(A); 16(B)], 16(CH<k?

Proof. We shall reduce (8.2) to (8.3). Let G, k be as in (8.2), with |V (G)} = 2n,
We may assume that n is an integer. Let H be a graph obtained from a complete
graph Ky by replacing each edge by %-+1 parallel edges. Let G’ be the disjoint
union of G and H. L 3
(1) There is a partition (A, B) of V(G) with |A|=|B| and [§g(A)| <k, if and only
if there is a partition (A, B,C) of V(G') with |A|=|B|={C| and (6¢:(A)|, |6¢(BY);
Certainly, given (A, B), we may take C'=V(H). Conversely, given A, B, C,
since |8 (A)|, |8g(B)], |6 (C)| <k it follows that no two vertices of H belong:
to distinct members of {4, B,C}; that is, we may assume that V(H) C C. Since
|V(H)|=n=|C| we deduce that V(H)=C, and so |6 (4)|<k. This proves (1).
The result follows from (1) and (8.3). Lo |

(8.4) The following problem is NP-complete.
Instance: A graph G with |V(G)|>2, and an integer k>0.
Question Does G have carving-width <k?

Proof. We shall reduce (8.3) to (8.4). Let G, k be as in (8.3), and let |V (@) =
3n. We may assume that n is an integer, and n>1. Also we may assume that k<
|E(G)]| {for otherwise the partition exists).. Let m=|E(G)|, and let G’ be obtained
from G by adding m parallel edges joining every pair of distinct vertices, Hence s
(1) For X CV(Q), légr(X)|=bc(X)|+m|X|(3n~|X]).
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Let ¥ =2mn?+k. : -

(2) If there is a partition (A,B,C} of V(G) with |A|=|B|=|C| such that |6g(4}],
[6¢:(B)], |6c(C)| <k, then G’ has carving-width <k.

To see this, let g ={A,B,C,AUB,AUC,BUCY, and let % be a carving in
V(@) with 8y C 8. Now for each X € . either X is a subset of one of A, B, C or
X is a superset of one of AUB, AUC, BUC, and so in either case | X| (3n—|X{) <
9n2, with strict inequality unless X € 8. This if X €6 — 86y then by (1},

66 ()] = 166(X)] +miX| (3n — | X]} < 86(X) +m(2n? = 1) < 2mn® < k'

because [ (X)j<m. Since |6g(X)| <k and hence |6g/(X)| <k for all X €6y, we
deduce that |5 (X) <k for all X €8, as required.
(3) If G' has carving-width <k then there is a partition (A,B,C) of V(G) with
|A|={B|=|C| such that |§c(A)l, |dc(B)], 16c(C)|<k.

To show this, let € be a carving in V(G') such that |6 (X)| <K' for all X cé.
Since n>1 and hence C #1, there exists A €% with |4] <2n, by (5.2}{(i). Choose
Ac€ with |A| <2n such that |A| is maximum. From (1), we deduce that

16 (A)| 4+ mIA] (3 — |Al) = 18 (A)] < K =2mn? +k <m(2n® +1)

and so |A] (3n—|A]) < 2n?+1. Since |A| < 2n, we deduce that |A| < n. Thus
[V(G)— A| > 2n > 2; and so by (5.2)(ii), there exist B, Cc8 with BNC'=§ and
BUC=V(G)~A. Now AUB€® and |AUB|> |Al, and so |AUB| > 2n from the
choice of A. Consequently |C]=3n—|AUB|<n, and similarly |B|<n. Since |Al <
n and |AUBUC]| =3n, it follows that | 4| =|B|=|C|=n. But as we showed above,

(A +mlA] (3n — |A]) < 2mn® + k,

and since |A| =n, we deduce that [6g(A)] <k; and similarly [6a(B), 16c(C) < k.
This proves (3). _
From (2), (3) and (8.3), the results follows. |

We remark that in (8.4) G is not constrained to be simple; but even if & is
_ constrained to be simple the problem is still NP-complete. To see this, let G, k be
an input to (8.4); we may assume that k>2 and G is loopless. Let G be obtained
from G by subdividing each edge once. It easy to see that G has carving-width <
k if and only if G’ does. -

Now we turn to. branch-width. From (8.4) we have immediately the following
(for given G as in (8.4), let H be the hypergraph with E(HY=V(G) and V(H)=
E(G), in which v € ¥(G), e € E(G) are incident if and only if they are incident in
G; then the branch-width of II equals the carving-width of G).

