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Abstract

A graph G is perfect if for every induced subgraph H, the chromatic number of H equals the size of
the largest complete subgraph of H, and G is Berge if no induced subgraph of G is an odd cycle of
length at least five or the complement of one.

The “strong perfect graph conjecture” (Berge, 1961) asserts that a graph is perfect if and only
if it is Berge. A stronger conjecture was made recently by Conforti, Cornuéjols and Vušković —
that every Berge graph either falls into one of a few basic classes, or admits one of a few kinds of
separation (designed so that a minimum counterexample to Berge’s conjecture cannot have either of
these properties).

In this paper we prove both these conjectures.



1 Introduction

We begin with definitions of some of the terms we use which may be nonstandard. All graphs in
this paper are finite and simple. The complement G of a graph G has the same vertex set as G,
and distinct vertices u, v are adjacent in G just when they are not adjacent in G. A hole of G is an
induced subgraph of G which is a cycle of length at least 4. An antihole of G is an induced subgraph
of G whose complement is a hole in G. A graph G is Berge if every hole and antihole of G has even
length.

A clique in G is a subset X of V (G) such that every two members of X are adjacent. A graph
G is perfect if for every induced subgraph H of G, the chromatic number of H equals the size of the
largest clique of H. The study of perfect graphs was initiated by Claude Berge, partly motivated
by a problem from information theory (finding the “Shannon capacity” of a graph — it lies between
the size of the largest clique and the chromatic number, and so for a perfect graph it equals both).
In particular, in 1961 Berge [1] proposed two celebrated conjectures about perfect graphs. Since
the second implies the first, they were known as the “weak” and “strong” perfect graph conjectures
respectively, although both are now theorems, the following:

1.1 The complement of every perfect graph is perfect.

1.2 A graph is perfect if and only if it is Berge.

The first was proved by Lovász [16] in 1972. The second, the strong perfect graph conjecture,
received a great deal of attention over the past 40 years, but remained open until now, and is the
main theorem of this paper.

It is easy to see that every perfect graph is Berge, and so to prove 1.2 it remains to prove the
converse. By a minimum imperfect graph we mean a counterexample to 1.2 with as few vertices
as possible (in particular, any such graph is Berge and not perfect). Much of the published work
on 1.2 falls into two classes: proving that the theorem holds for graphs with some particular graph
excluded as an induced subgraph, and investigating the structure of minimum imperfect graphs. For
the latter, linear programming methods have been particularly useful; there are rich connections
between perfect graphs and linear and integer programming (see [5, 20] for example).

But a third approach has been developing in the perfect graph community over a number of years;
the attempt to show that every Berge graph either belongs to some well-understood basic class of
(perfect) graphs, or admits some feature that a minimum imperfect graph cannot admit. Such a
result would therefore prove that no minimum imperfect graph exists, and consequently prove 1.2.
Our main result is of this type, and our first goal is to state it.

Thus, let us be more precise, and we start with two definitions. We say that G is a double split
graph if V (G) can be partioned into four sets {a1, . . . , am}, {b1, . . . , bm}, {c1, . . . , cn}, {d1, . . . , dn}
for some m,n ≥ 2, such that:

• ai is adjacent to bi for 1 ≤ i ≤ m, and cj is nonadjacent to dj for 1 ≤ j ≤ n

• there are no edges between {ai, bi} and {ai′ , bi′} for 1 ≤ i < i′ ≤ m, and all four edges between
{cj , dj} and {cj′ , dj′} for 1 ≤ j < j ′ ≤ n

• there are exactly two edges between {ai, bi} and {cj , dj} for 1 ≤ i ≤ m and 1 ≤ j ≤ n, and
these two edges have no common end.
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(The name is because such a graph can be obtained from what is called a “split graph” by doubling
each vertex). The line graph L(G) of a graph G has vertex set the set E(G) of edges of G, and
e, f ∈ E(G) are adjacent in L(G) if they share an end in G. Let us say a graph G is basic if either
G or G is bipartite or is the line graph of a bipartite graph, or is a double split graph. (Note that
if G is a double split graph then so is G.) It is easy to see that all basic graphs are perfect. (For
bipartite graphs it is trivial; for line graphs of bipartite graphs it is a theorem of König [15]; for their
complements it follows from Lovász’ theorem 1.1, although originally these were separate theorems
of König; and for double split graphs we leave it to the reader.)

Now we turn to the various kinds of “features” that we will prove exist in every Berge graph that
is not basic. They are all decompositions of one kind or another, so henceforth we call them that. If
X ⊆ V (G) we denote the subgraph of G induced on X by G|X. First, a special case of the “2-join”
due to Cornuéjols and Cunningham [13] — a proper 2-join in G is a partition (X1, X2) of V (G) such
that there exist disjoint nonempty Ai, Bi ⊆ Xi (i = 1, 2) satisfying:

• every vertex of A1 is adjacent to every vertex of A2, and every vertex of B1 is adjacent to every
vertex of B2,

• there are no other edges between X1 and X2,

• for i = 1, 2, every component of G|Xi meets both Ai and Bi, and

• for i = 1, 2, if |Ai| = |Bi| = 1 and G|Xi is a path joining the members of Ai and Bi, then it
has odd length ≥ 3.

(Thanks to Kristina Vušković for pointing out that we could include the “odd length” condition
above with no change to the proof.)

If X ⊆ V (G) and v ∈ V (G), we say v is X-complete if v is adjacent to every vertex in X (and
consequently v /∈ X), and v is X-anticomplete if v has no neighbours in X. If X,Y ⊆ V (G) are
disjoint, we say X is complete to Y (or the pair (X,Y ) is complete) if every vertex in X is Y -complete;
and being anticomplete to Y is defined similarly. Our second decomposition is a slight variation of
the “homogeneous pair” of Chvátal and Sbihi [7] — a proper homogeneous pair in G is a pair of
disjoint nonempty subsets (A,B) of V (G), such that, if A1, A2 respectively denote the sets of all
A-complete vertices and all A-anticomplete vertices in V (G), and B1, B2 are defined similarly, then:

• A1 ∪ A2 = B1 ∪ B2 = V (G) \ (A ∪ B) (and in particular, every vertex in A has a neighbour in
B and a nonneighbour in B, and vice versa)

• the four sets A1 ∩ B1, A1 ∩ B2, A2 ∩ B1, A2 ∩ B2 are all nonempty.

A path in G is an induced subgraph of G which is non-null, connected, not a cycle, and in which
every vertex has degree ≤ 2 (this definition is highly nonstandard, and we apologise, but it avoids
writing “induced” about 600 times), and an antipath is an induced subgraph whose complement is a
path. The length of a path is the number of edges in it (and the length of an antipath is the number
of edges in its complement). We therefore recognize paths and antipaths of length 0. If P is a path,
P ∗ denotes the set of internal vertices of P , called the interior of P ; and similarly for antipaths. Let
A,B be disjoint subsets of V (G). We say the pair (A,B) is balanced if there is no odd path between
nonadjacent vertices in B with interior in A, and there is no odd antipath between adjacent vertices
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in A with interior in B. A set X ⊆ V (G) is connected if G|X is connected (so ∅ is connected); and
anticonnected if G|X is connected.

The third kind of decomposition we use is due to Chvátal [6] — a skew partition in G is a partition
(A,B) of V (G) such that A is not connected and B is not anticonnected. Despite their elegance,
skew partitions pose a difficulty that the other two decompositions do not, for it has not been shown
that a minimum imperfect graph cannot admit a skew partition; indeed, this is a well-known open
question, first raised by Chvátal [6], the so-called “skew partition conjecture”. We get around it
by confining ourselves to balanced skew partitions, which do not present this difficulty. (Another
difficulty posed by skew partitions is that they are not really “decompositions” in the sense of being
the inverse of a composition operation, but that does not matter for our purposes.)

We shall prove the following (the proof is the contents of sections 2 - 24).

1.3 For every Berge graph G, either G is basic, or one of G, G admits a proper 2-join, or G admits
a proper homogeneous pair, or G admits a balanced skew partition.

There is in fact only one place in the entire proof that we use the homogeneous pair outcome (in
the proof of 13.4), and it is natural to ask if homogeneous pairs are really needed. In fact they can
be eliminated; one of us (Chudnovsky) showed in her PhD thesis [3, 4] that the following holds:

1.4 For every Berge graph G, either G is basic, or one of G, G admits a proper 2-join, or G admits
a balanced skew partition.

But the proof of 1.4 is very long (it consists basically of reworking the proof of this paper for
more general structures than graphs where the adjacency of some pairs of vertices is undecided) and
cannot be given here, so in this paper we accept proper homogeneous pairs.

All nontrivial double split graphs admit skew partitions, so if we delete “balanced” from 1.3 then
we no longer need to consider double split graphs as basic — four basic classes suffice. Unfortunately,
nontrivial double split graphs do not admit balanced skew partitions, and general skew partitions
are not good enough for the application to 1.2, so we have to do it the way we did.

Let us prove that 1.3 implies 1.2. For that, we need one lemma, the following. (A maximal con-
nected subset of a nonempty set A ⊆ V (G) is called a component of A, and a maximal anticonnected
subset is called an anticomponent of A.) The lemma following is related to results of [14] that were
used by Roussel and Rubio in their proof [23] of 2.1.

1.5 If G is a minimum imperfect graph, then G admits no balanced skew partition.

Proof. Suppose that (A,B) is a balanced skew partition of G, and let B1 be an anticomponent of
B. Let G′ be the graph obtained from G by adding a new vertex z with neighbour set B1.

(1) G′ is Berge.

For suppose not. Then in G′ there is an odd hole or antihole using z. Suppose first that there
is an odd hole, C say. Then the neighbours of z in C (say x, y) belong to B1, and no other vertex of
B1 is in C. No vertex of B \ B1 is in C since it would be adjacent to x, y and C would have length
4; so C \ z is an odd path of G, with ends in B1 and with interior in A, contradicting that (A,B)
is balanced. So we may assume there is no such C. Now assume there is an odd antihole D in G ′,
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again using z. Then exactly two vertices of D \ z are nonadjacent to z, so all the others belong to
B1. Hence in G there is an odd antipath Q of length ≥ 3, with ends x, y 6∈ B1 and with interior
in B1. Since both x and y have nonneighbours in the interior of Q it follows that x, y 6∈ B; and so
x, y ∈ A, again contradicting that (A,B) is balanced. This proves (1).

For a subset X of V (G), we denote the size of the largest clique in X by ω(X). Let ω(B1) = s,
and ω(A ∪ B) = t. Since G is minimum imperfect it cannot be t-coloured. Let A1, . . . , Am be the
components of A.

(2) For 1 ≤ i ≤ m there is a subset Ci ⊆ Ai such that ω(Ci ∪ B1) = s and

ω((Ai \ Ci) ∪ (B \ B1)) ≤ t − s.

For let H = G′|(B ∪ Ai ∪ {z}); then H is Berge, by (1). Now by [6], there are at least two
vertices of G not in H (all the vertices in A \ Ai), and since H has only one new vertex it follows
that |V (H)| < |V (G)|. From the minimality of |V (G)| we deduce that H is perfect. Now a theorem
of Lovász [16] shows that replicating a vertex of a perfect graph makes another perfect graph; so if
we replace z by a set Z of t − s vertices all complete to B1 and to each other, and with no other
neighbours in Ai∪B, then the graph we make is perfect. From the construction, the largest clique in
this graph has size ≤ t, and so it is t-colourable. Since Z is a clique of size t− s, we may assume that
colours 1, . . . , s do not occur in Z, and colours s + 1, . . . , t do. Since B1 is complete to Z, colours
s + 1, . . . , t do not occur in B1, and so only colours 1, . . . , s occur in B1; and since ω(B1) = s, all
these colours do occur in B1. Since B1 is complete to B \B1, none of colours 1, . . . , s occur in B \B1.
Let Ci be the set of vertices v ∈ Ai with colours 1, . . . , s. Then Ci ∪B1 has been coloured using only
s colours, and so ω(Ci ∪ B1) = s; and the remainder of H \ z has been coloured using only colours
s + 1, . . . , t, and so

ω((Ai \ Ci) ∪ (B \ B1)) ≤ t − s.

This proves (2).

Now let C = B1 ∪ C1 ∪ · · · ∪ Cm and D = V (G) \ C. Since there are no edges between different
Ai’s, it follows from (2) that ω(C) = s, and similarly ω(D) ≤ t− s. Since |C|, |D| < |V (G)| it follows
that G|C,G|D are both perfect; so they are s-colourable and (t − s)-colourable, respectively. But
then G is t-colourable, a contradiction. (Alternatively we could apply lemma 2.2 of [14].) Thus there
is no such (A,B). This proves 1.5.

Proof of 1.2, assuming 1.3.

Suppose that there is a minimum imperfect graph G. Thus G is Berge and not perfect. Every basic
graph is perfect, and so G is not basic. It is shown in [13] that G does not admit a proper 2-join.
From Lovász’s theorem 1.1, it follows that G is also a minimum imperfect graph, and therefore G
also does not admit a proper 2-join. It is shown in [7] that G does not admit a proper homogeneous
pair, and G does not admit a balanced skew partition by 1.5. It follows that G violates 1.3, and
therefore there is no such graph G. This proves 1.2.

There were a series of statements like 1.3 conjectured over the past twenty years (although they
were mostly unpublished, and were unknown to us when we were working on 1.3.) Let us sketch the
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course of evolution, kindly furnished to us by a referee. A star cutset is a skew partition (A,B) such
that some vertex of B is adjacent to all other vertices of B. An even pair means a pair of vertices
u, v in a graph such that every path between them has even length. It was known [2, 6, 18] that
no minimum imperfect graph admits a star cutset or an even pair, and the earlier versions of 1.3
involved these concepts. For instance, in Reed’s PhD thesis [19], the following conjecture appears:

1.6 Conjecture: For every perfect graph G, either one of G,G is a line graph of a bipartite graph,
or one of them has a star cutset or an even pair.

Reed also studied the same question for Berge graphs, and researchers at that time were consid-
ering using general skew partitions instead of star cutsets (although this would not by itself imply
1.2, since the skew partition conjecture was still open).

A counterexample to all these versions of the conjecture was obtained in the early 1990’s by Irena
Rusu. At about the same time, Conforti, Cornuéjols and Rao [9] proved a statement analogous to
1.3 for the class of bipartite graphs in which every induced cycle has length a multiple of four, and
their theorem involved 2-joins. Since Cornuéjols and Cunningham [13] had already proved that no
minimum imperfect graph admits a 2-join, it was natural to add 2-joins to the arsenal.

At a conference in Princeton in 1993, Conforti and Cornuéjols gave a series of talks on their
work; and in working sessions at the conference (particularly one in which Irena Rusu presented her
counterexample), new variants of the conjecture were discussed, including the following:

1.7 Conjecture: For every Berge graph G, either

• one of G,G is a line graph of a bipartite graph, or

• one of G,G admits a 2-join, or

• G admits a skew partition, or

• one of G,G has an even pair.

More recently, Conforti, Cornuéjols and Vušković [10] proposed a similar conjecture, with the
“even pair” alternative replaced by “one of G,G is bipartite”, although without explicitly listing a
proposed set of decompositions. Our result 1.3 is essentially a version of this conjecture, except that
we only accept skew partitions that are balanced (and therefore need a fifth basic class) and also we
include homogeneous pairs.

How can we prove a theorem of the form of 1.3? There are several other theorems of this kind in
graph theory — for example, [7, 10, 17, 21, 22, 24, 25] and others. All these theorems say that “every
graph (or matroid) not containing an object of type X either falls into one of a few basic classes or
admits a decomposition”. And for each of these theorems, the proof is basically a combination of the
same two methods (below, we say “graph” and “subgraph”, although the objects and containment
relations vary depending on the context):

• We judiciously choose an explicit X-free graph H (X-free means not containing a subgraph of
type X) that does not fall into any of the basic classes; check that it has a decomposition of
the kind it is supposed to have; and show that this decomposition extends to a decomposition
of every bigger X-free graph containing H. That proves that the theorem is true for all X-free
graphs that contain H, so now we may focus on the X-free graphs that do not contain H.
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• We choose a graph J , in one of the basic classes and “decently-connected”, whatever that
means in the circumstances. Let G be a bigger X-free graph containing J that we still need
to understand. Enlarge J to a maximal subgraph K of G that is still decently-connected and
belongs to the same basic class as J . We can assume that K 6= G, for otherwise G satisfies
the theorem. Making use of the maximality of K, we prove that the way the remainder of G
attaches to K is sufficiently restricted that we can infer a decomposition of G. Now we may
focus on the X-free graphs that do not contain J .

It turns out that these two methods can be used for Berge graphs, in just the same way. We need
about twelve iterations of this process.

The paper is organized as follows. The next three sections develop tools that will be needed all
through the paper. Section 2 concerns a fundamental lemma of Roussel and Rubio; we give several
variations and extensions of it, and more in section 3, of a different kind. In section 4 we develop
some features of skew partitions, to make them easier to handle in the main proof, which we begin
in section 5. Sections 5-8 prove that every Berge graph containing a “substantial” line graph as
an induced subgraph, satisfies 1.3 (“substantial” means a line graph of a bipartite subdivision of a
3-connected graph J , with some more conditions if J = K4). Section 9 proves the same thing for line
graphs of subdivisions of K4 that are not “substantial” — this is where double split graphs come in.
In section 10 we prove that Berge graphs containing an “even prism” satisfy 1.3. (To prove this we
may assume we are looking at a Berge graph that does not contain the line graph of a subdivision
of K4, for otherwise we could apply the results of the earlier sections. The same thing happens later
— at each step we may assume the current Berge graph does not contain any of the subgraphs that
were handled in earlier steps.) Sections 11-13 do the same for “long odd prisms”, and section 14 does
the same for a subgraph we call the “double diamond”. Section 15 is a break for resharpening the
tools we proved in the first four sections, and in particular, here we prove Chvátal’s skew partition
conjecture [6], that no minimum imperfect graph admits a skew partition. (Or almost – Chvátal
actually conjectured that no minimal imperfect graph admits a skew partition, and we only prove
it here for minimum imperfect graphs. But that is all we need, and of course the full conjecture of
Chvátal follows from 1.2.) Section 16 proves that any Berge graph containing what we call an “odd
wheel” satisfies 1.3, in sections 17-23 we prove the same for wheels in general, and finally in section
24 we handle Berge graphs not containing wheels.

These steps are summarized more precisely in the next theorem, which we include now in the
hope that it will be helpful to the reader, although some necessary definitions have not been given yet
— for the missing definitions, the reader should see the appropriate section(s) later. Let F1, . . . ,F11

be the classes of Berge graphs defined as follows (each is a subclass of the previous class):

• F1 is the class of all Berge graphs G such that for every bipartite subdivision H of K4, every
induced subgraph of G isomorphic to L(H) is degenerate

• F2 is the class of all graphs G such that G,G ∈ F1 and no induced subgraph of G is isomorphic
to L(K3,3)

• F3 is the class of all Berge graphs G such that for every bipartite subdivision H of K4, no
induced subgraph of G or of G is isomorphic to L(H)

• F4 is the class of all G ∈ F3 such that no induced subgraph of G is an even prism

6



• F5 is the class of all G ∈ F3 such that no induced subgraph of G or of G is a long prism

• F6 is the class of all G ∈ F5 such that no induced subgraph of G is isomorphic to a double
diamond

• F7 is the class of all G ∈ F6 such that G and G do not contain odd wheels

• F8 is the class of all G ∈ F7 such that G and G do not contain pseudowheels

• F9 is the class of all G ∈ F8 such that G and G do not contain wheels

• F10 is the class of all G ∈ F9 such that, for every hole C in G of length ≥ 6, no vertex of G
has three consecutive neighbours in C, and the same holds in G

• F11 is the class of all G ∈ F10 such that every antihole in G has length 4.

1.8 (The steps of the proof of 1.3)

1. For every Berge graph G, either G is a line graph of a bipartite graph, or G admits a proper
2-join or a balanced skew partition, or G ∈ F1; and (consequently) either one of G,G is a line
graph of a bipartite graph, or one of G,G admits a proper 2-join, or G admits a balanced skew
partition, or G,G ∈ F1.

2. For every G with G,G ∈ F1, either G = L(K3,3), or G admits a balanced skew partition, or
G ∈ F2.

3. For every G ∈ F2, either G is a double split graph, or one of G,G admits a proper 2-join, or
G admits a balanced skew partition, or G ∈ F3.

4. For every G ∈ F1, either G is an even prism with |V (G)| = 9, or G admits a proper 2-join or
a balanced skew partition, or G ∈ F4.

5. For every G such that G,G ∈ F4, either one of G,G admits a proper 2-join, or G admits a
proper homogeneous pair, or G admits a balanced skew partition, or G ∈ F5.

6. For every G ∈ F5, either one of G,G admits a proper 2-join, or G admits a balanced skew
partition, or G ∈ F6.

7. For every G ∈ F6, either G admits a balanced skew partition, or G ∈ F7.

8. For every G ∈ F7, either G admits a balanced skew partition, or G ∈ F8.

9. For every G ∈ F8, either G admits a balanced skew partition, or G ∈ F9.

10. For every G ∈ F9, either G admits a balanced skew partition, or G ∈ F10.

11. For every G ∈ F10, either G ∈ F11 or G ∈ F11.

12. For every G ∈ F11, either G admits a balanced skew partition, or G is complete or bipartite.

The twelve statements of 1.8 are proved in 5.1, 5.2, 9.6, 10.6, 13.4, 14.3, 16.3, 18.7, 23.2, 23.4,
23.5, and 24.1 respectively.
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2 The Roussel-Rubio lemma

There is a beautiful and very powerful theorem of [23] which we use many times throughout the
paper. (We proved it independently, in joint work with Carsten Thomassen, but Roussel and Rubio
found it earlier.) Its main use is to show that in some respects, the common neighbours of an
anticonnected set of vertices (in a Berge graph) act like or almost like the neighbours of a single
vertex.

If X ⊆ V (G), we say an edge uv is X-complete if u, v are both X-complete. Let P be a path in G
(we remind the reader that this means P is an induced subgraph which is a path), of length ≥ 2, and
let the vertices of P be p1, . . . , pn in order. A leap for P (in G) is a pair of nonadjacent vertices a, b of G
such that there are exactly six edges of G between a, b and V (P ), namely ap1, ap2, apn, bp1, bpn−1, bpn.

The Roussel-Rubio lemma (slightly reformulated for convenience) is the following.

2.1 Let G be Berge, let X ⊆ V (G) be anticonnected, and P be a path in G\X with odd length, such
that both ends of P are X-complete. Then either:

1. some edge of P is X-complete, or

2. P has length ≥ 5 and X contains a leap for P , or

3. P has length 3 and there is an odd antipath with interior in X, joining the internal vertices of
P .

This has a number of corollaries that again we shall need throughout the paper, and in this
section we prove some of them.

2.2 Let G be Berge, let X be an anticonnected subset of V (G), and P be a path in G \ X with
odd length, such that both ends of P are X-complete, and no edge of P is X-complete. Then every
X-complete vertex of G has a neighbour in P ∗.

Proof. Let v be X-complete. Certainly P has length > 1, since its ends are X-complete and
therefore nonadjacent. Suppose first it has length > 3. Then by 2.1, X contains a leap, and so there
is a path Q with ends in X and with Q∗ = P ∗. Then v is adjacent to both ends of Q, and since
G|(V (Q) ∪ {v}) is not an odd hole, it follows that v has a neighbour in Q∗ = P ∗, as required. Now
suppose P has length 3, and let its vertices be p1- · · · -p4 in order. By 2.1, there is an odd antipath Q
between p2 and p3 with interior in X. Since Q cannot be completed to an odd antihole via p3-v-p2,
it follows that v is adjacent to one of p2, p3, as required.

Here is another easy lemma that gets used enough that it is worth stating separately.