(8.5) The following problem is NP-complete.
Instance: A hypergraph G, and an integer k>0.
Question: Does GG have branch-width <k?

We would like to prove (8.5) for graph instead of hypergraphs. Our method

is, given a hypergraph G, to construct a graph with the same branch-width. One
. might try replacing ‘each edge of G by a complete graph, but that does not work.
{For instance, if {V{G)| = n and [E(G)| = 2, and both edges are incident with
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every vertex, then G has branch-width n. But if we replace both edges by cliques
we obtain a graph with branch-width about %n) Instead, we shall replace each
edge of G, with ends u,...,u; say, by a complete bipartite graph with vertex set
{u1,..-,%,01,..., v} (where v,...,v; are new vertices) in which each u; is adjacent
to each v;. We shall see that this produces a graph with the same branch-width as
(& except in trivial cases. To show this, it is convenient to replace one edge of &
at a time; and instead of working directly with branch-width, we use tangles and
(7.1}

Let us say a separation (C, D) of a hypergraph is special if |V (C)|=2|V (CND)],
and C is a (simple) complete bipartite graph with bipartition (V(Cn D), V(C)—
V(D)).
A separation (C,D) of a hypergraph ( is titanic for every triple (X,Y, 2} of
subhypergraphs of C such that XUYUZ=C and E(X), E(Y}, E(Z) are mutually
disjoint, at least one of the following so-called “titanic inequalities” holds:

V({(XuY)n2Z)| = |V({(XuY)n D)
[V{(YuzZ)nX)| > |V({YuZ)nD)
V{ZzuX)nY) = |V({(ZuX)n D).

We need the following lemma.

(8.6) Let (C,D) be a separation of a hypergraph G. If either '
(i) |B(CY|=1, E(C)={e} say, and V(C) is the set of ends of e, or '
(ii) {C,D) is special ' '

then (C,13) is titanic.

Proof. Let X, Y, Z be as in the definition of “titanic”. If (i) holds, we may assume
e€ E(X), and hence every end of e is a vertex of X. Hence V(C)CV(X), and so
X =C. But then S

V({(TuZ)nX)| = V(Y u2Z)] z V(Y Vz)n D)

and so one of the titanic inequalities holds, as required. We assume then that (ii)
holds. . ' '
(1) We may assume that V(C)—~V(D)CV(YUZ).

To see this, suppose that a €V (C) —~ V(D) and a¢ V(Y UZ). Then a€ V(X).
Since for all be V(C'N D) there is an edge of C with ends @, b, and this edge does
not belong to Y or Z since a ¢ V(Y), V(4), it follows that this edge belongs to X
and in particular b€V (X). Hence V(CND)CV(X), and so

V((yuz)nX)| = V(Y uz)ncnD) = V{{yuz)nD);

and a titanic inequality holds, as required.
(2) We may assume that V(Y UZ)=V(C). : :

To see this, suppose that b€ V(CND) and ¢ V(Y UZ). Then every edge
of C incident with b belongs to X, and so V(C)—V(D) C V(X). But by (1),
V(C) - V(D)CV{YUZ), and so o : - ST

V((vuz)nX) > [V(C)- V(D) =V({CnD) z V(¥ uzZ)n D)l;
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and a titanic inequality holds, as required. Thus we may assume that V(C'ND)C
V(YuZ), and hence V(Y UZ)=V(C) from (1).

‘Similarly we may assume that V(X UY)=V(XUZ)=V(C). Hence we may
assume that |[V(X)|>1/2|V(C)|. But. V(Y UZ)=V(C), and so

_ V(Y uZ)nX)| = [V(X) = 1/2IVv(C) =iVICnD)| = |V((Y UZ)n D)
as required.
We shall also need the following lemma.

(8.7) Let (C,D) be a special separation of a hypergraph G, of order t. Let I be a
tangle in G of order k>max(t,2). Then (C,D)€d.

Proof. Suppose that (C,D)¢9. Since (C, D} has order ¢ <k it follows that (D,C) &
J. Choose (A,B)ed with DC A and BCC, such that [V{A)|+|E(A)| -1V (B)| -
|E(B)| is maximum. Evidently for all (4',B') e 7, if AC A" and B’ C B then
(A", B"y=(A,B). Since BC C it follows that B is a graph. By [4, theorem (2.8)],
we deduce o

(1) (A, B) has order k—1, and for any separation (By, Ba) of B such that By, Bz #
B, ‘

V(By N Be)| > min(IV(AN By, V(AN By)|).

In particular, B is connected and every edge of B has an end in V(B)—V(A).
Consequently there is no separation (B1,B9) of B with B,, B # B and such
that B1 N Bs C A; and so B\V(AN B) is connected. Since V{D) meets every edge
of C' and hence V{A) meets every edge of B, it follows that |V (B)—-V(A4)|<1. But
V{A)#£V(G) since (A,B)€J, and so V(B)—V(A)={v}, for some vertex v. Then
vEV(CY-V (D), since V(B)-V(A)CV(C)-V (D). By (1), V(B)CV(CnD)U{v}.
By-(1) again, |V(B)NV(CND)|<1, and so (A, B) has order <1, By (1), k—1<1,
a contradiction. E

The following is [4, theorem (8.3)].

(8.8) Let (C,D) be a separation of a hypergraph G, and lei (C’, D) be a separation
of a hypergraph G, with CND=C'ND. Let J be a tangle in G of order k>?2 with
(C,D)e9, and let (C',D) be titanic. Let 7' be the set of all separations (A’, B') of
' of order < k such that there exists (A,B)€d with E(AND)=E(A'ND). Then
9! is a tangle in G' of order k. .

Let e be an edge of a hypergraph G, and let G'\e denote the subhypergraph
with vertex set V() and edge set E(G)—{e}. Let G’ be a hypergraph with G\eC
G', and let (C,G\e) be a special separation of G’. In these circumstances we say
that G’ is obtained from G by erpanding e.

(8.9) Let ' be obtained from a hypergraph G by expanding an edge e, and let
k>max(2,7(C)) be an integer. Then G has branch-width <k if and only if G’ has
branch-width <k. _ C

Proof. If 7(G)=0 then 4(G'} =0, and &, G’ both have branch-width 0. Thus we
may assume that v(G) > 0, and hence that y(G') > 0. Let e have t ends. Let C
be the hypergraph formed by ¢ and its ends, let D =G\e, and let (C',D) be the
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special separation of /. Both (C,D) and (C’,
have order £.

Suppose that G has branch-width > k. Since ¥(G) > 0, it follows from (7.1)
that G has a tangle J of order k. Since (D,C) ¢ J (because V(D) =V (G)) and
(C,D) has order ¢ <k, it follows that (C,D)eJ. By (8.8} we deduce that G’ has a
tangle of order k. Since ¥(G <max(2,7(G)) <k, it follows from (7.1) that G’ has
branch-width >k, as required.

For the converse, suppose that &' has branch-width > k. Since v(G') >0, it
follows from (7.1) that G’ has a tangle 9'.of order k. By.(8.7), (C',D)e J. By
(8.8), & has a tangle of order k. Since ’y(G) < k it follows from (7.1) that G has
branch-width >k, as required. [ |

. We deduce

D) are titanic by (8.6), and both

(8.10) The following problem is NP-complete.
Instance: A simple graph G, and an integer k> 0.
Question: Does G have branch-width <k7

Proof. We shall reduce the problem of (8.5) to that of (8.10). Let @, k be as in
{8.5). We may assume that k> 2 (for it is easy-to test if &G has branch—wu:lth <
0 or <1). Suppose that v & V(G) is an end of exactly one edge e € E(G). It is
easy to see that @ and G’ have the same branch-width, where V(G )=V (@) —{v},
B(Gy= E(G) and each f<& E{G’) is incident with v V(G') if and only if they are
incident in . By repeating this process we reduce the problem of testing if G has
branch-width <k to testing if some hypergraph H has branch-width <k, in which
no vertex is incident with just one edge. In other words, we may assume that no
vertex of G is incident with just one edge of G.