2.3 Let G be Berge, let X ⊆ V (G) be anticonnected, and let P be a path or hole in G \X. Let Q be
a subpath of P (and hence of G) with both ends X-complete. Then either the number of X-complete
edges in Q has the same parity as the length of Q, or the ends of Q are the only X-complete vertices
in P . In particular, if P is a hole, then either there are an even number of X-complete edges in P ,
or there are exactly two X-complete vertices and they are adjacent.
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Proof. The second assertion follows from the first. For the first, we use induction on the length of
Q. If some internal vertex of Q is X-complete then the result follows from the inductive hypothesis,
so we may assume not. If Q has length 1 or even then the theorem holds, so we may assume its
length is ≥ 3 and odd. We may assume that there is an X-complete vertex v say of P that is not an
end of Q, and therefore does not belong to Q; and since P is a path or hole, it follows that v has no
neighbour in Q∗, contrary to 2.2. This proves 2.3.

A triangle in G is a set of three vertices, mutually adjacent. We say a vertex v can be linked onto
a triangle {a1, a2, a3} (via paths P1, P2, P3) if:

• the three paths P1, P2, P3 are mutually vertex-disjoint

• for i = 1, 2, 3 ai is an end of Pi

• for 1 ≤ i < j ≤ 3, aiaj is the unique edge of G between V (Pi) and V (Pj)

• v has a neighbour in each of P1, P2 and P3.

The following is well-known and quite useful:

2.4 Let G be Berge, and suppose v can be linked onto a triangle {a1, a2, a3}. Then v is adjacent to
at least two of a1, a2, a3.

Proof. Let v be linked via paths P1, P2, P3. For 1 ≤ i ≤ 3, v has a neighbour in Pi; let Pi be the
path from v to ai with interior in V (Qi). At least two of Q1, Q2, Q3 have lengths of the same parity,
say Q1, Q2; and since G|(V (Q1) ∪ V (Q2)) is not an odd hole, it is a cycle of length 3, and the claim
follows.

A variant of 2.2 is sometimes useful, the following:

2.5 Let G be Berge, let X ⊆ V (G), and let P be a path in G \ X of odd length, with vertices
be p1- · · · -pn, such that p1, pn are X-complete, and no edge of P is X-complete. Let v ∈ V (G) be
X-complete. Then either v is adjacent to one of p1, p2, or the only neighbour of v in P ∗ is pn−1.

Proof. By 2.2, v has a neighbour in P ∗, and we may assume that pn−1 is not its only such neighbour,
so v has a neighbour in {p2, . . . , pn−2}. If P has length ≤ 3 then the result follows, so we may assume
its length is at least 5. By 2.1, there is a leap a, b for P in X; so there is a path a-p2- · · · -pn−1-b.
Now {p1, p2, a} is a triangle, and v can be linked onto it via the three paths b-p1, P \ {p1, pn−1, pn},
a; and so v has two neighbours in the triangle, by 2.4, and the claim follows.

2.6 If G is Berge and A,B ⊆ V (G) are disjoint, and v ∈ V (G) \ (A ∪ B), and v is complete to B
and anticomplete to A, then (A,B) is balanced.

The proof is clear.

2.7 Let (A,B) be balanced in a Berge graph G. Let C ⊆ V (G) \ (A ∪ B). Then :

1. if A is connected and every vertex in B has a neighbour in A, and A is anticomplete to C, then
(C,B) is balanced
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2. if B is anticonnected and no vertex in A is B-complete, and B is complete to C, then (A,C)
is balanced.

Proof. The first statement follows from the second by taking complements, so it suffices to prove
the second. Suppose u, v ∈ A are adjacent and joined by an odd antipath P with interior in C. Since
B is anticonnected and u, v both have non-neighbours in B, they are also joined by an antipath Q
with interior in B, which is even since (A,B) is balanced. But then u-P -v-Q-u is an odd antihole, a
contradiction. Now suppose there are nonadjacent u, v ∈ C, joined by an odd path P with interior in
A. Then P has length ≥ 5, since otherwise its vertices could be reordered to be an odd antipath of
the kind we already handled. The ends of P are B-complete, and no internal vertex is B-complete,
and so B contains a leap for P by 2.1; and hence there is an odd path with ends in B and interior
in A, which is impossible since (A,B) is balanced. This proves 2.7.

We already said what we mean by linking a vertex onto a triangle, but now we do the same for
an anticonnected set. We say an anticonnected set X can be linked onto a triangle {a1, a2, a3} (via
paths P1, P2, P3) if:

• the three paths P1, P2, P3 are mutually vertex-disjoint

• for i = 1, 2, 3 ai is an end of Pi

• for 1 ≤ i < j ≤ 3, aiaj is the unique edge of G between V (Pi) and V (Pj)

• each of P1, P2 and P3 contains an X-complete vertex.

There is a corresponding extension of 2.4, the following:

2.8 Let G be Berge, let X be an anticonnected set, and suppose X can be linked onto a triangle
{a1, a2, a3} via P1, P2, P3. For i = 1, 2, 3 let Pi have ends ai and bi, and let bi be the unique vertex
of Pi that is X-complete. Then either at least two of P1, P2, P3 have length 0 (and hence two of
a1, a2, a3 are X-complete) or one of P1, P2, P3 has length 0 and the other two have length 1 (say P3

has length 0); and in this case, every X-complete vertex in G is adjacent to one of a1,a2.

Proof. Some two of P1, P2, P3 have lengths of the same parity, say P1 and P2. Hence the path
Q = b1-P1-a1-a2-P2-b2 (with the obvious meaning - we shall feel free to specify paths by whatever
notation is most convenient) is odd, and its ends are X-complete, and none of its internal vertices
are X-complete. If Q has length 1 then the theorem holds, so we assume it has length ≥ 3. By 2.2,
every X-complete vertex has a neighbour in Q∗, and since b3 is X-complete, it follows that b3 = a3.
Hence we may assume both P1 and P2 have length ≥ 1 for otherwise the claim holds. Suppose that
Q has length 3. Then P1 and P2 have length 1, and the claim holds again. So we may assume (for
a contradiction) that Q has length ≥ 5, and from the symmetry we may assume P1 has length ≥ 2.
Since b3 is not adjacent to the end b1 of Q or to its neighbour in Q, and yet it has at least two
neighbours in Q∗ (namely a1 and a2), this contradicts 2.5. This proves 2.8.

As we said earlier, the main use of 2.1 is to show that the common neighbours of an anticonnected
set behave in some respects like the neighbours of a single vertex. From this point of view, 2.1 itself
tells us something about when there can be an odd “pseudohole”, in which one “vertex” is actually
an anticonnected set. We also need a version of this when there are two such vertices, the following.
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2.9 Let G be Berge, and let X,Y be disjoint nonempty anticonnected subsets of V (G), complete to
each other. Let P be a path in G \ (X ∪ Y ) with even length > 0, with vertices p1, . . . , pn in order,
such that p1 is the unique X-complete vertex of P and pn is the unique Y -complete vertex of P .
Then either:

1. P has length ≥ 4 and there are nonadjacent x1, x2 ∈ X such that x1-p2- · · · -pn-x2 is a path, or

2. P has length ≥ 4 and there are nonadjacent y1, y2 ∈ Y such that y1-p1- · · · -pn−1-y2 is a path,
or

3. P has length 2 and there is an antipath Q between p2 and p3 with interior in X, and an antipath
R between p1 and p2 with interior in Y , and exactly one of Q,R has odd length.

In each case, either (V (P \ p1), X) or (V (P \ pn), Y ) is not balanced.

Proof. It follows from the hypotheses that X,Y and V (P ) are mutually disjoint. If P has length 2,
choose an antipath Q between p2 and p3 with interior in X, and an antipath R between p1 and p2 with
interior in Y . Then p2-Q-p3-p1-R-p2 is an antihole, and so exactly one of Q,R has odd length and the
theorem holds. So we may assume P has length ≥ 4. We may assume that V (G) = V (P )∪X∪Y , by
deleting any other vertices. Let G′ be obtained from G \Y by adding a new vertex y with neighbour
set X ∪{pn}. Let P ′ be the path p1- · · · -pn-y of G′. Then P ′ has odd length ≥ 5. If G′ is Berge then
by 2.1 there is a leap for P ′ in X, and the result follows. So we may assume G′ is not Berge.

Assume first that there is an odd hole C of length ≥ 7 in G′. It necessarily uses y, and the
neighbours of y in C are Y -complete, and no other vertices of C \ y are Y -complete. Hence there
is an odd path Q in G \ Y of length ≥ 5, with both ends Y -complete and no internal vertices Y -
complete. So the ends of Q belong to X ∪ {pn} and its interior to V (P ) \ {pn}. By 2.1 Y contains a
leap for Q; so there is an odd path R of length ≥ 5 with ends (y1, y2 say) in Y and with interior in
V (P ) \ {pn}. Since R cannot be completed to a hole via y2-pn-y1 it follows that pn has a neighbour
in R∗, and so pn−1 belongs to R. If also p1 belongs to R then the theorem holds, so we may assume
it does not. Since R is odd and P is even it follows that p2 also does not belong to R, and so p1 has
no neighbour in R∗; yet the ends of R are X-complete and its internal vertices are not, contrary to
2.2. This completes the case when there is an odd hole in G′ of length ≥ 7.

Since an odd hole of length 5 is also an odd antihole, we may assume that there is an odd antihole
in G′, say D. Again D must use y, and uses exactly two nonneighbours of y; so in G there is an odd
antipath Q between adjacent vertices of P \ pn (say u and v), and with interior in X ∪{pn}. Since u
and v are not Y -complete, they are also joined by an antipath R with interior in Y , and R must also
be odd since its union with Q is an antihole. Since R cannot be completed to an antihole via v-pn-u
it follows that pn is adjacent to one of u,v, and hence we may assume that u = pn−2 and v = pn−1.
Since P has length ≥ 4 it follows that u,v are also joined by an antipath with interior in X, say S,
and again S is odd since its union with R is an antihole. But S can be completed to an antihole via
v-p1-u, a contradiction. This proves 2.9.

Next we need a version of 2.1 for holes. Let C be a hole in G, and let e = uv be an edge of it. A
leap for C (in G, at uv) is a leap for the path C \ e in G \ e. A hat for C (in G, at uv) is a vertex of
G adjacent to u and v and to no other vertex of C.
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2.10 Let G be Berge, let X ⊆ V (G) be anticonnected, let C be a hole in G \X with length > 4, and
let e = uv be an edge of C. Assume that u, v are X-complete and no other vertex of C is X-complete.
Then either X contains a hat for C at uv, or X contains a leap for C at uv.

Proof. Let the vertices of C be p1, . . . , pn in order, where u = p1 and v = pn. Let G1 = G|(V (C)∪X),
and let G2 = G1 \ e. If G2 is Berge, then from 2.1 applied to the path C \ e in G2 it follows that X
contains a leap for C at uv. So we may assume that G2 is not Berge. Consequently it has an odd
hole or antihole D say, and since D is not an odd hole or antihole in G1 it must use both p1 and pn.
Suppose first that D is an odd hole. Since every vertex in X is adjacent to both p1 and pn it follows
that at most one vertex of X is in D; and since G2 \ X has no cycles, there is exactly one vertex
of X in D, say x. Hence D \ x is a path of G2 \ X between p1 and pn, and so D \ x = C \ e; and
since D is a hole of G2 it follows that x has no neighbours in {p2, . . . , pn−1}, and therefore is a hat as
required. Next assume that D is an antihole. Since it uses both p1 and pn, and they are nonadjacent
in G2, it follows that they are consecutive in D, so the vertices of D can be numbered d1, . . . , dm in
order, where d1 = p1 and dm = pn, and therefore m ≥ 5. Consequently, both d2 and dm−1 are not
in X, since they are not complete to {p1, pn}, and therefore d1, d2, dm−1, dm are vertices of C. Yet
d1dm−1, dm−1d2, d2dm are edges of G1, which is impossible since n ≥ 6. This proves 2.10.

There is an analogous version of 2.9, as follows.

2.11 Let G be Berge, and let X,Y be disjoint nonempty anticonnected subsets of V (G), complete
to each other. Let P be a path in G \ (X ∪Y ) with even length ≥ 4, with vertices p1, . . . , pn in order,
such that p1 is the unique X-complete vertex of P , and p1, pn are the only Y -complete vertices of P .
Then either:

1. there exists x ∈ X non-adjacent to all of p2, . . . , pn, or

2. there are nonadjacent x1, x2 ∈ X such that x1-p2- · · · -pn-x2 is a path.

Proof. The proof is similar to that of 2.9. We may assume V (G) = V (P ) ∪ X ∪ Y . Let G ′ be
obtained from G \ Y by adding a new vertex y with neighbour set X ∪ {p1, pn}. If G′ is Berge then
the result follows from 2.10, so we may assume G′ is not Berge. Assume first that there is an odd
hole C of length ≥ 7 in G′. Hence there is an odd path Q in G \ Y of length ≥ 5, with both ends
Y -complete and no internal vertices Y -complete. So the ends of Q belong to X ∪ {p1, pn} and its
interior to V (P ∗). By 2.1 Y contains a leap for Q; so there is an odd path R of length ≥ 5 with ends
(y1, y2 say) in Y and with interior in V (P ∗). Since R is odd and R∗ is a subpath of the even path
P ∗, it follows that not both p2 and pn−1 belong to R; but then R can be completed to an odd hole
via one of y2-pn-y1 , y2-p1-y1, a contradiction. This completes the case when there is an odd hole in
G′ of length ≥ 7, so now we may assume that there is an odd antihole in G′, say D. Again D must
use y, and uses exactly two nonneighbours of y; so in G there is an odd antipath Q between adjacent
vertices of P ∗ (say u and v), and with interior in X ∪ {pn}. Since u and v are not Y -complete, they
are also joined by an antipath R with interior in Y , and R must also be odd since its union with
Q is an antihole. Since one of p1,pn is nonadjacent to both of u, v, we may complete R to an odd
antihole via one of u-p1-v,u-pn-v, a contradiction. This proves 2.11.
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3 Paths and antipaths meeting

Another class of applications of 2.1 is to the situation when a long path or hole meets a long
antipath or antihole. In this section we prove a collection of useful lemmas of this type. First, a neat
application of 2.1 (we include this only because it is striking — in fact we do not use it at all).

3.1 Let G be Berge, let C be a hole in G, and D an antihole in G, both of length ≥ 8. Then
|V (C) ∩ V (D)| ≤ 3.

Proof. It is easy to see that |V (C) ∩ V (D)| ≤ 4, without using that G is Berge. Suppose that
|V (C)∩V (D)| = 4; then V (C)∩V (D) is the vertex set of a 3-edge path. Let C have vertices p1, . . . , pm

in order, and D have vertices q1, . . . , qn in order, where m,n ≥ 8 and p1 = q2, p2 = q4, p3 = q1, p4 = q3.
Let P be the path p4-p5- · · · -pm-p1, and Q the antipath q4-q5- · · · -qn-q1. Let X be the interior of Q.
Then p1 and p4 are X-complete (since D is an antihole), and P is a path with length odd and ≥ 5
between these two vertices. If some vertex pi say in the interior of P is X-complete, then since pi is
nonadjacent to both p2 and p3 we can complete Q to an odd antihole via q1-pi-q4, a contradiction.
So by 2.1 X contains a leap for P ; so there exists i with 5 ≤ i < n and a path P ′ joining qi and qi+1

with the same interior as P . Since n ≥ 8, either i > 5 or i + 1 < n and from the symmetry we may
assume the first. But then P ′ can be completed to an odd hole via qi+1-p2-qi, a contradiction. This
proves 3.1.

The next two lemmas are results of the same kind:

3.2 Let p1- · · · -pm be a path in a Berge graph G. Let 2 ≤ s ≤ m − 2, and let ps-q1- · · · -qn-ps+1 be
an antipath, where n ≥ 2 is odd. Assume that each of q1, . . . , qn has a neighbour in {p1, . . . , ps−1}
and a neighbour in {ps+2, . . . , pm}. Then either:

• s ≥ 3 and the only nonedges between {ps−2, ps−1, ps, ps+1, ps+2} and {q1, . . . , qn} are ps−1qn,
psq1, ps+1qn, or

• s ≤ m − 3 and the only nonedges between {ps−1, ps, ps+1, ps+2, ps+3} and {q1, . . . , qn} are
psq1, ps+1qn, ps+2q1.

Proof. The antipath ps-q1- · · · -qn-ps+1 is even, of length ≥ 4; all its vertices have neighbours in
{p1, . . . , ps−1} except ps+1, and they all have neighbours in {ps+2, . . . , pm} except ps. Since the
sets {p1, . . . , ps−1}, {ps+2, . . . , pm} are both connected and are anticomplete to each other, it follows
from 2.9 applied in G and the symmetry that we may assume that there are adjacent vertices
u, v ∈ {p1, . . . , ps−1} such that u-ps-q1- · · · -qn-v is an antipath. Since v is adjacent to ps and to u
it follows that s ≥ 3, v = ps−1 and u = ps−2. Since ps−2-ps-q1- · · · -qn-ps−1 is an odd antipath of
length ≥ 5, and its ends are anticomplete to {ps+1, . . . , pm} and its internal vertices are not, it follows
from 2.1 applied in G that there are adjacent w, x ∈ {ps+1, . . . , pm} such that w-ps-q1- · · · -qn-x is an
antipath. Since x is adjacent to ps and to w it follows that x = ps+1 and w = ps+2. But then the
theorem holds. This proves 3.2.

3.3 Let G be Berge, let C be a hole in G of length ≥ 6, with vertices p1, . . . , pm in order, and let
Q be an antipath with vertices p1, q1, . . . , qn, p2, with length ≥ 4 and even. Let z ∈ V (G), complete
to V (Q) and with no neighbours among p3, . . . , pm. There is at most one vertex in {p3, . . . , pm}
complete to either {q1, . . . , qn−1} or {q2, . . . , qn}, and any such vertex is one of p3, pm.
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Proof. It follows that none of q1, . . . , qn belong to C, since they are all adjacent to z. Let
X = {q1, . . . , qn}, and let Y1, Y2 be the sets of vertices in {p3, . . . , pm} complete to X \ {qn}, X \ {q1}
respectively.

(1) Y1 ⊆ Y2 ∪ {pm}, and Y2 ⊆ Y1 ∪ {p3}.

For suppose some pi ∈ Y1, and is not in Y2; then since the odd antipath Q \ p2 cannot be com-
pleted to an odd antihole via qn-pi-p1, it follows that i = m. This proves (1).

(2) If Y1 6⊆ {pm} then p3 ∈ Y1 ∩ Y2, and if Y2 6⊆ {p3} then pm ∈ Y1 ∩ Y2.

For assume Y1 6⊆ {pm}, and choose i with 3 ≤ i ≤ m − 1 minimum so that pi ∈ Y1. By (1), pi ∈ Y2,
so we may assume i > 3, for otherwise the claim holds. If i is odd, then the path p2-p3- · · · -pi is odd
and between X \ {qn}-complete vertices, and no internal vertex is X \ {qn}-complete, and yet the
X \ {qn}-complete vertex z does not have a neighbour in its interior, contrary to 2.2. So i is even.
The path pi- · · · -pm-p1 is therefore odd, and has length ≥ 3, and its ends are X \ {q1}-complete, and
the X \ {q1}-complete vertex z does not have a neighbour in its interior; so by 2.2 some vertex v of
its interior is in Y2, and therefore in Y1 ∩ Y2 by (1). But the path z-p2 · · · -pi is odd, and between
X-complete vertices, and has no more such vertices in its interior, and v has no neighbour in its
interior, contrary to 2.2. This proves (2).

Now not both p3, pm are in Y1 ∩ Y2, for otherwise Q could be completed to an odd antihole via
p2-pm-p3-p1. Hence we may assume p3 /∈ Y1∩Y2, and so from (2), Y1 ⊆ {pm}. By (1), Y2 ⊆ {p3}∪Y1,
and so Y1 ∪ Y2 ⊆ {p3, pm}. We may therefore assume that Y1 ∪ Y2 = {p3, pm}, for otherwise the
theorem holds. In particular, p3 ∈ Y2. If also pm ∈ Y2, then p3-p4- · · · -pm is an odd path between
X \ {q1}-complete vertices, and none of its internal vertices are X \ {q1}-complete, and yet the
X \ {q1}-complete vertex z does not have a neighbour in its interior, contrary to 2.2. So pm /∈ Y2,
and so pm ∈ Y1; but then p3-q1-q2- · · · -qn-pm-p3 is an odd antihole, a contradiction. This proves 3.3.

4 Skew partitions

In the main proof (which starts in the next section), it happens quite frequently that we can identify
a skew partition in G, and what we really want is to show that G admits a balanced skew partition.
In this section we prove several lemmas to facilitate that process.

4.1 Let G be Berge, and suppose that G admits a skew partition (A,B) such that either some
component of A or some anticomponent of B has only one vertex. Then G admits a balanced skew
partition.

Proof. By taking complements if necessary we may assume that for some a1 ∈ A, {a1} is a
component of A. Let N be the set of vertices of G adjacent to a1; so N ⊆ B. Assume first that N
is not anticonnected. Then (V (G) \ N,N) is a skew partition of G, and it is easy to check that it is
balanced, as required. So we may assume that N is anticonnected. Consequently N is a subset of

14



some anticomponent of B, say B1. Choose b2 ∈ B \ B1. Then N ′ = N ∪ {b2} is not anticonnected,
and so (V (G) \ N ′, N ′) is a skew partition of G, and once again it is easily checked to be balanced.
This proves 4.1.

Let us say a skew partition (A,B) of G is loose if either some vertex in B has no neighbour in
some component of A, or some vertex in A is complete to some anticomponent of B. In the main
proof later in the paper, many of the skew partitions we construct are loose, and so the next lemma
is very useful.

4.2 If G is Berge, and admits a loose skew partition, then it admits a balanced skew partition.

Proof. Let (A,B) be a loose skew partition of G. By taking complements if necessary, we may
assume that some vertex in B has no neighbour in some component of A. With G fixed, let us
choose the skew partition (A,B) and a component A1 of A and an anticomponent B1 of B with
|B| − 2|B1| minimum, such that some vertex in B1 (say b1) has no neighbour in A1. (We call this
property the “optimality” of (A,B).) Let the other components of A be A2, . . . , Am, and the other
anticomponents of B be B2, . . . , Bn. By 4.1 we may assume that no |Ai| or |Bj| = 1, and in this case
we shall show that the skew partition (A,B) is balanced.

(1) For 2 ≤ j ≤ n, no vertex in A is Bj-complete and not B1-complete, and every vertex in B \ B1

has a neighbour in A1.

For the first claim, assume some vertex v ∈ A is B2-complete and not B1-complete, say. Let A′

1 = A1

if v 6∈ A1, and let A′

1 be a maximal connected subset of A1 \{v} otherwise. (So A′

1 is nonempty since
we assumed |A1| ≥ 2.) Let A′ = A \ {v} and B ′ = B ∪ {v}; then B2 is still an anticomponent of
B′, so (A′, B′) is a skew partition, violating the optimality of (A,B) (for since v is not B1-complete,
there is an anticomponent of B ′ including B ∪ {v}). For the second claim, assume that some vertex
v ∈ B2 say has no neighbour in A1. Then since |B2| ≥ 2, it follows that (A ∪ {v}, B \ {v}) is a skew
partition of G, again violating the optimality of (A,B). This proves (1).

By 2.6, the pair (A1, Bj) is balanced, for 2 ≤ j ≤ n, since b1 is complete to Bj and has no
neighbours in A1. By (1) and 2.7.1, it follows that (Ai, Bj) is balanced for 2 ≤ i ≤ m and 2 ≤ j ≤ n.
It remains to check all the pairs (Ai, B1). Let 1 ≤ i ≤ m, and let A′

i be the set of vertices in Ai that
are not B1-complete. By (1), no vertex in A′

i is B2-complete, and (A′

i, B2) is balanced, and hence
by 2.7.2, so is (A′

i, B1), and consequently so is (Ai, B1). This proves that (A,B) is balanced, and so
completes the proof of 4.2.

4.3 Let (A,B) be a skew partition of a Berge graph G. If either:

• there exist u, v ∈ B joined by an odd path with interior in A, and joined by an even path with
interior in A, or

• there exist u, v ∈ A joined by an odd antipath with interior in B, and joined by an even antipath
with interior in B,

then (A,B) is loose and therefore G admits a balanced skew partition.
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Proof. By taking complements we may assume that the first case of the theorem applies. There is
an even path P1 and an odd path P2 joining u, v, both with interior in A. Let A1 be the component
of A including the interior of P1. Since P1 ∪ P2 is not a hole, it follows that P2 also has interior in
A1. Let A2 be another component of A. If u, v are joined by a path with interior in A2, then its
union with one of P1, P2 would be an odd hole, a contradiction; so there is no such path. Hence one
of u, v has no neighbours in A2, and hence (A,B) is loose, and the theorem follows from 4.2. This
proves 4.3.

If (A,B) is a skew partition of G, and A′ is a component of A, and B ′ is an anticomponent of
B, we call the pair (A′, B′) a path pair if there is an odd path in G with ends nonadjacent vertices
of B′ and with interior in A′; and (A′, B′) is an antipath pair if there is an odd antipath in G with
ends adjacent vertices of A′ and with interior in B ′.

4.4 Let (A,B) be a skew partition of a Berge graph G, and let A1, . . . , Am be the components of A,
and B1, . . . , Bn the anticomponents of B. Then either:

• (A,B) is loose or balanced, or

• (Ai, Bj) is a path pair for all i, j with 1 ≤ i ≤ m and 1 ≤ j ≤ n, or

• (Ai, Bj) is an antipath pair for all i, j with 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Proof. We may assume (A,B) is not loose and not balanced.

(1) If for some i, j there is an odd path of length ≥ 5 with ends in Bj and interior in Ai, then
the theorem holds.

For assume there is such a path for i = j = 1 say. Let this path, P1 say, have vertices b1-p1-p2- . . . -pn-b′1,
where b1, b

′

1 ∈ B1 and p1, . . . , pn ∈ A1. Let 2 ≤ j ≤ n. Then P1 is an odd path of length ≥ 5 between
common neighbours of Bj, and no internal vertex of it is Bj-complete since (A,B) is not loose. By
2.1, Bj contains a leap; so there exist nonadjacent bj, b

′

j ∈ Bj such that bj-p1-p2- . . . -pn-b′j is a path.
Hence (A1, Bj) is a path pair. Now let 2 ≤ i ≤ m and 1 ≤ j ≤ n. Since (A,B) is not loose, bj and
b′j both have neighbours in Ai, and so there is a path P2 say joining them with interior in Ai; it is
odd by 4.3, and so (Ai, Bj) is a path pair. This proves (1).

From (1) we may assume that for all i, j, every odd path of length > 1 with ends in Bj and
interior in Ai has length 3; and similarly every odd antipath of length > 1 with ends in Ai and
interior in Bj has length 3. Consequently, every path pair is also an antipath pair (because a path of
length 3 can be reordered to be an antipath of length 3). We may assume that (A1, B1) is a path pair,
and so there exist b1, b

′

1 ∈ B1 and a1, a
′

1 ∈ A1 such that b1-a1-a
′

1-b
′

1 is a path P1 say. Let 2 ≤ i ≤ m.
Since b1 and b′1 both have neighbours in Ai, they are joined by a path with interior in Ai, odd by
4.3 ; and so by (1) it has length 3. Hence there exist ai, a

′

i ∈ Ai such that b1-ai-a
′

i-b
′

1 is a path. By
the same argument in the complement, it follows that for all 1 ≤ i ≤ m and 2 ≤ j ≤ n, there exist
bj , b

′

j ∈ Bj such that bj-ai-a
′

i-b
′

j is a path. So every pair (Ai, Bj) is both a path and antipath pair.
This proves 4.4.
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We can reformulate the previous result in a form that is easier to apply, as follows.

4.5 Let G be Berge. Suppose that there is a partition of V (G) into four nonempty sets X,Y,L,R,
such that there are no edges between L and R, and X is complete to Y . If either:

• some vertex in X ∪ Y has no neighbours in L or no neighbours in R, or

• some vertex in L ∪ R is complete to X or complete to Y , or

• (L, Y ) is balanced

then G admits a balanced skew partition.

Proof. Certainly (L ∪ R,X ∪ Y ) is a skew partition, so by 4.2 we may assume it is not loose, and
therefore neither of the first two alternative hypotheses holds. So we assume the third hypothesis
holds. Let A1, . . . , Am be the components of L ∪ R, and let B1, . . . , Bn be the anticomponents of
X ∪Y . Since X,Y,L,R are all nonempty we may assume that A1 ⊆ L, and B1 ⊆ X. By hypothesis,
(A1, B1) is not a path or antipath pair, and so by 4.4 the skew partition is balanced. This proves
4.5.

Let (A,B) be a skew partition of G. We say that an anticonnected subset W of B is a kernel for
the skew partition if some component of A contains no W -complete vertex.

4.6 Let (A,B) be a skew partition of a Berge graph G, and let W be a kernel for it. Let A1 be a
component of A, and suppose that

• every pair of nonadjacent vertices of W with neighbours in A1 are joined by an even path with
interior in A

• every pair of adjacent vertices of A1 with nonneighbours in W are joined by an even antipath
with interior in B.

Then G admits a balanced skew partition.

Proof. By 4.2 we may assume (A,B) is not loose. Let the components of A be A1, . . . , Am, and
the anticomponents of B be B1, . . . , Bn.

(1) (Ai,W ) is balanced for 1 ≤ i ≤ m.

For this is true by 4.3 if i = 1, so assume i > 1. From 4.3 there is no odd path between non-
adjacent vertices of W with interior in Ai. Suppose there is an odd antipath Q of length > 1, with
ends in Ai and interior in W . Then it has length ≥ 5, for otherwise it can be reordered to be an odd
path that we have already shown impossible. Now the ends of Q have no neighbours in the connected
set A1, and its internal vertices all have neighbours in A1; and so by 2.1 in the complement, there is
a leap in the complement; that is, there is an antipath with ends in A1 and with the same interior
as Q, which is impossible. This proves (1).

Since W is anticonnected, we may assume that W ⊆ B1. Since (1) restores the symmetry
between A1, . . . , Am, we may assume that there is no W -complete vertex in A1. By 4.4 we may
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assume (A1, B2) is a path or antipath pair. Suppose first that it is an antipath pair. Then there
is an odd antipath Q1 of length ≥ 3 with ends in A1 and interior in B2. Since its ends both have
nonneighbours in W , its ends are also joined by an antipath Q2 with interior in W , odd by 4.3,
contrary to (1). So there is no such Q1. Hence there is an odd path P with ends in B2 and interior
in A1, necessarily of length ≥ 5 (since we already did the antipath case). Since the interior of P
contains no W -complete vertex, 2.1 implies that W contains a leap; and so there is a path with ends
in W with the same interior as P , a contradiction. This proves 4.6.

5 Small attachments to a line graph

We come now to the first of the major steps of the proof. Suppose that G is Berge, and contains
as an induced subgraph a substantial line graph L(H). Then in general, G itself can only be basic
by being a line graph, so 1.3 would imply that either G is a line graph, or it has a decomposition
in accordance with 1.3. Proving a result of this kind is our first main goal, but exactly how it goes
depends on what we mean by “substantial”. To make the theorem as powerful as possible, we need to
weaken what we mean by “substantial” as much as we can; but when L(H) gets very small, all sorts
of bad things start to happen. One is that the theorem is not true any more. For instance, when
H = K3,3 or K3,3 \ e (the graph obtained from K3,3 by deleting one edge), then L(H) is not only a
line graph but also the complement of a line graph (indeed, it is isomorphic to its own complement).
So L(H) can live happily inside bigger graphs that are complements of line graphs, without inducing
any kind of decomposition. The best we can hope for, when L(H) is so small, is therefore to prove
that either G is a line graph or the complement of a line graph, or has a decomposition of the kind
we like. This works for L(K3,3), but for L(K3,3 \ e) the situation is even worse, because this graph
is basic in three ways — it is a line graph, the complement of a line graph, and a double split graph.
So for Berge graphs G that contain L(K3,3 \ e), the best we can hope is that either G is a line graph
or the complement of one or a double split graph, or it has a decomposition. And that turns out to
be true, but it also explains why the small cases will be something of a headache, as the reader will
see.

The best way to partition these cases appears to be as follows. If H is a bipartite subdivision of
K4, we say that L(H) is degenerate if there is a cycle of H of length four containing the four vertices
of H that have degree three in H, and nondegenerate otherwise. First we prove the following.

5.1 Let G be Berge, and assume some nondegenerate L(H) is an induced subgraph of G, where H
is a bipartite subdivision of K4. Then either G is a line graph, or G admits a proper 2-join, or G
admits a balanced skew partition. In particular, 1.8.1 holds.

Now we consider the case when G contains L(H) for some bipartite subdivision H of a 3-connected
J , and yet 5.1 does not apply. It turns out that then either H = K3,3, or H is a subdivision of K4

and L(H) is degenerate. The case when H = K3,3 is handled by the next theorem.

5.2 Let G be Berge, and assume it contains L(K3,3) as an induced subgraph. Then either:

• G = L(K3,3), or

• for some bipartite subdivision H of K4, L(H) is nondegenerate and is an induced subgraph of
one of G,G, or
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• G admits a balanced skew partition.

In particular, 1.8.2 holds.

The proofs of these two theorems are similar, and we prove them both together. The remaining
case, when H is a subdivision of K4 and L(H) is degenerate, seems to have a different character,
and is best handled by a separate argument later.

The proof of the two theorems above is roughly as follows. We choose a 3-connected graph J ,
as large as possible such that G contains L(H) for some bipartite subdivision H of J . (For the
the first theorem, we also assume that L(H) includes some nondegenerate L(H ′) where H ′ is a
bipartite subdivision of K4, and for the second theorem, when necessarily H = K3,3, we also assume
that passing to the complement will not give us a bigger choice of J). Now we investigate how the
remainder of G can attach onto L(H). The edges of J correspond to edge-disjoint paths of H, which
in turn become vertex-disjoint paths of L(H), which we call “rungs” (we will do the definitions
properly later). One thing we find is that the remainder of G can contain alternative rungs —
paths that could replace one of the rungs in L(H) to give a new L(H ′), for some other bipartite
subdivision H ′ of the same graph J . We find it advantageous to assemble all these alternative rungs
in one “strip”, for each edge of J , and to maximize the union of these strips (being careful that
there are no unexpected edges of G between strips). Each strip corresponds to an edge of J , and
runs between two sets of vertices (called “potatoes” for now) that correspond to vertices of J . Let
the union of the strips be Z say. Again we ask, how does the remainder of G attach onto this
“generalized line graph” Z? This turns out to be quite pretty. There are only two kinds of vertices
in the remainder of G, vertices with very few neighbours in Z, and vertices with a lot of neighbours.
For the first kind, all their neighbours lie either in one of the strips, or in one of the potatoes; and we
can show that for any connected set of these “minor” vertices, the union of their neighbours in Z has
the same property (they all lie in one strip or in one potato). For the second kind of vertex, they have
so many neighbours in Z that all their non-neighbours in any one potato lie inside one strip incident
with the potato; and the same is true for the union of the nonneighbours of any anticonnected set of
these “major” vertices. In other words, every anticonnected set of these major vertices has a great
many common neighbours in Z, so many that they separate all the strips from one another, and that
is where we find skew partitions. (If there are no major vertices then we need a different argument,
but that case is basically easy.)

In this section and the next few, we have to pay for our convention that “path” means “induced
path”, because here we need paths in the conventional sense, and therefore need to use a different
word for them. A track P is a non-null connected graph, not a cycle, in which every vertex has
degree ≤ 2 ; and its length is the number of edges in it. (Its ends and internal vertices are defined in
the natural way.) A track in a graph H means a subgraph of H (not necessarily induced) which is a
track. Note that there is a correspondence between the tracks (with at least one edge) in a graph H
and the paths in L(H); the edge-set of a track becomes the vertex-set of a path, and vice versa. And
two tracks are vertex-disjoint if and only if the corresponding paths are vertex-disjoint and there is
no edge of L(H) between them. However, the parity changes; a track in H and the corresponding
path in L(H) have lengths differing by one, and therefore of opposite parity.

A branch-vertex of a graph H means a vertex with degree ≥ 3; and a branch of H means a
maximal track P in H such that no internal vertex of P is a branch-vertex. Subdividing an edge uv
means deleting the edge uv, adding a new vertex w, and adding two new edges uw and wv. Starting
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with a graph J , the effect of repeatedly subdividing edges is to replace each edge of J by a track
joining the same pair of vertices, where these tracks are disjoint except for their ends. We call the
graph we obtain a subdivision of J . Note that V (J) ⊆ V (H). Let J be a 3-connected graph. (We
use the convention that a k-connected graph must have > k vertices.) If H is a subdivision of J
then V (J) is the set of branch-vertices of H, and the branches of H are in 1-1 correspondence with
the edges of J . We say H is cyclically 3-connected if it is a subdivision of some 3-connected graph
J . (We remind the reader that in this paper, all graphs are simple by definition.)

In general, if F,K are induced subgraphs of G with V (F ∩ K) = ∅, a vertex in V (K) is said to
be an attachment of F (or of V (F )) if it has a neighbour in V (F ). We need the following lemma:

5.3 Let H be bipartite and cyclically 3-connected. Then either H = K3,3, or H is a subdivision of
K4, or H has a subgraph H ′ such that H ′ is a subdivision of K4 and L(H ′) is nondegenerate.

Proof. There is a subgraph of H which is a subdivision of K4, and we may assume that it does
not satisfy the theorem. Hence there are tracks p1- · · · -pm (= P say) and q1- · · · -qn (= Q say) of H,
vertex-disjoint, such that p1q1, p1qn, pmq1, pmqn are edges, and m,n ≥ 3 are odd. Suppose every track
in H between {p1, . . . , pm} and {q1, . . . , qn} uses one of the edges p1q1, p1qn, pmq1, pmqn. Then there
are no edges between P and Q except the given four, and for every component F of H\(V (P )∪V (Q)),
the set of attachments of F in V (P ) ∪ V (Q) is a subset of one of V (P ), V (Q). Since H is cyclically
3-connected, it follows that H is a subdivision of K4 and the theorem holds. So we may assume that
there is a track R of H, say r1- · · · -rt, from V (P ) to V (Q), not using any of p1q1, p1qn, pmq1, pmqn.
We may assume that r1 ∈ {p1, . . . , pm−1}, rt ∈ {q1, . . . , qn−1}, and none of r2, . . . , rt−1 belong to
V (P )∪V (Q). The subgraph H ′ formed by the edges E(P )∪E(Q)∪E(R)∪{p1qn, pmq1, pmqn} (and
the vertices of H incident with them) is a subdivision of K4, and we may assume it does not satisfy
the theorem. There is therefore a cycle of H ′ with vertex set {r1, rt, pm, qn}. Since H is bipartite
and pmqn is an edge, it follows that t = 2. Hence not both r1 = p1 and r2 = q1, and so r1 = pm−1

and r2 = qn−1. By the same argument with p1, pm exchanged, it follows that r1 = p2, and so m = 3,
and similarly n = 3. Hence there is a subgraph J of H isomorphic to K3,3.

It is helpful now to change the notation. Let J have vertex set {a1, a2, a3, b1, b2, b3}, where
a1, a2, a3 are adjacent to b1, b2, b3. Suppose that there is a component F of H \ V (J). Since H is
cyclically 3-connected, at least two vertices of J are attachments of F . If say a1, b1 are attachments,
choose a track P between a1, b1 with interior in F ; then the union of P and J \ {a1b1, a2b2} satisfies
the theorem. If say a1, a2 are attachments of F , choose a track P between a1, a2 with interior in F ;
then the union of P and J \ {a1b1, a2b3} satisfies the theorem. So we may assume there is no such
F . Since H is bipartite, it follows that H = J = K3,3 , and so the theorem holds. This proves 5.3.

If G,J are graphs, we say that J appears in G if there is a bipartite subdivision H of J so that
L(H) is isomorphic to an induced subgraph of G. We call L(H) an appearance of J in G. Note that if
L(H) is isomorphic to some induced subgraph K of G, there is another subdivision H ′ isomorphic to
H, made from H by replacing each edge of H by the corresponding vertex of K; and now L(H ′) = K
(rather than just being isomorphic to it). So whenever it is convenient we shall assume that the
isomorphism between L(H) and K is just equality, without further explanation. Note in particular
that E(H) = V (K), and so some vertices of G are edges of H.

When J = K4, we have already defined what we mean by a degenerate appearance of J . When
J 6= K4, let us say that an appearance L(H) of J in G is degenerate if J = H = K3,3, and otherwise
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it is nondegenerate. So all appearances of any graph J 6= K4,K3,3 are nondegenerate. If J is 3-
connected, we say a graph J ′ is a J-enlargement if J ′ is 3-connected, and has a proper subgraph
which is isomorphic to a subdivision of J .

Our goal remains to prove 5.1 and 5.2. Before we start on the main argument, let us observe
that it suffices to prove the following.

5.4 Let G be Berge. Let J be a 3-connected graph, such that there is no J-enlargement with a
nondegenerate appearance in G. Let L(H0) be an appearance of J in G, such that if L(H0) is
degenerate, then H0 = J = K3,3 and no J-enlargement appears in G. Then either G = L(H0), or
H0 6= K3,3 and G admits a proper 2-join, or G admits a balanced skew partition.

The proof of this will take several sections, but let us see now that 5.4 implies 5.1 and 5.2.

Proof of 5.1, assuming 5.4.

Let G be Berge, and assume there is a nondegenerate appearance of K4 in G. Choose a 3-
connected graph J maximal (under J -enlargement) such that there is a nondegenerate appearance
of J in G; then the hypotheses of 5.4 are satisfied, and the claim follows from 5.4. This proves 5.1.

Proof of 5.2, assuming 5.4.

Let G be Berge, and let L(H0) be an appearance of K3,3 in G, where H0 = K3,3. We may assume
that both G,G contain no nondegenerate L(H) where H is a bipartite subdivision of K4. By 5.3, no
K3,3-enlargement appears in either G,G. By 5.4, either G = L(K3,3), or G admits a balanced skew
partition. This proves 5.2.

Now we start on the proof of 5.4. We assume that L(H) is an appearance of J in G, and we
need to study how the remaining vertices of G attach to L(H). In the remainder of this section we
examine how individual vertices attach to L(H), and how connected sets of minor vertices attach.
In the next section we think about anticonnected sets of major vertices.

A vertex in V (G) \ V (L(H)) has a set of neighbours in V (L(H)), that we want to investigate;
but this set is more conveniently thought of as a subset of E(H), and we begin with some lemmas
about subsets of edges of a graph H.

5.5 Let H be cyclically 3-connected, and let C,D be subgraphs with C ∪ D = H, |V (C ∩ D)| ≤ 2,
and V (C), V (D) 6= V (H). Then one of C,D is contained in a branch of H.

The proof is clear.

5.6 Let c1, c2 be nonadjacent vertices of a graph H, such that H \{c1, c2} is connected. For i = 1, 2,
let the edges incident with ci be partitioned into two sets Ai, Bi, where A1, A2 are both nonempty and
at least one of B1, B2 is nonempty. Assume that for every edge uv ∈ A1∪A2, H \{u, v} is connected,
and that no vertex of V (H) is incident with all edges in A1 ∪ A2. Then one of the following holds:

1. there is a track in H with first edge in A1, second edge in B1 (and hence second vertex c1), last
vertex c2 and last edge in A2, or

2. there is a track in H with first edge in A2, second edge in B2 (and hence second vertex c2), last
vertex c1 and last edge in A1.
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Proof. For i = 1, 2 let Xi be the set of ends (different from ci) of edges in Ai, and define Yi similarly
for Bi. So by hypothesis, X1, X2 are nonempty, |X1 ∪X2| ≥ 2, and we may assume Y1 is nonempty.
Choose x1 ∈ X1 such that X2 6⊆ {x1} (this is possible since |X1 ∪ X2| ≥ 2). Both Y1 and X2 meet
the connected graph H \ {c1, x1}, and so there is a track in H \ {c1, x1} from Y1 to X2 ∪ Y2, say P ,
with vertices p1, . . . , pn say. We may assume that p1 ∈ Y1, and no other pi is in Y1; and pn ∈ X2∪Y2,
and no other pi is in X2 ∪ Y2. In particular it follows that c2 6∈ V (P ). Since x1 6∈ V (P ) we may
assume that pn 6∈ X2 (for otherwise the theorem holds), so pn ∈ Y2. If any vertex of X1 is in P
then again the theorem holds (since X2 is nonempty and none of its vertices are in P ), so we may
assume that P is disjoint from X1 ∪ X2. Since H \ {c1, c2} is connected, there is a minimal track
Q in H \ {c1, c2} from X1 ∪ X2 to V (P ), and we may assume that only its first vertex (q say) is in
X1 ∪ X2. If q ∈ X1 \ X2, choose x ∈ X2; if q ∈ X2 \ X1 choose x ∈ X1; and if q ∈ X1 ∩ X2 choose
x ∈ X1 ∪ X2 different from q. Thus we may assume that q ∈ X1 and there exists x ∈ X2 different
from q and hence not in Q. So P ∪Q contains a path from q to B2 not containing x, and hence the
theorem holds. This proves 5.6.

If v is a vertex of H, the set of edges of H incident with v is denoted by δ(v) or δH(v). Let H
be bipartite and cyclically 3-connected, and let X be some set. We say that X saturates L(H) if
for every branch-vertex v of H, at most one edge of δH(v) is not in X (or equivalently, for every
K3 subgraph of L(H), at least two of its vertices are in X). When H is connected and bipartite,
we speak of vertices having the same or different biparity depending whether every track between
them is even or odd respectively. Two edges of G are disjoint if they have no end in common, and
otherwise they meet.

5.7 Let H be bipartite and cyclically 3-connected. Let X ⊆ E(H), such that there is no track in H
of even length ≥ 4, with its end-edges in X and with no other edge in X. Then either:

1. X saturates L(H), or

2. there is a branch-vertex b of H with X ⊆ δ(b), or

3. there is a branch B of H with X ⊆ E(B), or

4. there is a branch B of H with ends b1, b2 say, such that X \ E(B) = δ(b1) \ E(B), or

5. there is a branch B of H of odd length with ends b1, b2 say, such that

X \ E(B) = (δ(b1) ∪ δ(b2)) \ E(B),

or

6. there are two vertices c1, c2 of H, of different biparity and not in the same branch of H, such
that X = δ(c1) ∪ δ(c2).

In particular, either statements 1 or 6 hold, or there are at most two branch-vertices of H incident
with more than one edge in X; and exactly two only if statement 5 holds.

Proof. The second assertion (the final sentence) follows from the first, because if statements 2,3
or 4 hold then there is at most one branch-vertex incident with more than one edge in X; while if
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B, b1, b2 are as in statement 5, then since B is odd, it follows that b1, b2 have no common neighbour,
and so no branch-vertex different from b1, b2 is incident with more than one edge in X. So it remains
to prove the first assertion.

(1) We may assume that there are two disjoint edges in X.

For if not, then by König’s theorem, there is a vertex of H incident with every edge in X, and
then one of statements 2,3 of the theorem hold. This proves (1).

(2) If there is a branch B of H such that every edge in X has at least one end in V (B) then
the theorem holds.