We may assume that v(G) <k, for if ¥{G) >k then G does not have branch-
width < k. Now let & be obtained from & by expanding each edge in turn. Then
G' is a simple graph, and it has branch-width <k if and only if ¢ has branch-width
<k, by (8.9). The result follows. . 1

9. Remarks

We have seen that we can test in polynomial time if a planar graph has carving-

“width <k, but our algorithm does not find the correspondmg carving if it ex1sts

This can be overcome at some addition cost in running tlme as follows.

(9.1) Algorithm

Input: A planar graph G, a functlon p E(G)— Ly, and an imteger k>0

Qutput: A carving € in V(G) such that p( (X)) <k for all X €86, if such a carving
exists.

Running time: O(m#*), where m=|V (G)|+|E(G)|, if arithmetic operations can be
performed in unit time. ’ : : -

Description: If we find a carving for each block of G, it is easy to assemble them
using (1.1) to find the desired carving in . Thus, we may assurhe that ¢ is 2-
connected and loopless. We check, using (6.3), whether G has p-carving-width <k,
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and we may assume the answer is yes. By (5.1) there is a bond carving % in V{(G)
such that p(6{(X)) <k for all X € 8. Since we may assume that [V{(G})| =z 3 and
hence there exist distinct u, v€ V{G) with {u,v} €%, it follows that
(1) There exist distinct u, v€ V(G), such that

(i) u, v are adjacent in G

(i) G\{u,v} is connected, and

(iii) the graph G’ obtained from G by contracting all edges with ends {u,v}
has p-carving-width <k. -

Hence we may find such a pair u, v, by testing all adjacent pairs u, v to see if

- (ii) and (iit) above are satisfied (we test (iii) using (6.3)).

But given u, v as in (1), and given a carving ' in V(G) such that p(§e (X) <
k for all X € €, it is easy to construct the desired carving in V(@) {for p{(6(u)),
p(6(v)) <k since G has p-carving-width <k). Thus it suffices to find the carving in
V(G'). But G is loopless and 2-connected (because G\{u,v} is connected) and so
we may continue the process.

The algorithm then, for a loopless 2-connected graph G, is as follows. Set G1=
G. Tteratively, for 1<i<|V(G)| -2, we find u;, v; € V(G;) as in (1), and let Gipq
be obtained from G by contracting all edges between u; and v;. Now we find a
bond carving €; for V(G;) such that p(§(X)) <k for all X €6;, for i=|V(G)| -1,
V(G)|—2,...,1 in turn; and then %y is the required output. B |

Secondly, it is natﬁra,l to ask, what about computing the cut-width of a planar
graph? A graph G has cuf-width <k if there is an ordering v1,...,vp of V(@) such
that for 1<i<n—1,

[6({v1,...,u})| < k.
For trees, cut-width is computable in polynomial time (6], and for general graphs it
is NP-complete {3], but for planar graphs it remains open. It is tempting to try and
adapt the methods of the present paper to compute cut-width for planar graphs,
but there are difficulties. One is that there appears to be no analogue of (5.1), and
another is that we have been unable to formulate an analogue of ‘antipodality” so
that there is an appropriate version of (4.1). Nevertheless, there is an analogue
of (4.3} and (4.4) (see [1] for related material), and so there may be some hope.
Our feeling, however, is that computing cut-width is probably NP-hard for planar
graphs. _

Lastly, an open problem. In practice, it seems that if a planar graph has an
antipodality of range >k then one can find a drawing of it on a sphere {{z,y,2):
22+ 92+ 22 =1} and an antipodality o of range >k such that a(e) tends to be
opposite ¢ in the drawing, that is, close to the reflection through the origin of the
line segruent representing e. Does this have any theoretical basis? '
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