For suppose there is a such a branch B, and let C ⊆ B be a track, minimal such that every
edge in X has an end in V (C). By (1) we may assume that C has length ≥ 1. Let c1, c2 be the ends
of C. For i = 1, 2 let Ai be the set of edges in δ(ci) that are in X and not in C; and let Bi be the set
of edges in δ(ci) that are not in X and not in C. From the minimality of C, it follows that A1, A2

are both nonempty.
Suppose first that c1, c2 have the same biparity. Choose ciai ∈ Ai for i = 1, 2, if possible such

that a1 6= a2. Since c1, c2 belong to the same branch of H and H is cyclically 3-connected, it follows
that there is a track in H \ {c1, c2} from a1 to a2; and therefore there is a track T in H from c1 to
c2 with end-edges c1a1 and c2a2. Since c1, c2 have the same biparity, it follows that T is even; and
since only its end-edges are in X (because every edge in X either belongs to C or is incident with
one of c1, c2), it follows from the hypothesis of the theorem that T has length 2, that is, a1 = a2.
We deduce that there is a vertex a ∈ V (H) such that Ai = {cia} for i = 1, 2. Now there is only
one branch of H containing c1 and c2, since J is simple, so a is not in the interior of a branch, and
therefore it is a branch-vertex. Moreover it does not belong to the branch B, for the same reason,
and so C = B and c1, c2 are branch-vertices. Choose a branch-vertex b of H different from c1, c2, a,
and choose three paths P1, P2, P3 between b and c1, c2, a respectively, pairwise disjoint except for
b. So P1 and P2 have lengths of the same parity, and P3 has length of different parity. By (1) we
may assume there is an edge in X not incident with a, and any such edge belongs to C; so for
i = 1, 2 there is a minimal subtrack Qi of C containing ci and an edge in X. If Q1 = C then (since
C has even length) P1 ∪ P2 is the interior of an even track with end-edges in X and no internal
edges in X, contrary to the hypothesis. So c2 is not a vertex of Q1, and similarly c1 is not in Q2.
From the track Q1-c1-P1-b-P2-c2-a and the hypothesis it follows that Q1 is even; and from the track
Q1-c1-P1-b-P3-a-c2 and the hypothesis it follows that Q1 is odd, a contradiction.

We may assume therefore that c1, c2 have different biparity. It follows that no vertex of V (H) is
incident with all edges in A1 ∪ A2. Let H ′ be the graph obtained from H by deleting the internal
vertices and edges of C. There is no track T in H ′ with first edge in A1, second edge in B1 (and
hence second vertex c1), last vertex c2 and last edge in A2; for any such track would be even, since
c1, c2 have opposite biparity, and have length ≥ 4, and have only its end-edges in X, contrary to the
hypothesis. A similar statement holds with c1, c2 exchanged. By 5.6 applied to H ′, it follows that
B1 ∪ B2 = ∅, and so one of statements 3,4,5 of the theorem holds. This proves (2).

(3) There do not exist three tracks of H with an end (b say) in common and otherwise vertex-
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disjoint, such that each contains an edge in X, and at least two of the three edges of the tracks
incident with b do not belong to X.

For suppose that P1, P2, P3 are three such tracks, where Pi is between ai and b, for 1 ≤ i ≤ 3.
We may assume that for each i, the only edge of Pi in X is the edge incident with ai. Now two of
P1, P2, P3 have lengths of the same parity, say P1, P2; and their union is an even track with end-edges
in X and its other edges not in X. By hypothesis it has length 2, and so P1, P2 both have length 1.
But then at most one edge of P1 ∪ P2 ∪ P3 incident with b does not belong to X, a contradiction.
This proves (3).

(4) There do not exist a connected subgraph A of H\X and three mutually disjoint edges x1, x2, x3 ∈ X
such that each xi has at least one end in V (A).

For suppose such A, x1, x2, x3 exist. We may assume A is a maximal connected subgraph of H \ X.
For 1 ≤ i ≤ 3 let xi have ends ai, bi, where a1, a2, a3 have the same biparity. Let K be the graph
with vertex set {a1, a2, a3, b1, b2, b3}, in which two vertices of K are adjacent if there is a track in
A joining them not using any other vertex of K. Since A is connected and meets all of x1, x2, x3 it
follows that there is a component of K containing an end of each of these three edges. If some two of
a1, a2, a3 are adjacent in K, then the corresponding track in A is even, contrary to the hypothesis of
the theorem; so a1, a2, a3 are pairwise nonadjacent in K, and similarly so are b1, b2, b3, and therefore
all the edges of K join some ai to some bj . Also, by (3) it follows that a3 is not adjacent in K to both
b1 and b2, and five similar statements. Since there is a component of K containing an end of each of
x1, x2, x3, we may assume that a1b3, b2a3, a3b3 ∈ E(K), and the only other possible edges of K are
a1b1, a2b2, a2b1. In particular, there are no more edges of K incident with a3 or b3. Let the tracks
in A corresponding to a1b3, b2a3, a3b3 ∈ E(K) be P1, P2, P3 respectively. Since P3 joins the adjacent
vertices a3, b3 and does not use the edge x3, it follows that P3 has nonempty interior. Choose a
maximal connected subgraph S of A including the interior of P3 and not containing either of a3, b3.
Since there are no more edges of K incident with a3 or b3, it follows that none of a1, b1, a2, b2 is in
V (S), and therefore S is vertex-disjoint from P1 and P2 as well. Consequently the only edges of A
between V (S) ∪ {a3, b3} and the remainder of H are incident with a3 or b3. Since H is cyclically
3-connected and a3, b3 are adjacent, it follows that H \ {a3, b3} is connected, and therefore there is
an edge sv of H such that s ∈ V (S) and v ∈ V (H) \ (V (S)∪ {a3, b3}). Since S is maximal it follows
that sv /∈ E(A); and since A is maximal, it follows that sv ∈ X; and from the symmetry we may
assume v /∈ {a1, b1}. Choose a minimal track in S between s and the interior of P3; then it can be
extended via a subpath of P3 and via sv to become a track P4 in H, of length ≥ 2, from v to b3,
using none of a1, b1, a3, and with only its first edge in X. But then the tracks b1-a1-P1-b3, P4, and
the one-edge track made by x3, violate (3). This proves (4).

We may assume that statement 1 of the theorem does not hold, and so there is a branch-vertex
of H incident with ≥ 2 edges not in X. Hence there is a connected subgraph A of H \X, containing
a branch-vertex and at least two edges incident with it. Choose such a subgraph A maximal. It
follows that V (A) is not contained in any branch of H. By (4), there is no 3-edge matching among
the edges in X that meet V (A); and since this set of edges forms a bipartite subgraph, it follows
from König’s theorem that there are two vertices c1, c2 ∈ V (G) such that every edge in X with an
end in V (A) is incident with one of c1, c2. From the maximality of A, every edge of H between V (A)
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and V (H) \ V (A) belongs to X and therefore is incident with one of c1, c2; and so there are two
subgraphs C,D of H with V (C) = V (A)∪{c1, c2}, V (D) = (V (H)\V (A))∪{c1, c2} and C∪D = H.

Now V (C) is not contained in a branch of H, because it contains V (A) and we already saw that
V (A) is not contained in a branch; and we may assume that V (D) is not contained in a branch by
(2), since every edge in X has an end in V (D). But V (D) 6= V (G) since |V (C)| ≥ |V (A)| ≥ 3 >
|V (C ∩ D)|; and since H is cyclically 3-connected, it follows that V (C) = V (G). Hence every edge
in X is incident with one of c1, c2. For i = 1, 2 let Ai = δ(ci)∩X, and let Bi = δ(ci) \Ai. By (2), we
may assume that c1, c2 do not belong to the same branch. Consequently c1, c2 are nonadjacent, and
H \ {c1, c2} is connected, by 5.5. By (1) we may assume that there exist disjoint edges a1c1 ∈ A1

and a2c2 ∈ A2. Take a minimal track in H \ {c1, c2} between a1, a2; then by the hypothesis of the
theorem, this track has odd length, and so c1, c2 have opposite biparity. There is therefore no track
T in H with first edge in A1, second edge in B1 (and hence second vertex c1), last vertex c2 and last
edge in A2; and a similar statement holds with c1, c2 exchanged. By 5.6, it follows that B1, B2 = ∅,
and therefore statement 6 of the theorem holds. This proves 5.7.

Suppose that L(H) is an appearance of J in G. We recall that H is a subdivision of J , and L(H)
is an induced subgraph of G. If X ⊆ V (L(H), we say that X is local if either X ⊆ δH(v) for some
v ∈ V (J), or X is a subset of the edge-set of some branch of H. We say a vertex v ∈ V (G)\V (L(H))
is major (with respect to L(H)) if the set of its neighbours in L(H) saturates L(H).

5.8 Let G be Berge, let J be a 3-connected graph, and let L(H) be an appearance of J in G. For
each vertex v of J , let Nv be the set of edges of H incident with v; and for each edge uv of J , let
Ruv be the path of L(H) with vertex set the set of edges of the branch of H between u and v. Let
F ⊆ V (G) \ V (L(H)) be connected, such that the set of attachments of F in L(H) is not local.
Assume that no member of F is major. Then there is a path P of G with V (P ) ⊆ F and with ends
p1 and p2, such that either:

1. there are vertices c1, c2 of H, not in the same branch of H, such that for i = 1, 2 pi is complete
in G to Nci

, and there are no other edges between V (P ) and V (L(H)), or

2. there is an edge b1b2 of J such that one of the following holds (for i = 1, 2, ri denotes the
unique vertex in Nbi

∩ V (Rb1b2)):

(a) p1 is adjacent in G to all vertices in Nb1 \ {r1}, and p2 has a neighbour in Rb1b2 \ r1, and
every edge from V (P ) to V (L(H)) \ {r1} is either from p1 to Nb1 \ {r1}, or from p2 to
V (Rb1b2) \ {r1}, or

(b) for i = 1, 2, pi is adjacent in G to all vertices in Nbi
\ {ri}, and there are no other edges

between V (P ) and V (L(H)) except possibly p1r1, p2r2, and P has the same parity as Rb1b2 ,
or

(c) p1 = p2, and p1 is adjacent to all vertices in (Nb1 ∪ Nb2) \ {r1, r2}, and all neighbours of
p1 in V (L(H)) belong to Nb1 ∪ Nb2 ∪ V (Rb1b2), and Rb1b2 is even, or

(d) r1 = r2, and for i = 1, 2, pi is adjacent in G to all vertices in Nbi
\ {ri}, and there are no

other edges between V (P ) and V (L(H)) \ {r1}, and P is even.

Proof. We remark that the set Nv is just the set δH(v), but now we are going to think of it as
a subset of the vertex set of L(H) and it is convenient to change notation. We may assume F is
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minimal such that its set of attachments is not local. Let X be the set of attachments of F in L(H).
Suppose first that |F | = 1, F = {y} say. Apply 5.7 to H,X. Now 5.7.1 is false since by hypothesis
y is not major, and 5.7.2 and 5.7.3 are false since X is not local. So one of 5.7.4-6 holds, and the
claim follows. Consequently we may assume that |F | ≥ 2.

(1) There exist two attachments x1, x2 of F such that {x1, x2} is not local.

For X ⊆ E(H). If there exists x1 ∈ X not incident in H with a branch-vertex, and in some
branch B, choose any x2 ∈ X not in B; then {x1, x2} is not local. So we may assume that every
edge in X is incident with a branch-vertex of H. Choose x1 ∈ X, in some branch B1 of H, and
incident with a branch-vertex b1. There exists x2 ∈ X not incident with b1, and we may assume that
x2 ∈ E(B1), for otherwise {x1, x2} is not local. Hence x2 is incident with the other end b2 say of B1.
There exists x3 ∈ X not belonging to E(B), and it cannot share an end both with x1 and with x2,
so we may assume x3 is not incident with b1. But then {x1, x3} is not local, as required. This proves
(1).

From the minimality of F , it follows that F is minimal such that x1 and x2 are both attach-
ments of F , and so (since x1 and x2 are nonadjacent), F is the interior of a path with vertices
x1, p1, . . . , pn, x2 in order. Let X1 be the set of attachments in L(H) of F \ {pn}, and let X2 be the
attachments of F \ {p1}. From the minimality of F , X1 and X2 are both local.

(2) If there is an edge uv of J such that X1 ⊆ Nu and X2 ⊆ V (Ruv) then the theorem holds.

For let the ends of Ruv be r1, r2 where r1 ∈ Nu. Since X is not local, it follows that p1 has a
neighbour in Nu \ {r1} and pn has a neighbour in V (Ruv) \ {r1}. If p1 is adjacent to every vertex in
Nu \ {r1} then statement 2.a of the theorem holds, so we may assume p1 has a neighbour s1 and a
nonneighbour s2 in Nu\{r1}. Let Q be the path between r2 and s1 with interior in F ∪V (Ruv \{r1}).
Choose w ∈ V (J) such that s1 ∈ V (Ruw). Now H is a subdivision of a 3-connected graph, so if we
delete all edges of H incident with u except s1, the graph we produce is still connected. Consequently
there is a track of H from u to v with first edge s1; and hence there is a path S1 of L(H) from s1

to r2, vertex-disjoint from V (Ruv) ∪ Nu except for its ends. Indeed, if we delete from H both the
vertex w and all edges incident with u except s2, the graph remains connected; so there is a path S2

of L(H) between s2 and r2, vertex-disjoint from Ruv ∪ Nu ∪ V (Ruw) ∪ Nw except for its ends. Now
S1 and S2 have the same parity since H is bipartite. Yet S1 can be completed via r2-Q-s1 and S2

can be completed via r2-Q-s1-s2, a contradiction. This proves (2).

(3) If there are nonadjacent vertices v1, v2 ∈ V (J) such that Xi ⊆ Nvi
for i = 1, 2, then the theorem

holds.

Let A1 be the set of vertices in Nv1
adjacent to p1, and B1 = Nv1

\ A1; and let A2 be the set
of vertices in Nv2

adjacent to pn, and B2 = Nv2
\A2. So X = A1 ∪A2. If both B1 and B2 are empty

then statement 1 of the theorem holds, so we may assume that at least one of B1,B2 is nonempty.
Certainly A1 and A2 are both nonempty, so there is a track in H from v1 to v2 with end-edges in A1

and A2 respectively. Hence there is a path S1 in L(H) from A1 to A2, vertex-disjoint from Nv1
∪Nv2

except for its ends. Since X = A1 ∪ A2 is not local, there is no w ∈ V (J) with A1 ∪ A2 ⊆ Nw.
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Hence we can apply 5.6, and we deduce (possibly after exchanging v1 and v2) that there is a path S2

in L(H) with first vertex in A1, second vertex in B1, last vertex in A2, and otherwise disjoint from
Nv1

∪ Nv2
. Since H is bipartite, S1 and S2 have opposite parity; but they can both be completed

via F , a contradiction. This proves (3).

(4) If there are adjacent vertices v1, v2 ∈ V (J) such that Xi ⊆ Nvi
for i = 1, 2, then the theorem holds.

For i = 1, 2 let ri be the end of Rv1v2
in Nvi

. Let A1 be the set of vertices in Nv1
\ {r1} adja-

cent to p1, and B1 = Nv1
\ (A1 ∪ r1); and define A2, B2 similarly. Then X ⊆ A1 ∪ A2 ∪ {r1, r2}.

By (2) we may assume that A1 and A2 are both nonempty. Suppose that both B1 and B2 are
empty. There is a cycle in J of length ≥ 4 using the edge v1v2, and so there is a path in L(H)
of length ≥ 2 from A1 to A2 with no internal vertex in Nv1

∪ V (Rv1v2
) ∪ Nv2

. The union of this
path with Rv1v2

induces a hole, and so does its union with F , and therefore these two paths have
lengths of the same parity. Consequently either statement 2.b or 2.d of the theorem holds. So we
may assume that at least one of B1, B2 is nonempty. There is a path S1 from A1 to A2 with no
vertex in Nv1

∪ Nv2
∪ V (Rv1v2

) except for its ends. Suppose that there is no vertex w ∈ V (J) with
A1 ∪ A2 ⊆ Nw. Then we can apply 5.6 to the graph obtained from H by deleting the edges and
internal vertices of the branch between v1 and v2. We deduce (possibly after exchanging v1 and v2)
that there is a path S2 of L(H) with first vertex in A1, second vertex in B1, last vertex in A2, and
otherwise disjoint from Nv1

∪ Nv2
∪ V (Rv1v2

). Since H is bipartite, S1 and S2 have opposite parity;
but they can both be completed via F , a contradiction. Consequently there is a vertex w ∈ V (J)
with A1 ∪A2 ⊆ Nw. Since H is bipartite, and there is a 2-edge track of H between v1, v2 (via w), it
follows that the branch of H with ends v1, v2 has even length, and therefore Rv1v2

has odd length,
and in particular r1 6= r2. Since |Nvi

∩Nw| ≤ 1 (since J is simple) it follows that |Ai| = 1, Ai = {ai}
say, for i = 1, 2. Since X is not local it is not a subset of Nw and so there is a vertex of Rv1v2

in
X. Since Xi ⊆ Nvi

for i = 1, 2, no internal vertex of Rv1v2
is in X, so we may assume that r1 ∈ X.

Since r1 /∈ Nv2
it follows that r1 /∈ X2, and hence p1 is the only vertex in F adjacent to r1. Now the

hole p1- · · · -pn-a2-a1-p1 is even, and so n is even. If we delete the vertex v2 and the edge a1 from
H, what remains is still connected, and so contains a track from w to v1. Hence there is a path
T in L(H) from some a3 ∈ N(w) to r1, disjoint from Nv2

∪ a1. But T can be completed to a hole
via r1-Rv1v2

-r2-a2-a3 and via r1-p1- · · · -pn-a2-a3, and these two completions have different parity, a
contradiction. This proves (4).

(5) If X1 ∩ X2 is nonempty, and in particular if one of p2, . . . , pn−1 has a neighbour in L(H),
then the theorem holds.

For any neighbour in L(H) of one of p2, . . . , pn−1 belongs to X1 ∩ X2, so assume x ∈ X1 ∩ X2.
Then x ∈ V (Rv1v2

) for a unique edge v1v2 of J , and x ∈ Nv for at most two v ∈ V (J), namely v1

and v2. Since both X1 and X2 are local, each is a subset of one of Nv1
, Nv2

, V (Rv1v2
), and they are

not both subsets of the same one. So we may assume that X1 ⊆ Nv1
. Hence either X2 ⊆ Nv2

or
X2 ⊆ V (Rv1v2

), and therefore the theorem holds by (5) or (2). This proves (5).

(6) If there is a vertex u and an edge v1v2 of J such that X1 ⊆ Nu and X2 ⊆ V (Rv1v2
) then

the theorem holds.
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For by (2) we may assume u is different from v1 and v2. Choose a cycle C1 of H using the branch
between v1 and v2 and not using u, and choose a minimal track S in H \ {v1, v2} between u and
V (C1). Let the ends of S be u and w say. Hence in L(H) there are three vertex-disjoint paths,
from Nv1

, Nv2
,Nu respectively to Nw, and there are no edges between them except in the triangle

T formed by their ends in Nw. If pn has a unique neighbour (say r) in Rv1v2
, then r can be linked

onto the triangle T , contrary to 2.4. If pn has two nonadjacent neighbours in Rv1v2
, then pn can be

linked onto the triangle T , contrary to 2.4. So pn has exactly two neighbours in Rv1v2
, and they are

adjacent. If p1 is adjacent to all of Nu, then statement 1 of the theorem holds, so we may assume that
p1 has a neighbour and a non-neighbour in Nu. Let A be the neighbours of p1 in Nu and B = Nu \A.
In H there is a cycle C2 using the branch between v1 and v2, and using an edge in A and an edge
in B. (To see this, divide u into two adjacent vertices, one incident with the edges in A and the
other with those in B, and use Menger’s theorem to deduce that there are two vertex-disjoint paths
between these two vertices and {v1, v2}.) Hence in G, there is a path between Nv1

and Nv2
using a

unique edge of N(u), and that edge is between a vertex a ∈ A say and some vertex in B. Hence a
can be linked onto the triangle formed by pn and its two neighbours in Rv1v2

, a contradiction. This
proves (6).

(7) If there are edges u1v1 and u2v2 of J with Xi ⊆ V (Ruivi
) for i = 1, 2, then the theorem holds.

For in this case it follows that the edges u1v1 and u2v2 are different, and hence we may assume
that v2 is different from u1 and v1, and v1 is different from u2 and v2; possibly u1 = u2. If p1 has
exactly two neighbours in Ru1v1

and they are adjacent, and also pn has exactly two neighbours in
Ru2v2

and they are adjacent, then statement 1 of the theorem holds; so we may assume that p1 has
either only one neighbour, or two nonadjacent neighbours, in Ru1v1

. There is a cycle in H using the
branch between u1 and v1, and using u2 and not v2 (since J \ v2 is 2-connected). There correspond
two paths in L(H), say P and Q, from Nu1

and Nv1
respectively to Nu2

, disjoint from each other,
and there is a third path R say from p1 to Nu2

via F and a subpath of Ru2v2
. There are no edges

between these paths except within the triangle T formed by their ends in Nu2
. If p1 has only one

neighbour r ∈ Ru1v1
, then we may assume that r is in the interior of Ru1v1

, by (6), and so r can be
linked onto T , contrary to 2.4. If p1 has two nonadjacent neighbours in Ru1v1

, then p1 can be linked
onto T , again a contradiction. This proves (7).

But (2)-(7) cover all the possibilities for the local sets X1 and X2, and so this proves 5.8.

6 Major attachments to a line graph

We continue to study appearances L(H) of a 3-connected graph J in a Berge graph G. In this section
we study anticonnected sets of major vertices, and their common neighbours in L(H).

An appearance L(H) of J in G is overshadowed if there is a branch B of H with odd length ≥ 3,
with ends b1, b2, such that some vertex of G is nonadjacent in G to at most one vertex in δH(b1) and
at most one in δH(b2). Thus for instance an appearance is overshadowed if there is a major vertex
and some branch has odd length at least 3. This section is devoted to proving the following.
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6.1 Let G be Berge, let L(H) be an appearance in G of a 3-connected graph J , and let Y be an
anticonnected set of major vertices. Assume that the set of all Y -complete vertices in L(H) does not
saturate L(H). Then either

• J = K3,3 or K4, and there is an overshadowed appearance of J in G, or

• J = K3,3 or K4, L(H) is degenerate, and there is an overshadowed appearance of J in G, or

• J = K3,3, L(H) is degenerate, and there is a J-enlargement that appears in G, or

• J = K4 and |V (H)| = 6, or

• J = K4 and L(H) is degenerate, and there exist nonadjacent y, y ′ ∈ Y with the following
property. Let the 4-cycle in H formed by the branch-vertices of H have edges a-b-c-d in order.
Let p be the third edge of H such that a, b, p have a common end, and similarly let b, c, q have
a common end, and c, d, r and d, a, s. Then (up to symmetry) the neighbours of y in L(H) are
a, b, d, q, r and possibly c, and the neighbours of y ′ in L(H) are b, c, d, p, s and possibly a.

Proof. We may assume that Y is minimal such that it is anticonnected and its common neighbours
do not saturate L(H). Let X be the set of all Y -complete vertices in L(H). Choose two vertices of
L(H), both incident in H with the same branch-vertex of H, and both not in X. Then there is an
antipath joining them with interior in Y , and the common neighbours of the interior of this antipath
do not saturate L(H). From the minimality of Y it follows that this antipath contains all vertices
in Y . Consequently, Y is the vertex set of an antipath with ends y1,y2, say. From the hypothesis,
|Y | ≥ 2, since the neighbours of any vertex in Y saturate L(H), so y1, y2 are distinct. Now for
i = 1, 2, Y \ {yi} is anticonnected; let Xi be the set of Y \ {yi}-complete vertices in L(H) that are
not in X. So X ∪Xi is the set of all Y \ {yi}-complete vertices in L(H). From the minimality of Y ,
both X ∪X1 and X ∪X2 saturate L(H). In terms of H, we see that X,X1, X2 are mutually disjoint
subsets of E(H), and for every branch-vertex b of H and for i = 1, 2, at most one edge of H incident
with b does not belong to X ∪ Xi.

(1) If the branch-vertices of H form a 4-cycle C and X consists of at most three edges of C, then
the theorem holds.

For in this case H has only four branch-vertices and J = K4. Let the edges of C be a, b, c, d in
order, and let p, q, r, s be edges of H \ {a, b, c, d} such that the sets of edges incident with branch-
vertices of H are {a, b, p}, {b, c, q}, {c, d, r} and {d, a, s}. Since every branch-vertex is incident with
at least one edge in X, we may assume that X = {b, d} or {b, c, d}. Since a, p /∈ X, it follows that
one is in X1 and the other in X2, say a ∈ X1 and p ∈ X2. Similarly, since a, s /∈ X it follows that
s ∈ X2. Let P be the path in L(H) between p, r whose vertex set is the edge-set of the branch
of H containing p, r, and choose Q containing q, s similarly. Thus P is odd, and so is Q. If they
both have length 1 then H has 6 vertices and the fourth outcome of the theorem holds. We may
therefore assume that P has length ≥ 3. The path b-p-P -r-d is odd and has length ≥ 5; its ends
are Y -complete and its internal vertices are not, so by 2.1, Y contains a leap. Hence there exist
nonadjacent y, y′ ∈ Y such that y-r-P -p-y′ is a path in G. Since p ∈ X2 and y is nonadjacent to p it
follows that y = y2; and since s ∈ X2 and y 6= y′, it follows that y′ is adjacent to s. Now y-r-P -p-y′

is an odd path, and it cannot be completed to an odd hole, so y, y ′ have no common neighbour in
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Q. But b-q-Q-s-d is an odd path; its ends are {y, y ′}-complete, and its internal vertices are not, so
by 2.1, y, y′ form a leap for this path, that is, y-q-Q-s-y ′ is a path of G. (Note that this holds even if
b-q-Q-s-d has length 3, since the anticonnected set in question has cardinality 2.) Since y ′ is major
and nonadjacent to q it follows that y ′ is adjacent to c, and similarly y is adjacent to a. But then
the fifth outcome of the theorem holds. This proves (1).

In the arguments to come there is a certain amount of moving from H to L(H) and back, and to
facilitate this, for every subgraph H ′ of H we denote by L(H ′) the induced subgraph of L(H) formed
by the edges of H ′. So for any track P of H, L(P ) is a path of L(H). We say a branch-vertex b of
H is a triad if b is incident with at most one edge in X. It follows that every triad has degree 3 in
H, and is incident with exactly one edge in each of X,X1, X2.

We recall that Y is the vertex set of an antipath between y1, y2; let Q be this antipath. There
are two cases, depending whether Q is odd or even.

(2) If Q is odd then there is no cycle of H with edge-set {h1, h2, h3, h4} in order, such that the
common end of h1 and h2 is a branch-vertex, h1 ∈ X1, h2 ∈ X2, and h3, h4 ∈ X.

For if there is such a cycle, then Q can be completed to an odd antihole via y2-h2-h4-f -h3-h1-y1

(where f is a third edge of H such that h1, h2, f have a common end), a contradiction. This proves
(2).

(3) If Q is odd and h1 ∈ X1 meets h2 ∈ X2, then every edge in X meets at least one of h1, h2.

For if h1 ∈ X1 meets h2 ∈ X2, and f ∈ X meets neither of h1, h2, then Q can be completed to
an odd antihole via y2-h2-f -h1-y1, a contradiction. This proves (3).

There is a branch-vertex b of H incident with at least two edges not in X. For i = 1, 2 let ei ∈ Xi

be incident with b, and let e3 be some third edge incident with b. For i = 1, 2, 3, let Bi be the branch
of H containing ei, and let bi be its other end. If Q is odd, let fi ∈ X be incident with bi, chosen
in addition such that fi /∈ E(Bi) if possible (1 ≤ i ≤ 3). (If Q is even we choose the fi’s a little
differently, described later.)

(4) If Q is odd then b3 is a triad.

For suppose not; then f3 /∈ E(B3), and there is a second edge f ′

3 ∈ X incident with b3. By (3), the
edge f3 meets one of e1, e2, and from the symmetry we may assume that it meets e1. Thus f3 = b1b3

and E(B1) = {e1}. Since H is bipartite, it follows that B3 is even. Thus f ′

3 is not incident with
b, and by (3) applied to f ′

3, e1 and e2 we deduce that f ′

3 = b2b3 and E(B2) = {e2}. But the edges
e1, e2, f

′

3, f3 contradict (2). This proves (4).

(5) If Q is odd and either B3 has length > 1 or b is not a triad, then the theorem holds.

For assume that B3 has length ≥ 2. By (3) applied to e3 and the two edges of E(H) \ X inci-
dent with b3 it follows that B3 has length two and f3 /∈ E(B3). (Later we will use the shorthand
“by (3) applied to e3 and b3”.) By (3) applied to f3, e1 and e2 we deduce that f3 is incident with
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e1 or e2, and so from the symmetry we may assume that f3 = b1b3 and E(B1) = {e1}. Suppose
that B2 has length at least two. By (3) applied to f2, e1 and e2, it follows that either f2 = b1b2 or
E(B2) = {e2, f2}; and therefore in both cases b2, b3 are nonadjacent, since H is bipartite. But this
contradicts (3) applied to f2 and b3. It follows that B2 has length 1, and E(B2) = {e2}. From (3)
applied to f2 and b3 we deduce that b2 is adjacent to b3 and b2b3 6∈ X. The vertex b has degree 3,
for a fourth edge incident with b would violate (3) applied to that edge and b3. Since H is cyclically
3-connected, it follows that H is the union of B1, B2, B3, the edges b1b3, b2b3 and a branch B with
ends b1 and b2. The branch B includes f2, and its edge incident with b1, say e, is not in X by (3)
applied to e and b3. But e meets f2, by (3) applied to f2 and b1. Thus B has length two, and hence
the fourth outcome of the theorem holds. We may therefore assume that E(B3) = {e3}. In this case
e3 is the only member of X incident with b3, and from (4) with b, b3 exchanged it follows that b is a
triad. This proves (5).

(6) If Q is odd and one of B1, B2 has length > 1 then the theorem holds.

For suppose first that they both have length at least two. Then, for i = 1, 2, by (3) applied to
b and fi we deduce that E(Bi) = {ei, fi} and therefore fi is the unique edge of X incident with
bi. This contradicts (3) applied to f1 and b2. So at least one of B1, B2 has length 1, and from the
symmetry we may assume that E(B1) = {e1} and B2 has length at least two. If f2 ∈ E(B2) then b2

is a triad, and the theorem holds by (5) with b, b2 exchanged, so we may assume that f2 /∈ E(B2).
Let e′2 be the edge of B2 incident with b2. By (3) applied to f2 and b we deduce that f2 = b1b2, and
that no edge incident with b2 belongs to X except f2 and possibly e′2. By (3) and (4) applied to f2

and b3, it follows that b3 is adjacent to b2 and b2b3 6∈ X. Suppose for a contradiction that b1 is not a
triad, and choose e′1 ∈ X \{b1b2} incident with b1. By (3) applied to e′1 and b2, it follows that e′2 ∈ X,
and from (3) applied to e′2 and b we deduce that E(B2) = {e2, e

′

2}. But now the edges e1, e2, e
′

2, f2

contradict (2). This proves that b1 is a triad, and from (4) with b, b1 exchanged, we deduce that b2

is a triad. Since H is cyclically 3-connected, it follows that H is the union of B1, B2, B3, the edges
b1b2 and b2b3 and a branch B with ends b1 and b3. From (3) applied to b1, we deduce that no edge
of B2 belongs to X, and by (3) applied to b2 it follows that no edge of B belongs to X. But then
the theorem holds by (1). This proves (6).

(7) If Q is odd then the theorem holds.

For by (5) and (6) we may assume that E(Bi) = {ei} for i = 1, 2, 3. For i = 1, 2 let fi = bixi.
Then x1 6= x2, for otherwise the edges e1, e2, f2, f1 violate (2). By (3) applied to fi and b3 we deduce
that xi is adjacent to b3 and xib3 6∈ X, and therefore fi is the unique edge in X incident with bi, and
bi is a triad (i = 1, 2). By (3) applied to f2 and b1 we deduce that b1 is adjacent to x2, and, similarly,
x1 is adjacent to b2. Since H is a subdivision of a 3-connected graph, J = K3,3, and L(H) is a
degenerate appearance of J , and there is a J -enlargement that appears in G, so the third outcome
of the theorem holds. This proves (7).

In view of (7) we may henceforth assume that Q is even.

(8) Every edge in X1 meets every edge in X2.
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For if h1 ∈ X1 does not meet some h2 ∈ X2, then Q can be completed to an odd antihole via
y2-h2-h1-y1, a contradiction. This proves (8).

A vertex of a track P is penultimate if it is adjacent in P to an end of P .

(9) For all W ∈ {X,X ∪ X1, X ∪ X2} and for every even track P in H of length ≥ 4 and with
both end-edges and no internal edges in W , every edge in W is incident with a penultimate vertex of
P .

For let f ∈ W . If W = X let Y ′ = Y , and if W = X ∪ Xi where i ∈ {1, 2}, let Y ′ = Y \ {yi}. So
W is the set of Y ′-complete vertices of L(H). The path L(P ) of G is odd and has length ≥ 3; its
ends are Y ′-complete, and its internal vertices are not. By 2.2, f is adjacent (in G) to vertices in
the interior of L(P ); that is, f is incident in H with an internal vertex of P . We must show that f
is incident with a penultimate vertex. Let P have vertices p1- · · · -pn and edges h1, . . . , hn−1, where
hi is incident with pi, pi+1 for 1 ≤ i < n; so n is odd and n ≥ 5. Suppose first that both ends of f
belong to P , say f = pipj where i < j. Since H is bipartite, j − i is odd, and so either i− 1 or n− j
is odd, and from the symmetry we may assume the former, that is, i is even. Hence the track T
with edge-set {h1, . . . , hi−1, f} has even length, at least 4 (since we may assume that i 6= 2); and yet
in G the Y ′-complete vertex hn−1 has no neighbour in the interior of the odd path L(T ), contrary
to 2.2. So not both ends of f belong to P . Hence f is incident with a unique vertex pi of P , and
again we may assume that 3 ≤ i ≤ n − 2. In G, h1- · · · -hi−1-f is a path; its ends are Y ′-complete,
and its internal vertices are not, and the Y ′-complete vertex hn−1 has no neighbour in its interior;
so by 2.2, this path is even, that is, i is odd. Since pi is a branch-vertex of H, and at least two of
the edges incident with it do not belong to W , it follows that W = X and Y ′ = Y ; and we may
assume that hi−1 ∈ X1 and hi ∈ X2. Since every edge in X1 meets every edge in X2, it follows that
h1, . . . , hi−2 /∈ X1. In G, the path h1- · · · -hi−1 is odd; its ends are Y -complete, its internal vertices
are not, and the Y -complete vertex hn−1 has no neighbour in its interior, so it has length 1, that
is, i = 3. Similarly n − i = 2, that is, n = 5. But then Q can be completed to an odd antihole via
y2-h3-h1-h4-h2-y1, a contradiction. This proves (9).

(10) If P1, P2, P3 are tracks in H with a common end v, say, and otherwise vertex-disjoint, each
with an edge in X, then at least two of the three edges of P1 ∪ P2 ∪ P3 incident with v belong to X.

For we may assume that for i = 1, 2, 3, Pi is between v and vi say, and the only edge of Pi in
X is the edge incident with vi. Some two of P1, P2, P3 have lengths of the same parity, say P1, P2,
and so P1 ∪ P2 is a track of even length. If it has length 2 then P1, P2 both have length 1 and the
claim holds, so we assume it has length ≥ 4. The edge of P3 incident with v3 is incident with a
penultimate vertex of this track, by (9), and so P3 and one of P1, P2 have length 1, and again the
claim holds. This proves (10).

Earlier (preceding (4)) we chose b such that at least two edges of H incident with b did not belong
to X. Let us refine this choice; now in addition we choose b such that B3 is as long as possible.

(11) For i = 1, 2 there is an edge fi ∈ X incident with bi that does not meet e3.
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For it suffices to prove this for i = 1, and it clearly holds if there are at least two members of
X incident with b1. So we may assume that there is a unique member of X incident with b1, and
that this edge meets e3, and therefore is the edge b1b3. But then b1 is a triad, and E(B3) = {e3},
and |E(B1)| > 1, because H is bipartite. The unique edge of X1 incident with b1 meets e2 by (8);
and hence this edge is b1b2, and e2 = bb2. Suppose for a contradiction that there is a fourth edge bv
incident with b, and let f be an edge incident with b3 different from bb2, b1b2; then v 6= b, b1, b2, b3,
and there is a track of length 4 with vertices b3-b1-b2-b-v in order; its end-edges belong to X and its
internal edges do not; and f ∈ X is not incident with any penultimate vertex of this track, contrary
to (9). This proves that b has degree three. Since H is cycically 3-connected, it follows that H
consists of B1, B2, B3, the edges b1b2, b1b3, and a branch B with ends b2 and b3 that includes a
member of X incident with b2. Since H is bipartite, it follows that |E(B)| > 1, and hence b2 and B
contradict the choice of b and B3. This proves (11).

(12) If there exist f1, f2 as in (11) with f1, f2 6= b1b2 then the theorem holds.

For it follows from (10) applied to subtracks of the tracks with edge-sets E(B1)∪{f1}, E(B2)∪{f2}
and {e3} that B1, B2 include no member of X, and that f1 meets f2. Thus b1 is not adjacent to
b2. We claim that for i = 1, 2 the edge fi is the only edge of X incident with bi. For suppose
that say f ′

1 ∈ X is incident with b1. By (10) applied to the vertex b and the tracks with edge-sets
E(B1) ∪ {f ′

1}, E(B2) ∪ {f2} and {e3}, we deduce that f ′

1 meets e3. Thus B1 is even. Let P be the
track obtained from B1 by adding e3 and f1; then P and the edge f2 violate (9). This proves our
claim that fi is the only edge of X incident with bi for i = 1, 2. Consequently, b1 and b2 are triads.
From (8) we deduce that B1 and B2 have length one. For i = 1, 2 let di be the edge incident with
bi different from ei, fi; so d1 ∈ X2 and d2 ∈ X1. By (8) the edges d1, d2 meet; let v denote their
common end. Every edge g incident with v other than d1 and d2 belongs to X. If some such g does
not meet e3 then the edges g, d2, e2, e3 form a track with end-edges in X and internal edges not in
X, and f1 is not incident with a penultimate vertex of this track, contrary to (9). So every such edge
g meets e3 and hence is incident with b3 (since H is bipartite). Thus v has degree two or three. If
v = b3, then B3 has length 2 and both its edges belong to X, and the fourth outcome of the theorem
holds. If v 6= b3 and v has degree 3, then the third edge incident with v is vb3, and b is a triad, and
H consists of the vertices b, b1, b2, b3, v and a branch B with ends b3 and u, where u is the common
end of f1 and f2; but then J = K3,3, and if B has length 1 then the second outcome of the theorem
holds, and otherwise the first outcome holds. Finally, if v 6= b3 and v has degree two, then b3 is the
common end of f1, f2, and J = K4 and the second outcome of the theorem holds. This proves (12).

From (11) and (12) we may therefore assume that b1, b2 are adjacent, and the edge b1b2 ∈ X.
From the symmetry we may assume that B1 is even and B2 is odd. Let T be the track formed by
B1 and the edges e3, b1b2. So T is even. Suppose that there is an edge (say f) in X incident with
b2 and different from b1b2. By (10) no edge of B1 belongs to X, and yet f is not incident with a
penultimate vertex of T , contrary to (9). So there is no such edge f , and therefore b2 is a triad. Let
e4 be the edge incident with b2 different from b1b2 and not in B2. So e4 ∈ X1 ∪ X2, and therefore
by (8), e4 meets one of e1, e2. Since it is not incident with e1, it follows that E(B2) = {e2}, and
e4 ∈ X1. Let B4 be the branch of H containing e4, and let b4 be the other end of B4.

(13) b4 = b3, and B3 has length 1, and H is a subdivision of K4, and B4 is even.

33



For b4 is different from b, b1, b2. Since B1 is even, and e2 is the unique edge in X2 incident with
b, it follows that no edge in X2 incident with b4 meets e1, and therefore by (8), no edge in X2 is
incident with b4. Consequently b4 is not a triad, and so there are at least two edges (say g1, g2) in X
incident with b4. By (10) (applied to three tracks with common end b2), each of them meets either
b1b2 or e3. But no edge in X is incident with both b2 and b4, since e4 ∈ X1; so g1, g2 are either
incident with b1 or meet e3.

Suppose that b4 is not incident with e3. Then at most one of g1, g2 is incident with b1, and at
most one meets e3 (since H is bipartite), so there is exactly one of each. Hence b1 is adjacent to b4,
and b1b4 ∈ X; and (since H is bipartite and B1 is even) b is adjacent to b4 and bb4 ∈ X, and b4 has
degree 3. Since b4 is not incident with e3, and b4 is adjacent to b, it follows that b4 6= b3; and since
H is cyclically 3-connected and b2 is a triad, this is impossible. So b4 is incident with e3, that is,
b4 = b3 and B3 has length 1. Since this holds for every choice of e3, we deduce that b has degree 3,
and therefore H is a subdivision of K4. It follows that B4 is even. This proves (13).

Let B5 be the branch of H between b1, b3. Since no edge incident with b3 meets e1 except e3, it
follows that b3 is not a triad. Suppose that no edge of B1 is in X. Then by (9) applied to T , every
edge in X is incident with one of b, b1. In particular, no edge of B4 is in Xi; and since b3 is not a
triad, it follows that B5 has length 1 and its edge is in X. Thus b3 is adjacent to both b, b1, and the
edges bb3, b1b3 both belong to X; but then the theorem holds by (1).

So we may assume that some edge of B1 is in X. This edge is not incident with a penultimate
vertex of the track formed by B4 and the edges b1b2, e3, so by (9), some edge of B4 belongs to X.
By (10) applied to B1, a subtrack of B2 ∪B4 and the track consisting of the edge e3, we deduce that
the only edge of B4 in X is the edge incident with b3. By (10) applied to the track with edge-set
E(B2) ∪ {b1b2}, a subtrack of B1 and the track consisting of the edge e3, we deduce that the only
edge of B1 in X is the edge incident with b1. But B5 is odd, and if it has length > 1 then the first
outcome of the theorem holds. So we may assume that b1b3 is an edge. Now the tracks B1, B4 are
even; their end-edges belong to X ∪X1, and their other edges do not (by (8)), and e3 is not incident
with a penultimate vertex of these tracks; so by (9), B1 and B4 both have length 2. But then the
fourth outcome of the theorem holds. This proves 6.1.

7 Rung replacement

Before we apply 6.1, let us simplify it a little. We can effectively eliminate the cases of L(H) being
overshadowed. We need a few lemmas.

7.1 Let c1, c2 be adjacent vertices of a 3-connected graph J , and let e, f be edges of J incident with
c1 and different from c1c2. There are three tracks of J from c1 to c2, pairwise vertex-disjoint except
for their ends, and with first edges c1c2, e, f respectively.

Proof. Since J is 3-connected, if we delete from J all edges incident with c1 except e and f , the
graph we make is still 2-connected, and so it has a cycle containing c1 and c2. This proves 7.1.

A prism means a graph consisting of two vertex-disjoint triangles {a1, a2, a3}, {b1, b2, b3}, and
three paths P1, P2, P3, where each Pi has ends ai, bi, and for 1 ≤ i < j ≤ 3 the only edges between
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V (Pi) and V (Pj) are aiaj and bibj. The three paths P1, P2, P3 are said to form the prism. The prism
is long if at least one of the three paths has length > 1.

7.2 Let R1, R2, R3 form a prism in a Berge graph G; then R1, R2, R3 all have the same parity.

The proof is clear.

7.3 Let G be Berge, let Y ⊆ V (G) be anticonnected, and for i = 1, 2, 3 let ai-Pi-bi be a path in
G\Y , forming a prism with triangles {a1, a2, a3}, {b1, b2, b3}. Assume P1, P2, P3 all have length > 1,
and that every vertex in Y is adjacent to at least two of a1, a2, a3 and to at least two of b1, b2, b3.
Then at least two of a1, a2, a3 and at least two of b1, b2, b3 are Y -complete.

Proof. Suppose not; then there is an antipath with interior in Y , joining two vertices either both
in {a1, a2, a3} or both in {b1, b2, b3}. Let Q be the shortest such antipath. We may assume Q joins
a1 and a2 say. Since every vertex in Y is adjacent to either a1 or a2 it follows that Q has length
≥ 3. From the minimality of Q, a3 is Q∗-complete, and so is at least one of b1, b2, b3, say bi. Since Q
can be completed to an antihole via a1-bi-a2 it follows that Q is even. From 3.3 applied to the hole
formed by P1 ∪ P2 and hat a3, neither of b1, b2 is Q∗-complete, and so there is an antipath between
b1 and b2 with interior in Q∗. By the minimality of Q, the two antipaths have the same interior; but
this again contradicts 3.3. This proves 7.3.

In fact it is easy to find strengthenings of 7.3 in which some of the paths Pi have length 1, but
for the moment 7.3 will suffice.

7.4 Let G be Berge, and for 1 ≤ i ≤ 3 let Pi be a path of even length ≥ 2, from ai to bi, such that
these three paths form a prism with triangles A = {a1, a2, a3} and B = {b1, b2, b3}. Let P ′

1 be a path
from a′1 to b1, such that P ′

1, P2, P3 also form a prism. Let y ∈ V (G) have at least two neighbours in
A and in B. Then it also has at least two neighbours in {a′

1, a2, a3}.

Proof. Suppose not. By 7.2 P ′

1 has even length. Let X be the set of neighbours of Y in G. Then
a′1 6∈ X, and a1 ∈ X, and exactly one of a2, a3 ∈ X, say a2 ∈ X. Also, y cannot be linked onto the
triangle A′ = {a′1, a2, a3}, by 2.4, and since one of b2, b3 ∈ X it follows that no internal vertex of
P ′

1 is in X. Hence b1 6∈ X, for otherwise y-a2-a
′

1-P
′

1-b1- would be an odd hole. So b2, b3 ∈ X. Since
y-a1-a3-P3-b3-y is not an odd hole, there is a member of X in P3 \ b3. But then y can be linked
onto A′, via b2-b1-P

′

1-a1, the path a2, and the path between y and a3 with interior in V (P3) \ {b3},
contrary to 2.4. This proves 7.4.

We shall only need the following when J = K4 or K3,3, but we might as well prove it in general.

7.5 Let G be Berge, and let L(H) be an overshadowed appearance of J in G, where J is 3-connected.
Then either:

• there is a J-enlargement with a nondegenerate appearance in G, or

• G admits a balanced skew partition.

35



Proof. For each edge uv of J , let Buv be the branch of H with ends u, v, and let Ruv be the path
L(Buv) of L(H). For each v ∈ V (J) let Nv be the clique of L(H) with vertex set δH(v). There is an
edge c1c2 of J such that Bc1c2 has odd length ≥ 3, and some vertex of G is nonadjacent in G to at
most one vertex of Nc1 and to at most one vertex of Nc2 . We say such a vertex v is Bc1c2-dominant
with respect to L(H). Let the ends of Rc1c2 (that is, the end-edges of Bc1c2) be r1, r2, where ri ∈ Nci

.
Let Y be a maximal anticonnected set of vertices each with at most one non-neighbour in Nc1 and at
most one non-neighbour in Nc2 . We shall prove that Y and some of its common neighbours separate
the interior of Rc1c2 from the remainder of L(H) in G, so that will be the skew partition we are
looking for. Let X be the set of all Y -complete vertices in G.

(1) For i = 1, 2, at most one vertex of Nci
is not in X.

For let a1, a2 be any two distinct vertices in Nc1 \ {r1}; we shall show that at most one of a1, a2, r1

is not in X. By 7.1, there are two paths Q1,Q2 of H between c1 and c2, such that Q1,Q2,Bc1c2 are
vertex-disjoint except for their ends, and for i = 1, 2, ai is the first edge of Qi. Let bi be the other
end-edge of Qi. Both Q1 and Q2 have odd length, since Bc1c2 is odd and H is bipartite; and they
have length ≥ 3 since c1, c2 are nonadjacent (for they are the ends of a branch of length > 1.) Hence
there are two paths P1,P2 of L(H) from Nc1 to Nc2 , such that P1,P2,Rc1c2 are vertex-disjoint and
form a prism, and Pi is from ai to bi. Now Bc1c2 is odd and therefore Rc1c2 is even, and similarly P1

and P2 are even. By hypothesis, each member of Y is adjacent to at least two vertices of the triangle
{a1, a2, r1} and to two vertices of the triangle {b1, b2, r2}. By 7.3 it follows that X contains at least
two members of {a1, a2, r1}. This proves (1).

Let

X1 = X ∩ (Nc1 ∪ Nc2)

X2 = X ∩ (V (L(H)) \ (Nc1 ∪ Nc2))

X0 = X \ V (L(H))

S = V (Rc1c2) \ X1

T = (V (L(H)) \ V (Rc1c2)) \ X1.

We observe first that no vertex of S is adjacent to any vertex in T ; for such an edge would join
two vertices both in Nci

for some i, and therefore both not in X, contradicting (1).

(2) If F ⊆ V (G) is connected and some vertex of S has a neighbour in F , and so does some vertex
of T , and F ∩ (X0 ∪ X1 ∪ Y ) = ∅, then the theorem holds.

We shall prove this by induction on |F |; so, we assume it holds for all smaller choices of F (even for
different choices of L(H)). Hence we may assume that G|F is a path with vertices f1, . . . , fn say,
where f1 is the only vertex of F with a neighbour in S, and fn is the only vertex with a neighbour
in T . From the minimality of F it also follows that F is disjoint from L(H); for any vertex of F in
L(H) would be in S or T , since it is not in X1, and then we could make F shorter by omitting this
vertex. Consequently F ∩ X = ∅. Suppose some vertex in v ∈ F is major with respect to L(H).
Then since v 6∈ X it follows that v has a nonneighbour in Y , and so Y ∪ v is anticonnected; the
maximality of Y therefore implies that v ∈ Y , and hence F ∩ Y 6= ∅, a contradiction. So we may

36



assume that no vertex in F is major. On the other hand, the set of attachments of F in L(H) is
not local, because it has an attachment in Rc1c2 , and its attachments are not all contained in any of
V (Rc1c2), Nc1 ,Nc2 . Let us apply 5.8. Suppose first that 5.8.1 holds. Then we obtain an appearance
L(H ′) in G of some J -enlargement, with L(H) an induced subgraph of L(H ′). Since Rc1c2 has even
nonzero length, it follows that L(H) is not degenerate, and therefore neither is L(H ′), and hence the
theorem holds. So we may assume that 5.8.2 holds, and there is an edge b1b2 of J , (for i = 1, 2, si

denotes the unique vertex in Nbi
∩ Rb1b2) and a path P of G with V (P ) ⊆ F and with ends p1 and

p2, such that one of the following holds:

1. p1 is adjacent in G to all vertices in Nb1 \ {s1}, and p2 has a neighbour in Rb1b2 \ s1, and every
edge from V (P ) to V (L(H)) \ {s1} is either from p1 to Nb1 \ {s1}, or from p2 to Rb1b2 \ s1, or

2. for i = 1, 2, pi is adjacent in G to all vertices in Nbi
\{si}, and there are no other edges between

V (P ) and V (L(H)) except possibly p1s1, p2s2, and P has the same parity as Rb1b2 , or

3. p1 = p2, and p1 is adjacent to all vertices in (Nb1 ∪ Nb2) \ {s1, s2}, and all neighbours of p1 in
V (L(H)) belong to Nb1 ∪ Nb2 ∪ Rb1b2 , and Rb1b2 is even, or

4. s1 = s2, and for i = 1, 2, pi is adjacent in G to all vertices in Nbi
\ {si}, and there are no other

edges between V (P ) and V (L(H)) \ {s1}, and P is even.

In case 1, let R′ be the (unique) path from p1 to s2 in (V (P ) ∪ V (Rb1b2)) \ {s1}, and in the other
cases let R′ be P . So if in L(H) we replace Rb1b2 by R′ we obtain another appearance of J in G, say
L(H ′), where H ′ is obtained from H by replacing the branch Bb1b2 by some new branch B ′ joining
the same two vertices. For each v ∈ V (J) let N ′

v be the clique in L(H ′) formed by the edges in
δH′(v). So N ′

v = Nv for all vertices v of J except for b1 and b2. Let R′ be between r′1 and r′2, where
r′i ∈ N ′

bi
for i = 1, 2.

Now suppose that b1b2 and c1c2 are different edges of J . Then Bc1c2 is still a branch of H ′, and
we claim that every y ∈ Y is Bc1c2 -dominant with respect to L(H ′). For let e, f be two edges of J
incident with c1 and different from c1c2. By 7.1 there are three tracks of J from c1 to c2, vertex-
disjoint except for their ends, and one of them is the edge c1c2, and the first edges of the other two
are e and f . There are three tracks corresponding to these in H, and their line graph is a prism in
L(H). There also correspond three tracks in H ′, yielding a prism in L(H ′). Since Rb1b2 6= Rc1c2 ,
it follows that Rb1b2 is incident with at most one of c1, c2, so these two prisms are related as in
7.4. Hence by 7.4, since y has two neighbours in both triangles of the first prism, it also has two
neighbours in the triangles of the second. This proves that y is Bc1c2-dominant with respect to
L(H ′). The same argument in the reverse direction shows that Y remains a maximal anticonnected
set of Bc1c2-dominant vertices. Since there is a proper subset F ′ of F with attachments in S and
in the new set T ′ in V (H ′) corresponding to T (for T ′ contains all the vertices of R′ that are in F ,
and there is at least one such vertex), it follows that we may apply the inductive hypothesis. So F ′,
and hence F , contains a vertex of X. This completes the argument when b1b2 and c1c2 are distinct
edges.

Now we assume that bi = ci for i = 1, 2. There were four cases in the definition of P , listed
above. Case 3 is impossible, since then the vertex p1 would be Bc1c2-dominant with respect to L(H),
and therefore would be in either X or Y , a contradiction. Also, case 1 is impossible, by applying
7.4 as before to show that Y remains a maximal anticonnected set of B ′-dominant vertices, and
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applying the inductive hypothesis. Case 4 is impossible since Bc1c2 has length ≥ 3. So case 2 applies;
that is, p2 is adjacent to all vertices in Nc2 \ {r2}, and to no vertex of Rc1c2 except possibly r2. So
N ′

ci
= (Nci

\ {ri}) ∪ {r′i} for i = 1, 2. We recall that in this case R′ = P , and P is a subpath of
the path with vertices f1, . . . , fn. Choose h with 1 ≤ h ≤ n minimum such that fh is a vertex of
R′. Since both R′ and G|F are paths it follows that fh is one end of R′, say r′1. (This is without
loss of generality, because in this case 2, there is symmetry between b1 = c1 and b2 = c2.) From
the minimality of F , r′1 has no neighbour in T , and in particular every vertex in Nc1 \ {r1} is in X.
We claim also that every vertex of Nc2 \ {r2} is in X. For if not, then r2 ∈ X, and by 7.1 there
is a prism Rc1c2 , P1, P2 say, in L(H), where each Pi has an end ai ∈ Nc1 and an end bi ∈ Nc2 , and
b2 6∈ X. (Consequently r2, b1 ∈ X.) Hence at most one vertex of the triangle {r ′2, b1, b2} is in X,
and some vertex in X (namely a1) has no neighbour in this triangle, so by 2.8, Y cannot be linked
onto this triangle. In particular, no vertex of P2 is in X except a2. But then a2-P2-b2-r2 is an odd
path between members of X, and none of its internal vertices are in X, and a1 has no neighbour in
its interior, contrary to 2.2. This proves that every vertex of Nc2 \ {r2} is in X. Consequently all
vertices of Y are B ′-dominant with respect to L(H ′). We claim also that Y is still maximal. For
suppose not, and let Y ⊂ Y ′ for some larger anticonnected set Y ′ of B′-dominant vertices. Since
r′1, r

′

2 are not in X, they are certainly not Y ′-complete, and since by (1) applied to Y ′, at most one
vertex of N ′

ci
is not Y ′-complete for i = 1, 2, it follows that every vertex of N ′

c1
\ {r′1} and N ′

c2
\ {r′2}

are Y ′-complete. But then all the members of Y ′ are Bc1c2-dominant with respect to L(H), contrary
to the maximality of Y . This proves that Y is a maximal anticonnected set of B ′-dominant vertices
with respect to L(H ′). Hence we can apply induction on F , and the result follows. This proves (2).

It follows from (2) that there is a partition of V (G)\(X0∪X1∪Y ) into two sets L and M say, where
there is no edge between L and M , and S ⊆ L and T ⊆ M . So (L∪M,X0 ∪X1 ∪Y ) is a skew parti-
tion of G. By 4.2 we may assume it is not loose, and so X2 is empty; and we shall show it is balanced.

(3) For i = 1, 2, all vertices of Nci
\ {ri} belong to X1.

For suppose there is a vertex n1 of Nc1 \ {r1} not in X. Therefore all other vertices of Nc1 be-
long to X, and in particular, r1 ∈ X. Suppose no other vertex of Rc1c2 is in X; then r2 6∈ X, so
X includes Nc2 \ {r2i}. Choose any n2 ∈ Nc2 \ {r2}, and any n′

1 ∈ Nc1 \ {r1} different from n1.
Then r1-Rc1c2-r2-n2 is an odd path between Y -complete vertices, and none of its internal vertices
are Y -complete, and yet n′

1 has no neighbour in its interior, contrary to 2.2. This proves that some
vertex of Rc1c2 different from r1 is in X; yet X2 is empty, so the interior of Rc1c2 contains no vertex in
X. Consequently r2 ∈ X. Choose n2 ∈ Nc2 \ {r2} such that Nc2 \ {n2} ⊆ X. Since J is 3-connected,
there is a track of H from c1 to c2 with first edge n1 and last edge different from n2. This track is
odd since c1 and c2 have opposite biparity; and so in G there is an even path, P say, from n1 to some
n′

2 ∈ Nc2 \ {n2}, with no vertex in Nc1 ∪ Nc2 except its ends. But then r1-n1-P -n′

2 is an odd path
between Y -complete vertices, no vertex in its interior is Y -complete, and the Y -complete vertex r2

has no neighbour in its interior, contrary to 2.2. This proves (3).

Let W = (Nc1 \ {r1}) ∪ (Nc2 \ {r2}). Then W ⊆ X1 by (3), and since there are no edges
between Nc1 and Nc2 , it follows that W has exactly two components, both cliques. In particular, W
is anticonnected. Now every W -complete vertex is Bc1c2 -dominant, and so belongs to X ∪ Y ; and
hence there are no W -complete vertices in L∪M . Consequently W is a kernel for the skew partition.
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Let us verify the hypotheses of 4.6. Suppose u1, u2 ∈ W are nonadjacent. Then one of u1, u2 is in
Nc1 \{r1} and the other in Nc2 \{r2}, and therefore they are joined by a path in L(H) using no more
vertices in Nc1 ∪Nc2 , which is even (since H is bipartite). In particular, by 4.3, u1, u2 are not joined
by any odd path with interior in L. Finally, suppose there is a pair of vertices of L joined by an
odd antipath with interior in W , necessarily of length ≥ 5 (since we already did the odd path case).
Then G|W contains an antipath of length 3, which is impossible since its components are cliques.
From 4.6 it follows that G admits a balanced skew partition. This proves 7.5.

8 Generalized line graphs

In this section we complete the proofs of 5.1 and 5.2. As we said earlier, our strategy is to find the
biggest line graph in G that we can, and then assemble all the alternative rungs for a given edge of
J into a “strip”. Let us make that precise.

Let J be 3-connected, and let G be Berge. A J-strip system (S,N) in G means:

• for each edge uv of J , a subset Suv = Svu ⊆ V (G)

• for each vertex v of J , a subset Nv ⊆ V (G)

satisfying the following conditions (for uv ∈ E(J), a uv-rung means a path R of G with ends s, t
say, where V (R) ⊆ Suv, and s is the unique vertex of R in Nu, and t is the unique vertex of R in
Nv):

• The sets Suv (uv ∈ E(J)) are pairwise disjoint

• For each u ∈ V (J), Nu ⊆
⋃

(Suv : v ∈ V (J) adjacent to u)

• For each uv ∈ E(J), every vertex of Suv is in a uv-rung

• If uv,wx ∈ E(J) with u, v, w, x all distinct, then there are no edges between Suv and Swx

• If uv, uw ∈ E(J) with v 6= w, then Nu ∩ Suv is complete to Nu ∩ Suw, and there are no other
edges between Suv and Suw

• For each uv ∈ E(J) there is a special uv-rung such that for every cycle C of J , the sum of the
lengths of the special uv-rungs for uv ∈ E(C) has the same parity as |V (C)|.

It follows that for distinct u, v ∈ V (J), Nu ∩ Nv is empty if u,v are nonadjacent, and otherwise
Nu ∩ Nv ⊆ Suv; and for uv ∈ E(J) and w ∈ V (J), if w 6= u, v then Suv ∩ Nw = ∅. The final
axiom looks strange, but we shall show immediately that the same property holds for every choice
of uv-rungs.

8.1 Let (S,N) be a J-strip system in a Berge graph G, where J is 3-connected. Then for every
uv ∈ E(J), all uv-rungs have lengths of the same parity.

Proof. Since J is 3-connected, there is a cycle C of J with |V (C)| ≥ 4 and with uv ∈ E(C). For
each xy ∈ E(C) different from uv, choose an xy-rung Rxy. For every uv-rung R, the union of V (R)
and all the V (Rxy)’s induces a cycle in G. This has length ≥ 4 since C has length ≥ 4, so it is a hole
and therefore even. Hence all choices of R have lengths of the same parity. This proves 8.1.
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For each edge uv of J , choose a uv-rung Ruv. It follows from 8.1 and the final axiom above that
the subgraph of G induced on the union of the vertex sets of these rungs is a line graph of a bipartite
subdivision H of J . For brevity we say that this choice of rungs forms L(H).

We need two easy observations:

8.2 Let (S,N) be a J-strip system in a Berge graph G, where J is 3-connected. If there is an edge
uv of J such that some uv-rung has length 0 and another uv-rung has length ≥ 1, then there is an
overshadowed appearance of J in G.

Proof. For each edge ij of J choose an ij-rung Rij , arbitrarily for every edge of J different from
uv, and such that Ruv has length ≥ 1; and let this choice of rungs form L(H). Let y be the vertex
of some uv-rung of length 0. By 8.1, Ruv has even length. Let B be the branch of H between u and
v, so E(B) = V (Ruv). Then B is odd and has length ≥ 3 and y is nonadjacent in G to at most one
vertex of G in δH(u) and at most one in δH(v). Hence L(H) is overshadowed. This proves 8.2.

A J -strip system is nondegenerate if there is some choice of rungs such that the line graph L(H)
they form is a nondegenerate appearance of J . 8.2 has the following corollary:

8.3 Let (S,N) be a nondegenerate J-strip system in a Berge graph G, where J is 3-connected. If
there is no overshadowed appearance of J in G, then for every choice of rungs, the line graph they
form is a nondegenerate appearance of J in G.

Proof. Take a choice of rungs Rij(ij ∈ E(J)), forming L(H) say, where L(H) is nondegenerate; and
suppose there is another choice, R′

ij(ij ∈ E(J)), forming L(H ′) say, where L(H ′) is degenerate. Then
for some ij ∈ E(J), Rij has nonzero length and R′

ij has length 0. By 8.2 there is an overshadowed
appearance of J in G. This proves 8.3.

Given a J -strip system (S,N), we define V (S,N) =
⋃

(Suv : uv ∈ E(J)). Hence every Nv ⊆
V (S,N). If u, v ∈ V (J) are adjacent, we define Nuv = Nu ∩ Suv. So every vertex of Nu belongs to
Nuv for exactly one v. Note that Nuv is in general different from Nvu, but Suv and Svu mean the
same thing. We say X ⊆ V (S,N) saturates the strip system if for every u ∈ V (J), there is at most
one neighbour v of u in J such that Nuv 6⊆ X; and a vertex y ∈ V (G)\V (S,N) is major (with respect
to the strip system) if the set of its neighbours in V (S,N) saturates (S,N). We say X ⊆ V (S,N) is
local (with respect to the strip system) if either X ⊆ Nv for some v ∈ V (J), or X ⊆ Suv for some
edge uv ∈ E(J).

8.4 Let G be Berge, and let J be a 3-connected graph. Let (S,N) be a J-strip system in G, nonde-
generate if J = K4. Let y ∈ V (G) \ V (S,N), and let X be the set of neighbours of y. If there is a
choice of rungs forming a line graph that is saturated by X, then either:

• X saturates the strip system, or

• there is a J-enlargement with a nondegenerate appearance in G, or

• J = K4 and there is an overshadowed appearance of J in G.
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Proof. We define the fork number of a choice of rungs to be the number of branch-vertices of H
incident in H with ≥ 2 edges in X ∩ E(H), where L(H) is the line graph formed by this choice of
rungs. Let us say that a choice of rungs Rij forming a line graph L(H) is saturated if X saturates
L(H), and in this case its fork number is |V (J)|. If every choice of rungs is saturated, then X
saturates the strip system as required, so we may therefore assume that there is some choice of rungs
that is not saturated. Hence there are two choices of rungs Rij (ij ∈ E(J)) and R′

ij (ij ∈ E(J)), so
that the first is saturated and the second is not, differing only on one edge of J . Let the line graphs
made by Rij and R′

ij be L(H) and L(H ′) respectively.
Let us apply 5.7 to H ′ and X ∩ E(H ′). Then 5.7.1 is false; suppose that 5.7.6 holds. Then

G|(V (L(H ′)) ∪ {y}) = L(H ′′) say, and L(H ′′) is an appearance in G of a J -enlargement. We may
assume that L(H ′′) is degenerate, for otherwise the theorem holds. Hence J = K4 and L(H ′) is
degenerate. Since the strip system is nondegenerate, the result follows from 8.3. So we may assume
that one of 5.7.2-5 holds. Hence the choice of rungs R′

ij (ij ∈ E(J)) has fork number is ≤ 2. Since
the two choices of rungs Rij (ij ∈ E(J)) and R′

ij (ij ∈ E(J)) differ only on one edge of J , their fork
numbers differ by at most 2; and so |V (J)| = 4, and J = K4.

Let V (J) = {1, 2, 3, 4}, and Rij 6= R′

ij only for the edge 1-2. Let the ends of each Rij be rij and
rji, where {rij : j ∈ {1, . . . , 4} \ {i}} is a triangle Ti for each i. Similarly each R′

ij is between r′ij
and r′ji, where for each i, {r′ij : j ∈ {1, . . . , 4} \ {i}} is a triangle T ′

i . Since X saturates L(H), it has
at least two members in each of T1, . . . , T4; and since X does not saturate L(H ′), there is some T ′

i

containing at most one member of X. Since T3 = T ′

3 and T4 = T ′

4, we may assume that |X ∩ T1| = 2
and |X ∩ T ′

1| = 1; and so r1,2 ∈ X, r′1,2 6∈ X, and exactly one of r1,3, r1,4 ∈ X, say r1,3 ∈ X and
r1,4 6∈ X.

Also, at least two vertices of T3 and T4 are in X, so there are at least two branch-vertices of H ′

incident in H ′ with more than one edge in X. By 5.7 applied to H ′, we deduce that 5.7.5 holds, and
so there is an edge ij of J such that R′

ij is even and

(X ∩ V (L(H ′))) \ V (R′

ij) = (T ′

i ∪ T ′

j) \ V (R′

ij).

In particular, T ′

i and T ′

j both contain at least two vertices in X, and so i, j ≥ 2. Since r1,3 ∈ X it
follows that one of i, j = 3, say j = 3, and r1,3 ∈ T3; so R1,3 has length 0. Now there are two cases,
i = 2 and i = 4. Suppose first that i = 2. Then

(X ∩ V (L(H ′))) \ V (R2,3) = {r1,3, r3,4, r2,4, r
′

2,1},

and since at least two vertices of T4 are in X it follows that R2,4, R3,4 both have length 0, a contra-
diction since R′

ij = R2,3 is even. So i = 4, and hence R3,4 is even and

(X ∩ V (L(H ′))) \ V (R3,4) = {r3,1, r4,1, r3,2, r4,2}.

Since the path r3,2-R2,3-r2,3-r2,4-R2,4-r4,2 can be completed to a hole via r4,2-r4,3-R3,4-r3,4-r3,2, it
follows that the first path is even, and so exactly one of R2,3, R2,4 is odd; and since the same path
can be completed to a hole via r4,2-r4,1-R1,4-r1,4-r1,3-r3,2 it follows that R1,4 is odd. Since one of
R2,3, R2,4 is odd, they do not both have length 0, and hence at most one of r2,3, r2,4 ∈ X. Since X
saturates L(H), it follows that exactly one of r2,3, r2,4 ∈ X (and hence one of R2,3, R2,4 has length
0), and also that r2,1 ∈ X. Since no vertex of R′

1,2 is in X, this restores the symmetry between T ′

1

and T ′

2.
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Suppose that R2,3 has length 0. Then R2,4 and R1,2 are odd, and in particular r2,1 6= r1,2. If r2,1

has no neighbour in R′

1,2, then y-r2,1-r2,4-r
′

2,1-R
′

1,2-r
′

1,2-r1,4-R1,4-r4,1-y is an odd hole, a contradiction.
So r2,1 has a neighbour in R′

1,2; but then y can be linked onto the triangle T ′

1 via R′

1,2 and R1,4,
contrary to 2.4. This proves that R2,3 has length ≥ 1. Hence R2,3 has odd length and R2,4 has length
0, and consequently R1,2, R3,4 have even length and R1,4 is odd. If R3,4 has positive length then L(H)
is overshadowed (because of the vertex y), and so the theorem holds. We may therefore assume that
R3,4 has length 0. If r2,1 6= r1,2 and r2,1 has no neighbour in R′

1,2, then y-r2,1-r2,4-r
′

2,1-R
′

1,2-r
′

1,2-r1,3-y
is an odd hole, a contradiction; while if r2,1 6= r1,2 and r2,1 has a neighbour in R′

1,2, then then y can
be linked onto the triangle T ′

1 via R′

1,2 and R1,4, contrary to 2.4. So r2,1 = r1,2. But then L(H) is
degenerate. Since the strip system is nondegenerate, it follows from 8.3 that there is an overshadowed
appearance of K4 in G. This proves 8.4.

A J -strip system (S,N) in G is maximal if there is no J -strip system (S ′, N ′) in G such that
V (S,N) ⊂ V (S ′, N ′), and S′

uv∩V (S,N) = Suv for every uv ∈ E(J), and Nv ⊆ N ′

v for every v ∈ V (J).
We need to analyze maximal strip systems. For an edge uv ∈ E(J), we call the set Suv a strip of the
strip system.

8.5 Let G be Berge, let J be a 3-connected graph, and let (S,N) be a maximal J-strip system in
G. Assume that there is no J-enlargement with a nondegenerate appearance in G. Assume moreover
that if J = K4 then (S,N) is nondegenerate and there is no overshadowed appearance of J in G. Let
F ⊆ V (G) \ V (S,N) be connected, so that no member of F is major with respect to (S,N). Then
the set of attachments of F in V (S,N) is local.

Proof. Let X be the set of attachments of F in V (S,N), and suppose for a contradiction that X
is not local. We may assume that F is minimal (connected) with this property.

(1) For every choice of rungs, forming L(H) say:

• for each y ∈ F , the set of neighbours of y does not saturate L(H), and

• if J = K4 then L(H) is not degenerate.

For no y ∈ F is major with respect to the strip system, and no J -enlargement has a nondegenerate
appearance in G, and if J = K4 then there is no overshadowed appearance of J in G, so the first
claim follows from 8.4. For the second claim, assume J = K4; then by hypothesis, the strip system
is not degenerate, and the claim follows from 8.3. This proves (1).

(2) There is no v ∈ V (J) such that X ⊆
⋃

(Suv : uv ∈ E(J)).

For assume that v is such a vertex. Consequently, for every vertex w ∈ V (J) except at most
one, only one strip meets both Nw and X. Since X is not local, there exists x ∈ X ∩ Suv \ Nv for
some edge uv of J . Since X 6⊆ Suv, there exists x′ ∈ X ∩Su′v for some edge u′v of J with u′ 6= u. For
w ∈ V (J), x belongs to Nw only if w = u, and x′ belongs to Nw only if w ∈ {v, u′}; and since x, x′

do not belong to the same strip it follows that {x, x′} is not local with respect to the strip system.
Make a choice of rungs Rij ij ∈ E(J) such that x ∈ V (Ruv) and x′ ∈ V (Ru′v), forming L(H). Then
{x, x′} is not local with respect to L(H), so by (1) we can apply 5.8. Suppose that 5.8.1 holds.
Then there is an appearance L(H ′) in G of some J -enlargement J ′, with L(H) an induced subgraph
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of L(H ′). Moreover, if J ′ = K3,3 then J = K4, and so L(H) is nondegenerate and therefore so is
L(H ′). Since J ′ 6= K4 it follows that L(H ′) is nondegenerate, contrary to hypothesis. So 5.8.1 does
not hold, and therefore 5.8.2 holds. Since for every vertex w ∈ V (J) except at most one, only one
strip meets both Nw and X, it follows that 5.8.2.a holds, and there is a branch D of H with an end
d such that δH(d) \ E(D) = (X ∩ E(H)) \ E(D). Since x and x′ are disjoint edges in X ∩ E(H),
they are not both incident with d, and so one of them is in E(D \ d). The branch containing x ′ does
not meet x, so D is the branch between u and v, and d = v. Hence x′ is incident with v in H, and
δH(v) ⊆ X ∪ E(D). Consequently, for all neighbours w 6= u of v in J , X contains the vertex of Rvw

that belongs to Nv, and contains no other vertex of Rvw. This restores the symmetry between u′

and the other neighbours of v different from u; and since it holds for all choices of the rungs Rvw, we
deduce that X \Suv = Nv \Suv. The minimality of F implies that there is a path P with V (P ) = F ,
with ends p1, p2 such that p1 is complete to Nv \ Nvu, and no other vertex of P has any neighbours
in Nv \ Nvu, and p2 is adjacent to x, and no other vertex of P has any neighbours in Suv \ Nv. But
then we can add p1 to Nv and F to Suv, contradicting the maximality of (S,N). This proves (2).

Let K = {uv ∈ E(J) : X ∩ Suv 6= ∅}.

(3) There are two disjoint edges in K.

For make a choice of rungs Ruv (uv ∈ E(J)) such that X ∩ V (Ruv) 6= ∅ for each uv ∈ K, forming
L(H). If there are no two disjoint edges in K, then by (1) and 5.8, it follows that either X∩V (L(H))
is local (with respect to L(H)) or 5.8.2.a holds, and in either case there is a branch D of H with an
end d such that every edge of X ∩E(H) either is in E(D) or is incident with d. In particular, every
branch containing an edge of X is incident with d, and so d meets all edges of J in K, contrary to
(2). This proves (3).

From (3) it follows that there exists a 2-element subset of X that is not local, and so from the
minimality of F it follows that F is the vertex set of a path, say f1, . . . , fn. Let us say a choice
Ruv (uv ∈ E(J)) of rungs is broad if there are two disjoint edges ij and hk of J such that X meets
both Rij and Rhk. From (3) there is a broad choice. We denote the ends of Ruv by ruv and rvu,
where ruv ∈ Nu and rvu ∈ Nv.

(4) For every broad choice of rungs Ruv (uv ∈ E(J)), there is a unique pair (i, j) of adjacent
vertices of J such that:

• for every w ∈ V (J) different from j and adjacent to i in J , riwf1 is the unique edge of G
between V (Riw) and F ,

• for every w ∈ V (J) different from i and adjacent to j in J , rjwfn is the unique edge of G
between V (Rjw) and F ,

• for every edge uv of J disjoint from ij, there are no edges of G between V (Ruv) and F .

For by (1) we can apply 5.8, and since the choice of rungs is broad, the minimality of F implies
that one of 5.8.2.b, 5.8.2.c, 5.8.2.d holds. Hence there is an edge ij as in (4). Suppose there is another,
say i′j′. Since i′j′ meets all edges of J that share exactly one end with ij, and J is 3-connected, it
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follows that J = K4 and the two edges ij, i′j′ are disjoint. Moreover, the unique vertex of Rii′ in X
is both rii′ and ri′i, so Rii′ has length 0. Similarly Rij′ , Rji′ , Rjj′ all have length 0, and so L(H) is
degenerate, contrary to (1). This proves (4).

(5) Every choice of rungs is broad.

For from (3), there is a broad choice, and from (4) in any broad choice Ruv (uv ∈ E(J)) there
are four different edges a1b1, . . . , a4b4 of J , such that a1b1 is disjoint from a2, and a3b3 is disjoint
from a4b4, and X meets Raibi

for 1 ≤ i ≤ 4. Consequently, if we take another choice of rungs,
differing from this one on only one edge, then it too is broad. It follows that every choice is broad.
This proves (5).

For a given choice of rungs, let us call the edge ij as in (4) the traversal for the choice.

(6) There are two choices of rungs with different traversals.

Take a choice of rungs, and let ij be its traversal; and suppose that all other choices of rungs
have the same traversal. Let A1 = Ni \Sij, and A2 = Nj \Sij. From (4),(5), and the uniqueness of ij
it follows that X ∩ (V (S,N)\Sij) = A1 ∪A2. Hence n ≥ 2, for if n = 1 then we can add f1 to Ni, Nj

and Sij, contrary to the maximality of the strip system. Choose x1 ∈ A1 and x2 ∈ A2 in disjoint
strips. From (4), x1 is adjacent to exactly one of f1, fn, say f1. For any other vertex x3 ∈ A2, let
Ruv (uv ∈ E(J)) be a choice of rungs forming L(H) say, such that x1, x3 ∈ V (H). From (4) and (5)
it follows that fn is adjacent to x3; and so fn is complete to A2, and similarly f1 is complete to A1.
From the minimality of F , there are no other edges between F and A1 ∪A2; but then we can add f1

to Ni, fn to Nj, and F to Sij, contrary to the maximality of the strip system. This proves (6).

Let us say a choice Ruv (uv ∈ E(J)) is optimal if Ruv has a vertex in X for all edges uv in K.
For any choice of rungs, there is an optimal choice with the same traversal (just replace rungs that
miss X by rungs that meet X wherever possible); so (6) implies that there are two optimal choices
of rungs with different traversals. Now for any optimal choice of rungs, if hi is its traversal, then
by (4) and the optimality of the choice, it follows that K consists precisely of the edges of J with
exactly one end in common with hi, together possibly with hi itself. In particular hi meets all edges
in K. We may assume that some other edge jk is the traversal for some other optimal choice; and
hence (since J is 3-connected) it follows that J = K4 and jk is disjoint from hi, and neither edge
is in K. Hence V (J) = {h, i, j, k}. Now since the strip system is not degenerate, there is one of the
four edges hj, hk, ij, ik whose strip contains a rung of nonzero length; some hj-rung R has length
> 0 say. From (4) it follows that exactly one vertex of R is in X, one of its ends; say the end in
Nh. Let Ruv (uv ∈ E(J)) be any choice of rungs such that Rhj = R. Since the end of R in Nj

does not belong to X, it follows from (4) that for each of Rhk, Rij , Rik, its unique vertex in X is
its end in Nh ∪ Ni. Since the choice of these rungs was arbitrary, it follows that X ∩ Shk = Nhk,
X ∩ Sij = Nij, and X ∩ Sik = Nik. If also X ∩ Shj = Nhj then hi is the traversal for every choice of
rungs, contrary to (6), so X ∩ Shj 6= Nhj . It follows that every ij-rung has length 0; for if one, R′

say, has length > 0, then its unique vertex in X is its end in Ni, and by exchanging h and i it follows
that X ∩ Shj = Nhj, a contradiction. Similarly all hk and ik-rungs have length 0, and therefore all
hj-rungs have even length, since G is Berge. From (1), we may assume that f1 is adjacent to rhj
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and complete to Shk, and fn is complete to Sij ∪ Sik, and there are no other edges between F and
Shk ∪ Sij ∪ Sik ∪ {rhj}. Let R′ be an hj-rung such that its vertex in Nh (r′hj, say) is not its unique
vertex in X. Consequently, its other end (r ′jh) is its unique vertex in X. By the same argument
with hi and jk exchanged, it follows that one of f1, fn is complete to Sij ∪ {r′jh} and the other to
Shk ∪ Sik; and hence n = 1. But then the path f1-rhj-Rhj-rjh-rji-f1 is an odd hole, a contradiction.
This proves 8.5.

We are now ready to prove 5.4, which we restate:

8.6 Let G be Berge. Let J be a 3-connected graph, such that there is no J-enlargement with a
nondegenerate appearance in G. Let L(H0) be an appearance of J in G, such that if L(H0) is
degenerate, then H0 = J = K3,3 and no J-enlargement appears in G. Then either G = L(H0), or
H0 6= K3,3 and G admits a proper 2-join, or G admits a balanced skew partition.

Proof. By 7.5, we may assume that if J = K4 or K3,3 then no appearance of J in G is overshad-
owed. Regard L(H0) as a J -strip system in the natural way, and enlarge it to a maximal J -strip
system (S,N). If L(H0) is nondegenerate then so is the strip system. Let Y be the set of vertices in
V (G) \ V (S,N) that are major with respect to the strip system, and let Z = V (G) \ (V (S,N) ∪ Y ).
By 8.5, for each component of Z, its set of attachments in V (S,N) is local.

(1) If Y 6= ∅ then G admits a balanced skew partition.

For suppose not. Let Y ′ be an anticomponent of Y , and let X be the set of all Y ′-complete vertices
in V (G). For every choice of rungs, forming L(H) say, every member of Y ′ is major with respect to
L(H). We claim that X saturates L(H); for suppose not. By 6.1, one of the five outcomes of 6.1
holds. The first we have already assumed is false. Thus 6.1 implies that L(H) is degenerate, and
consequently 8.3 implies that L(H0) is degenerate. By hypothesis, J = K3,3, and no J -enlargement
appears in G. By 6.1, there is an overshadowed appearance of J in G, contrary to 7.5 applied in
G. This proves that X saturates L(H). Since this holds for every choice of rungs, it follows that
X saturates the strip system. Let b1b2 be an edge of J , chosen if possible such that Sb1b2 6⊆ X.
Now the sets (Nb1v: b1v ∈ E(J)) form a partition of Nb1 into say m sets, and at least m − 1 of
them are subsets of X. Choose m − 1 of them that are subsets of X, not using Nb1b2 if possible
(that is, if the other m − 1 sets are all subsets of X), and let their union be X1. Define X2 ⊆ Nb2

similarly. We note that Sb1b2 6⊆ X1 ∪ X2; for if some vertex of Sb1b2 is not in X then this is clear,
while if Sb1b2 ⊆ X then V (S,N) ⊆ X from our choice of b1b2, and then from the way we chose X1

it follows that X1 ∩ Sb1b2 = ∅, and similarly X2 ∩ Sb1b2 = ∅, and again our claim holds. This proves
that Sb1b2 6⊆ X1 ∪ X2. Define X3 to be the set of vertices in X ∩ V (S,N) that are not in X1 ∪ X2,
and let X0 be the set of vertices of X that are not in V (S,N). So X0, X1, X2, X3 are four disjoint
subsets of X, with union X. Note that Y \ Y ′ ⊆ X0. Let B be the union of all components of
G \ (Y ′ ∪ X0 ∪ X1 ∪ X2) that have nonempty intersection with V (S,N) \ Sb1b2 , and let A be the
union of all the other components. We claim that B is nonempty; for there is an edge c1c2 of J
disjoint from b1b2, and no vertex of Sc1c2 is in Nb1 ∪ Nb2 ∪ Sb1b2 , and therefore no vertex of Sc1c2 is
in Y ′ ∪X0 ∪X1 ∪X2. Suppose that A is also nonempty. Then (A∪B, Y ′ ∪X0 ∪X1 ∪X2) is a skew
partition of G. By 4.2 it is not loose; and so X3 is empty (since any vertex of X3 is in A ∪ B and
yet is complete to Y ′). In particular, X ∩ V (L(H0)) ⊆ Nb1 ∪ Nb2 . Since X ∩ V (L(H0)) saturates
L(H0), it follows that for every vertex w of J different from b1, b2, w has at most one neighbour in
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J different from b1, b2, and w is adjacent in J to both b1 and b2, and all wb1 and wb2-rungs have
length 0. Since J is 3-connected it follows that J = K4, and L(H0) is degenerate, a contradiction.
Thus A is empty. Now we already saw that Sb1b2 6⊆ X1 ∪ X2. Since A is empty, it follows that
there is a path of G between Sb1b2 and V (S,N) \ Sb1b2 , disjoint from Y ′ ∪ X0 ∪ X1 ∪ X2. Choose
such a path, minimal. From the choice of X1 and X2 this path has a nonempty interior; from its
minimality, none of its internal vertices belong to V (S,N); since all major vertices are in Y ′ ∪ X0,
its interior contains no major vertices; by 8.5, the set of attachments of its interior is local; yet its
ends are both attachments of its interior, so there exist u ∈ Sb1b2 and v ∈ V (S,N) \ Sb1b2 , such that
u, v 6∈ X1 ∪ X2, and yet {u, v} is local. Now u, v do not lie in the same strip, and therefore there is
some Nw containing them both; and the only w ∈ V (J) with u ∈ Nw are b1, b2, so we may assume
that u, v ∈ Nb1 . Since they are not in X1, and not in the same strip, this is impossible. This proves
(1).

We may therefore assume that Y is empty.

(2) If there is a component F of Z such that for some v ∈ V (J), all attachments of F in V (S,N)
belong to Nv, then G admits a balanced skew partition.

For let F ′ = V (G) \ (F ∪Nv); then F ′ 6= ∅, and every path in G from F to F ′ meets Nv. Since Nv is
not anticonnected, it follows that (F ∪ F ′, Nv) is a skew partition. By 4.2 we may assume it is not
loose, and we will prove that it is balanced. Let the neighbours of v in J be u1, . . . , uk; then every
anticomponent of Nv is a subset of one of Nvu1

, . . . , Nvuk
. Choose a neighbour w of u1 in J different

from v, u2, choose n1 ∈ Nu1w, and choose n2 ∈ Nvu2
. Then n1, n2 belong to strips Su1w, Svu2

, where
u1w, vu2 are disjoint edges of J ; and so n1, n2 are not adjacent in G. Let K = {n1} ∪ Svu1

\ Nvu1
.

Then K is connected (since every vertex of Svu1
is in a vu1-rung and n1 is complete to Nu1v), every

vertex in Nvu1
has a neighbour in K (for the same reason), and n2 is not in K and has no neighbour

in K. (For the last claim, n2 is not in K since it is in only one strip; and it has no neighbour in
Svu1

\Nvu1
from the definition of a strip system; and it is not adjacent to n1 as we already saw.) By

2.6, (K,Nvu1
) is balanced, and therefore by 2.7.1, so is (F,Nvu1

). By 4.5, G admits a balanced skew
partition. This proves (2).

We assume therefore that there are no such components F of Z. Consequently, for every com-
ponent F of Z, there is an edge b1b2 of J such that all the attachments of F in V (S,N) are in
Sb1b2 . If Z is empty and for all b1b2 there is only one b1b2-rung, then G = L(H0) and the theorem
holds. So we may assume that there is an edge b1b2 of J such that either there is more than one
b1b2-rung in Sb1b2 or there is a component F of Z with all its attachments in Sb1b2 . Let A be the
union of Sb1b2 and any components of Z that have an attachment in Sb1b2 (and which therefore have
attachments only in Sb1b2), and let B = V (G) \ A. Let A1 = Nb1b2 , A2 = Nb2b1 , B1 = Nb1 \ Nb1b2 ,
and B2 = Nb2 \ Nb2b1 . Then A1, A2 ⊆ A, and B1, B2 are disjoint subsets of B, and for i = 1, 2 Ai is
complete to Bi, and there are no other edges between A and B. Also |B1| ≥ 2, and we chose b1b2

such that if A1, A2 both have only one vertex then A is not the vertex set of a path joining them. If
A1 ∩ A2 = ∅ then H0 6= K3,3 and G admits a proper 2-join, and the theorem holds. Thus we may
assume that there exists a ∈ A1 ∩ A2 6= ∅. Then a is complete to B1 ∪ B2, and since |A| ≥ 2, it
follows that ((B \ (B1 ∪ B2)) ∪ (A \ {a}), B1 ∪ B2 ∪ {a}) is a skew partition of G. Since {a} is an
anticomponent of B1 ∪ B2 ∪ {a}, 4.1 implies that G admits a balanced skew partition. This proves
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5.4.

9 Double split graphs

In this section we handle degenerate appearances of K4. There is another way to view them, not as
line graphs but as sets of paths and antipaths with certain properties, as we shall see.

Let P1, P2 be paths in a graph G, and let Q1, Q2 be antipaths. Suppose that P1, P2, Q1, Q2 are
pairwise disjoint, and we can label the ends of each Pi as ai, bi, and label the ends of each Qj as
xj, yj , such that:

• P1, P2, Q1, Q2 all have length ≥ 1

• there are no edges between P1 and P2, and Q1 is complete to Q2

• for (i, j) = (1, 1), (1, 2) or (2, 1), the only edges between V (Pi) and {xj , yj} are aixj and biyj,
and the only edges between V (P2) and {x2, y2} are a2y2 and b2x2,

• for (i, j) = (1, 1), (1, 2) or (2, 1), the only nonedges between V (Qj) and {ai, bi} are aiyj and
bixj , and the only nonedges between V (Q2) and {a2, b2} are a2x2 and b2y2.

In these circumstances we call the quadruple (P1, P2, Q1, Q2) a knot in G. Note that if (P1, P2, Q1, Q2)
is a knot then so is (P2, P1, Q1, Q2), with a suitable relabelling of the ends of the paths and antipaths.

If L(H) is a degenerate appearance of K4 in G, it can be viewed as a knot. For, in our usual
notation, let R1,3, R1,4, R2,3, R2,4 have length 0; let P1 = R1,2, P2 = R3,4, let Q1 be the antipath
r1,3-r2,4, and Q2 the antipath r1,4-r2,3. It is easy to check that this is a knot. In fact, this and its
complement are the only knots in Berge graphs, as the next theorem shows.

9.1 Let (P1, P2, Q1, Q2) be a knot in a Berge graph G. Then all four of P1, P2, Q1, Q2 have odd
length; and either both P1, P2 have length 1, or both Q1, Q2 have length 1.

Proof. Define ai, bi, xi, yi (i = 1, 2) as usual. Certainly P1 is odd since x1-a1-P1-b1-y2-x1 is a hole,
and similarly the other three are odd. Suppose one of P1, P2 has length > 1 and one of Q1, Q2 has
length > 1. By exchanging P1, P2 or Q1, Q2 we may therefore assume that P1, Q1 both have length
> 1. Let Y be the interior of Q1. Then a1, b1, a2, b2 are all Y -complete, from the last condition in
the definition of a knot, and since a2 has no neighbours in the interior of P1 it follows from 2.2 that
there is a Y -complete vertex (v say) in the interior of P1. But x1, y1 are not Y -complete, and they
are adjacent, so a1-x1-y1-b1 is an odd path between Y -complete vertices and v has no neighbour in
its interior, contrary to 2.2. This proves 9.1.

Nevertheless, it turns out to be advantageous to make only limited use of 9.1; it is better to
preserve the symmetry between the paths and the antipaths.

Let (P1, P2, Q1, Q2) be a knot in a Berge graph G; we define K to be the subgraph of G induced
on V (P1)∪ V (P2)∪ V (Q1)∪ V (Q2). (For brevity we say that the knot induces K.) We say a subset
X ⊆ V (K) is local (with respect to the knot) if X is disjoint from one of V (P1), V (P2), and X
includes neither of V (Q1), V (Q2), and X ∩ (V (P1)∪V (P2)) is complete to X ∩ (V (Q1)∪V (Q2)). We
say X resolves the knot if V (K) \X is local with respect to the knot (Q1, Q2, P1, P2) in G; that is, if
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X includes one of V (Q1), V (Q2), and X meets both P1 and P2, and X contains at least one end of
every edge between V (P1)∪V (P2) and V (Q1)∪V (Q2). Conveniently, these definitions almost agree
with what we did for line graphs, because of the following.

9.2 Let (P1, P2, Q1, Q2) be a knot in a graph G, inducing K, where Q1, Q2 both have length 1, and
so K = L(H) is an appearance of K4. Let X ⊆ V (K). Then:

• X is local with respect to the knot if and only if it is local with respect to L(H)

• X resolves the knot if and only if X saturates L(H) and X meets both V (P1) and V (P2).

The proof is obvious and we omit it. This allows us to unify some portions of 5.8 and 6.1, as follows.
(The expression “up to symmetry” means here “possibly after exchanging P1 and P2 and exchanging
Q1 and Q2, and renaming the ends of P1, P2, Q1, Q2 accordingly.”)

9.3 Let (P1, P2, Q1, Q2) be a knot in a Berge graph G, inducing K. Assume that there is no ap-
pearance in G or in G of any K4-enlargement, and there is no overshadowed appearance of K4 in G
or in G. Let F be a connected subset of V (G) \ V (K), such that its set of attachments in K is not
local. Then either:

1. there is a vertex in F such that its neighbour set in K resolves the knot, or

2. (up to symmetry) there is a path R in F with ends r1, r2 such that r1, a1 have the same neigh-
bours in V (P2) ∪ V (Q1) ∪ V (Q2), and there are no edges between R \ r1 and V (P2) ∪ V (Q1) ∪
V (Q2), and r2 has a neighbour in P1 \a1, and there are no edges between R \ r2 and P1 \a1, or

3. (up to symmetry) there is an odd path R in F with ends r1, r2 such that r1, a1 have the same
neighbours in V (P2)∪V (Q1)∪V (Q2), and r2, b1 have the same neighbours in V (P2)∪V (Q1)∪
V (Q2), and there are no edges between V (R∗) and V (P2) ∪ V (Q1) ∪ V (Q2), and no edges
between R and P1 except possibly r1a1 and r2b1, or

4. there is a vertex f ∈ F such that (up to symmetry) f, x1 have the same neighbours in V (P1)∪
V (P2) ∪ V (Q2) and f is not adjacent to y1.

Proof. Define ai, bi, xi, yi (i = 1, 2) as usual. By 9.1 there are two cases, depending whether Q1 and
Q2 have length 1 or P1, P2 have length 1.

(1) If Q1, Q2 have length 1 then the theorem holds.

For assume Q1, Q2 have length 1. Then K is a degenerate appearance of K4 in G, say K = L(H).
Suppose that the neighbour set of some f ∈ F saturates L(H). If f has a neighbour in both V (P1)
and V (P2) then statement 1 of the theorem holds, so we assume it has no neighbour in V (P1). But
then f is adjacent to all four of x1, x2, y1, y2, since it has two neighbours in every triangle of K,
and then f -x1-a1-P1-b1-y1-f is an odd hole, a contradiction. So we assume there is no such f , and
hence we may apply 5.8. If 5.8.1 holds then there is an appearance in G of some K4-enlargement,
a contradiction. So 5.8.2 holds. In the notation of 5.8.2, the edge b1b2 of J is of one of two types;
either Nb1 meets Nb2 or it does not. In the first case, we may assume from the symmetry that those
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two sets are {x1, x2, a1} and {x1, y2, a2}, and there is a path R of G with V (R) ⊆ F and with ends
r1 and r2, such that r1 is adjacent to a1, x2, and r2 is adjacent to a2, y2, and there are no other edges
between V (P ) and K \ x1. If R has length 0 then statement 4 of the theorem holds, while if R has
length > 0 then it is even and there is an overshadowed appearance of K4 in G, a contradiction.
In the second case, when the sets called N(b1), N(b2) in the notation of 5.8.2 are disjoint, we may
assume that these sets are {x1, x2, a1} and {y1, y2, b1} respectively, and one of 5.8.2(a), 5.8.2(b),
5.8.2(c) holds. In the first two cases statements 2,3 of the theorem hold, respectively, and the last
case is impossible since P1 is odd. This proves (1).

Henceforth we may therefore assume that one of Q1, Q2 has length > 1, and therefore by 9.1,
both P1 and P2 have length 1. Hence K = L(H), where L(H) is a degenerate appearance of K4 in G.

(2) If there exists f ∈ F such that f is not major with respect to L(H) in G, then the theorem
holds.

For let f ∈ F have this property. If the set of neighbours of f in K resolves the knot (P1, P2, Q1, Q2),
then statement 1 of the theorem holds, so we assume not. Therefore, in G, the set of neighbours of
f in K is not local with respect to the knot (Q1, Q2, P1, P2). But this set does not saturate L(H); so
we can apply 5.8 (or, indeed, 5.7) in G, and deduce, as before, that either there is a K4-enlargement
that appears in G (a contradiction), or (up to symmetry) f, a1 have the same neighbours in K \ a1

(but then statement 2 of the theorem holds), or (up to symmetry) f, x1 have the same neighbours
in V (P1) ∪ V (P2) ∪ V (Q2) (but then either statement 1 or statement 4 of the theorem holds). This
proves (2).

We may therefore assume that every f ∈ F is major with respect to L(H) in G. Let X be the
set of vertices of K which, in G, have no neighbours in F . By hypothesis, V (K)\X is not local with
respect to the knot (P1, P2, Q1, Q2) in G, and hence X does not resolve the knot (Q1, Q2, P1, P2) in
G. If X does not saturate L(H) in G, then by (2) we may apply 6.1. Since Q1 has length > 1 it
follows that the last outcome of 6.1 holds, and hence statement 3 of the theorem holds. We may
therefore assume that X saturates L(H) in G. By 9.2, X is disjoint from one of V (Q1), V (Q2), say
X ∩ V (Q1) = ∅. Hence a1, a2, b1, b2 ∈ X. Since a1-y1-Q1-x1-b1 is an odd antipath in G, and its
internal vertices all have neighbours in F , and its ends do not, it follows from 2.2 applied in G that
every vertex in X has a non-neighbour in V (Q1); and hence no vertex of Q2 belongs to X. This
restores the symmetry between Q1, Q2. Now one of Q1, Q2 has length > 1, say Q1 without loss of
generality. Hence, in G, the path a1-y1-Q1-x1-b1 is odd and has length ≥ 5; its ends are complete to
F , and its internal vertices are not. By 2.1, F contains a leap; so there exist nonadjacent f1, f2 ∈ F
such that Q1 is the interior of a path R between them. (All this is in G - we will tell the reader
when we switch back to G.) Now f1, f2 have no common neighbour in Q2 (because R could be
completed to an odd hole through any such common neighbour), so by 2.1, f1, f2 is also a leap for
the path a1-y2-Q2-x2-b1 (this path might have length 3, but still we get a leap by 2.1.3, since {f1, f2}
cannot include the interior of any longer antipath between x2 and y2). Hence from the symmetry
we may assume that f1 is adjacent to y1, y2, and f2 to x1, x2, and there are no other edges between
{f1, f2} and V (Q1) ∪ V (Q2). Therefore, back in G, we see that a1, f1 have the same neighbours
in V (P2) ∪ V (Q1) ∪ V (Q2), and so do b1, f2, and therefore statement 3 of the theorem holds. This
proves 9.3.
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9.3 suggests that we should attempt to combine paths into strips, as in the section on “Generalized
line graphs”, and combine antipaths into “antistrips”. Let us make that precise.

Let A,B,C be disjoint subsets of V (G). We call S = (A,C,B) a strip if A,B are nonempty,
and every vertex of A ∪ B ∪ C belongs to a path between A and B with only its first vertex in A,
only its last vertex in B, and interior in C. Such a path is called a rung of the strip S, or an S-rung.
When S = (A,C,B) is a strip, V (S) means A ∪ B ∪ C. The reverse of a strip (A,C,B) is the strip
(B,C,A). An antistrip is a triple that is a strip in G, and the corresponding antipaths are called
antirungs. If P is a rung with ends a ∈ A and b ∈ B, we speak of the “rung a-P -b” for brevity; the
reader can deduce which end is in which set from the names of the ends, because we shall always use
a, a′, a1 etc. for ends in a set called something like A, and so on.

Let S = (A,C,B) be a strip and T = (X,Z, Y ) an antistrip, with V (S)∩ V (T ) = ∅. We say S, T
are parallel if:

• A is complete to X ∪ Z, and B is complete to Y ∪ Z, and

• X is anticomplete to B ∪ C, and Y is anticomplete to A ∪ C.

We say S, T are co-parallel if S, T ′ are parallel, where T ′ is the reverse of T .
Now let S1, S2 be strips and T an antistrip, where S1, S2, T are pairwise disjoint. We say that

S1, S2 agree on T if either S1, T are parallel and S2, T are parallel, or both pairs are co-parallel; and
they disagree if one pair is parallel and the other pair is co-parallel. If S is a strip and T1, T2 are
antistrips, pairwise disjoint, we define whether T1, T2 agree or disagree on S similarly.

Now let S1, S2 be strips, and let T1, T2 be antistrips, all pairwise disjoint. We call the quadruple
(S1, S2, T1, T2) a twist if S1, S2 agree on one of T1, T2 and disagree on the other. (Equivalently, if
T1, T2 agree on one of S1, S2, and disagree on the other.) Note that if (S1, S2, T1, T2) is a twist, then
so is (S′

1, S2, T1, T2), where S ′

1 is the reverse of S1.
A striation in a graph G is a family of strips Si = (Ai, Ci, Bi) (1 ≤ i ≤ m) together with a family

of antistrips Tj = (Xj , Zj , Yj) (1 ≤ j ≤ n), satisfying the following conditions:

• all the strips and antistrips are pairwise disjoint, and all their rungs and antirungs have odd
length

• m,n ≥ 2

• for 1 ≤ i < i′ ≤ m, Si is anticomplete to Si′ , and for 1 ≤ j < j ′ ≤ n, Tj is complete to Tj′

• for 1 ≤ i ≤ m and 1 ≤ j ≤ n, Si and Tj are either parallel or co-parallel

• for 1 ≤ i < i′ ≤ m there exist distinct j, j ′ with 1 ≤ j, j ′ ≤ n such that (Si, Si′ , Tj , Tj′) is a
twist

• for 1 ≤ j < j ′ ≤ n there exist distinct i, i′ with 1 ≤ i, i′ ≤ m such that (Si, Si′ , Tj , Tj′) is a
twist.

(Note that if we replace some (Ai, Ci, Bi) by its reverse, we obtain another striation.) We denote
the striation by L, and the union of the vertex sets of all its strips and antistrips by V (L). By
analogy with what we did for knots, let us say that a subset X ⊆ V (L) is local with respect to L if

• at most one of X ∩ V (S1), . . . , X ∩ V (Sm) is nonempty,
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• for 1 ≤ j ≤ n, every Tj-antirung has a vertex not in X, and

• X ∩ (V (S1) ∪ · · · ∪ V (Sm)) is complete to X ∩ (V (T1) ∪ · · · ∪ V (Tn)).

We say X resolves L if V (L) \ X is local with respect to the striation in G obtained from L by
exchanging the strips and antistrips; that is, if

• there is at most one of T1, . . . , Tn that is not a subset of X,

• for 1 ≤ i ≤ m, every Si-rung meets X, and

• X contains at least one end of every edge between V (S1)∪· · ·∪V (Sm) and V (T1)∪· · ·∪V (Tn).

A striation L in G is maximal if there is no striation L′ in G with V (L) ⊂ V (L′).

9.4 Let G be Berge, such that there is no appearance in G or in G of any K4-enlargement, and
there is no overshadowed appearance of K4 in G or in G. Let L be a maximal striation in G. Let
f ∈ V (G)\V (L), and let X be the set of neighbours of f in V (L). Then either X is local with respect
to L, or X resolves L.

Proof. Let L have strips Si = (Ai, Ci, Bi) (1 ≤ i ≤ m) and antistrips Tj = (Xj , Zj , Yj) (1 ≤ j ≤ n).

(1) Let 1 ≤ i ≤ m, and 1 ≤ j ≤ n; let ai-Pi-bi be an Si-rung, and xj-Qj-yj a Tj-antirung. Then
either X ∩ V (Pi) 6= ∅, or V (Qj) 6⊆ X.

For suppose that X includes V (Q1) and is disjoint from V (P1) say. By reversing S2 we may as-
sume that S1 and S2 agree on T1; and we may assume they disagree on T2. Let a2-P2-b2 be any
S2-rung, and x2-Q2-y2 any T2-antirung. Then (P1, P2, Q1, Q2) is a knot, so by 9.1, we may assume
(taking complements if necessary) that Q1 has length 1. But then f -x1-a1-P1-b1-y1-f is an odd hole,
a contradiction. This proves (1).

From (1), taking complements if necessary, we may assume that for all 1 ≤ j ≤ n, and for all
Tj-antirungs Qj , V (Qj) 6⊆ X.

(2) X meets at most one of V (S1), . . . , V (Sm).

For suppose that X meets both S1 and S2 say. We may assume that (S1, S2, T1, T2) is a twist.
For i = 1, 2 choose an Si-rung Pi such that X ∩ V (Pi) 6= ∅, and for j = 1, 2 choose any Tj-antirung
Qj. By our assumption above, f has nonneighbours in both Q1, Q2. But then (P1, P2, Q1, Q2) is a
knot, and setting F = {f} violates 9.3, a contradiction. This proves (2).

We may assume that X is not local with respect to L, and so we may assume that there is an
S1-rung a1-P1-b1 and a T1-antirung x1-Q1-y1 containing nonadjacent members of X. By reversing
each Tj if necessary, we may assume that S1 is parallel to each Tj. In particular, a1x1 is an edge, and
so is b1y1. Since one of P1, Q1 has length 1 by 9.1, the interior of Q1 is complete to V (P1), we may
assume that x1 ∈ X, and X ∩ V (P1 \ a1) 6= ∅. Let 2 ≤ j ≤ n, and let xj-Qj-yj be any Tj-antirung.
For definiteness we assume j = 2. Now T1, T2 agree on S1, and so there is some Si on which they
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disagree, say S2. Let a2-P2-b2 be any S2-rung. Then (P1, P2, Q1, Q2) is a knot, with union K say,
and X ∩ V (K) is not local with respect to K (since x1 ∈ X, and X ∩ V (P1 \ a1) 6= ∅). By 9.3, it
follows that 9.3.2 holds, and hence f, a1 have the same neighbours in V (Q1) ∪ V (Q2). In particular,
V (Q2) \ {y2} ⊆ X. Since V (Q2) 6⊆ X, it follows that y2 6∈ X; since this holds for all Q2, we deduce
that X ∩ V (T2) = X2 ∪ Z2; and since the same holds for all antistrips of L except T1, we deduce
that X ∩ V (Tj) = Xj ∪Zj for 2 ≤ j ≤ n. Since our only assumption about T1 was that X ∩X1 6= ∅,
and since we have shown that the same is true for all Tj , we can replace T1 by T2 say, and deduce
similarly that X ∩ V (T1) = X1 ∪ Z1. But then we can add f to A1, contrary to the maximality of
the striation. This proves 9.4.

9.5 Let G be Berge, such that there is no appearance in G or in G of any K4-enlargement, and
there is no overshadowed appearance of K4 in G or in G. Let L be a maximal striation in G. Let
F ⊆ V (G) \ V (L) be connected, such that for each f ∈ F , the set of its neighbours in V (L) is local
with respect to L. Then the set of attachments of F in V (L) is local with respect to L.

Proof. Let L have strips Si = (Ai, Ci, Bi) (1 ≤ i ≤ m) and antistrips Tj = (Xj , Zj , Yj) (1 ≤ j ≤ n).
Suppose not, and choose a counterexample F with F minimal. Let X be its set of attachments in
V (L).

(1) X 6⊆ V (T1) ∪ - · · · - ∪ V (Tn).

For suppose it is. Since X is not local, we may assume that X includes V (Q1) for some T1-antirung
x1-Q1-y1. Let 2 ≤ j ≤ n, and let xj-Qj-yj be a Tj-antirung. Then we can choose some Si, Si′ to make
a twist, and if we choose an Si-rung and Si′ -rung and apply 9.3 to the resultant knot, we deduce
(since no vertices of Si and Si′ are in X) that 9.3.3 holds. This has several consequences. First, it
implies that there is an odd path in F with vertices f1, . . . , fk say, which is either parallel or co-
parallel to Q1, and either parallel or co-parallel to Qj; and there are no edges between {f2, . . . , fk−1}
and Q1 ∪ Qj. Hence the set of attachments of {f1, . . . , fk} is not local with respect to L, and so
F = {f1, . . . , fk} from the minimality of F . Second, every vertex of Qj is in X, and since this holds
for all Qj it follows that V (Tj) ⊆ X. By exchanging T1 and Tj it follows that V (T1) ⊆ X. Moreover,
since this holds for all j we deduce that X = V (T1) ∪ · · · ∪ V (Tn). This restores the symmetry
between T1 and T2, . . . , Tn. Third, this shows that there are no edges between {f2, . . . , fk−1} and
V (T1) ∪ · · · ∪ V (Tn). Fourth, for 1 ≤ j ≤ n every vertex in Zj is adjacent to both f1, fk. Since k is
even, this proves that either k = 2 or Z1 ∪ · · · ∪Zn = ∅. Fifth, every vertex in X1 ∪ Y1 · · · ∪Xn ∪ Yn

is adjacent to exactly one of f1, fn; let U be the set of those adjacent to f1, and V those adjacent
to fn. For the moment fix j with 1 ≤ j ≤ n. Every Tj-antirung has one end in U and the other in
V ; let Mj be the union of the vertex sets of all Tj-antirungs xj-Qj-yj such that xj ∈ U , and Nj the
union of all those with xj ∈ V . Since there is no Tj-antirung with both ends in Mj or both ends
in Nj, it follows that Mj ∩ Nj = ∅, and there are no nonedges betwen Mj and Nj except possibly
between Mj ∩ Xj and Nj ∩ Xj , or between Mj ∩ Yj and Nj ∩ Yj . Suppose there is such a nonedge;
and choose Tj-antirungs xj-Qj-yj ,x

′

j-Q
′

j-y
′

j where xj ∈ U is nonadjacent to x′

j ∈ V , say. Now xj, x
′

j

have a common neighbour d1 ∈ A1 ∪B1, and then d1-xj-f1- · · · -fk-x
′

j-d1 is an odd hole. This proves
that Mj is complete to Nj . Now if Mj is nonempty, then (Mj ∩Xj,Mj ∩Zj,Mj ∩Yj) is an antistrip,
and similarly if Nj is nonempty it also induces an antistrip. We call these the offspring of Tj. (If
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one of Mj , Nj is empty, then the other equals V (Tj), and so the only offspring of Tj is Tj itself; and
otherwise it has two.) Also, there is a new strip S0 = ({f1}, {f2, . . . , fk−1}, {fk}). Note that

• for all j with 1 ≤ j ≤ n, S0 is parallel or antiparallel with the offspring of Tj

• for all i with 1 ≤ i ≤ m, there exists j with 1 ≤ j ≤ n such that S0, Si disagree on one of the
offspring of Tj , and there exists j such that S0, Si agree on one of the offspring of Tj. For if
the first were false, say, then each of the Tj ’s has only one offspring, and we could add f1 to
Ai, {f2, . . . , fk−1} to Ci, and fk to Bi, contradicting the maximality of the striation; while if
the second were false we could do the same with f1, fk exchanged.

• if T ′

1, T
′

2 are each offspring of one of T1, . . . , Tn, then there exists i with 0 ≤ i ≤ m such that
T ′

1, T
′

2 agree on Si; and there exists i such that they disagree. For this is clear if they are
offspring of different parents, since their parents were in a twist together; while if they are both
offspring of the same Tj , then they disagree on S0 and agree on all of S1, . . . , Sm.

It follows from these observations that the set of strips S0, . . . , Sm, together with the set of offspring
of T1, . . . , Tn, forms a new striation, contrary to the maximality of L. This proves (1).

(2) X meets exactly one of S1, . . . , Sm.

For by (1) it meets at least one of these sets; suppose it meets two, say S1 and S2. We may
assume that (S1, S2, T1, T2) is a twist. For i = 1, 2 choose an Si-rung ai-Pi-bi such that X meets Pi,
and for j = 1, 2 let xj-Qj-yj be a Qj-antirung. Then (P1, P2, Q1, Q2) is a knot K say, and X ∩V (K)
is not local with respect to K. From the minimality of F , F is minimal such that X ∩ V (K) is
not local with respect to K. It follows from 9.3 that one of 9.3.1, 9.3.4 holds; and in either case
there is a vertex f ∈ F with neighbours in P1 and in P2. Hence the set of neighbours of f in V (L)
is not local with respect to L. But this contradicts a hypothesis of the theorem, and hence proves (2).

(3) V (Qj) 6⊆ X, for 1 ≤ j ≤ n, and for every Tj-antirung Qj.

For suppose that V (Q1) ⊆ X for some T1-antirung x1-Q1-y1. By (2) we may assume that X meets
S1 and none of S2, . . . , Sm. Let 2 ≤ j ≤ n, and choose i with 2 ≤ i ≤ m such that (S1, Si, T1, Tj) is
a twist. Let Qj be an xj-Tj-yj-antirung, let a1-P1-b1 be an S1-rung such that X meets P1, and let
ai-Pi-bi be an Si-rung. Hence (P1, Pi, Q1, Qj) is a knot. Let us apply 9.3. By (2) and the minimality
of F it follows that 9.3.3 holds. This has several consequences. First, from the minimality of F , G|F
is an odd path f1- · · · -fk such that f1, a1 have the same neighbours in V (Q1 ∪Qj), and so do fk, b1,
and there are no edges between F and V (P1) except possibly f1a1 and fkb1. Since X meets P1, it
follows that at least one of these two edges is present; and therefore they both are, since f1- · · · -fk

is an odd path and so is P1 (for otherwise the union of these two paths, with one of x1, y1, would
induce an odd hole). So f1 is adjacent to a1 and to no other vertex of P1, and fn to b1 and to no
other vertex of P1. Second, V (Qj) ⊆ X. Since this holds for all Qj it follows that V (Tj) ⊆ X;
and by exchanging T1 and Tj we deduce that V (T1) ∪ · · · ∪ V (Tn) ⊆ X. Moreover {f2, . . . , fk−1} is
anticomplete to V (T1) ∪ · · · ∪ V (Tn). Third, let x′

j-Q
′

j-y
′

j be some other Tj-antirung. By the same
argument applied to the knot (P1, Pi, Q1, Q

′

j), we deduce that again 9.3.3 holds, and so one of f1, fk

is adjacent to x′

j and the other to y′

j. Furthermore, the one adjacent to x′

j is also adjacent to a1;
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and so in fact f1 is adjacent to x′

j. Since this holds for all choices of Qj and of j, it follows that
f1, a1 have the same neighbours in V (T1) ∪ · · · ∪ V (Tn), and so do fk, b1. Hence we can add f1 to
A1, {f2, . . . , fk−1} to C1 and fk to B1, contrary to the maximality of the striation. This proves (3).

Since X is not local with respect to L, we may assume from (2) and (3) that there exist a vertex
of X ∩ V (S1) and a vertex of X ∩ V (T1) that are nonadjacent. By reversing T1, . . . , Tn we may
assume that S1 is parallel to each Tj . Since by 9.1 every vertex of Z1 is complete to V (S1), we
may assume that there is an S1-rung a1-P1-b1 and a T1-antirung x1-Q1-y1 such that x1 ∈ X and
X ∩ V (P1 \ a1) 6= ∅. Let 2 ≤ j ≤ n, and choose i with 2 ≤ i ≤ m such that (S1, Si, T1, Tj) is a
twist. Let Pi be an Si-rung, and let Qj be a Tj-antirung. So (P1, Pi, Q1, Qj) is a knot K say, and
X∩V (K) is not local with respect to K. Let us apply 9.3; we deduce that one of the outcomes of 9.3
holds. The first and fourth outcomes contradict (2), and the third contradicts (3), so there is a path
with vertex set in F satisfying 9.3.2. From the minimality of F , it follows that this path has vertex
set F , and so F is a path with vertices f1- · · · -fk say. Since x1 ∈ X, it follows that one of f1, fk is
adjacent to x1, and we may assume that f1 is adjacent to x1. By 9.3.2, f1 is also adjacent to xj and
to all internal vertices of Q1, Qj, and to neither of y1, yj, and none of f2, . . . , fk−1 have neighbours
in V (Q1 ∪Qj), and fk has a neighbour in P1 \ a1, and fk has no neighbours in V (Q1 ∪Qj). For any
other choice of Qj the same happens, and f1, fk cannot become exchanged since f1 has neighbours
in Q1 and fk has none. We deduce that f1 is complete to Xj ∪ Zj and anticomplete to Yj; and
{f2, . . . , fk} is anticomplete to V (Tj). In particular there is a vertex of X ∩ V (S1) and a vertex of
X ∩ V (Tj) that are nonadjacent, and so by exchanging T1 and Tj in the above argument, we deduce
that f1 is complete to X1 ∪ Z1 and anticomplete to Y1; and {f2, . . . , fk} is anticomplete to V (T1).
Since this holds for all j, it follows that a1, f1 have the same neighbours in V (T1)∪ · · · ∪ V (Tn), and
there are no edges between {f2, . . . , fk} and V (T1)∪ · · · ∪ V (Tn). But then we can add f1 to A1 and
{f2, . . . , fk} to C1, contrary to the maximality of the striation. This proves 9.5.

Now we can prove 1.8.3, which we restate.

9.6 Let G be a Berge graph, such that every appearance of K4 in G and in G is degenerate, and
there is no induced subgraph of G isomorphic to L(K3,3). Then either G is a double split graph, or
G admits a balanced skew partition, or one of G,G admits a proper 2-join, or there is no appearance
of K4 in either G or G.

Proof. If there is an appearance in G of some K4-enlargement, say L(H ′), then by 5.3, either
H ′ = K3,3, which is impossible by hypothesis, or there is a subgraph H ′′ of H ′ which is a bipartite
subdivision of K4, such that L(H ′′) is nondegenerate, and again this is impossible by hypothesis.
So there is no appearance in G of a K4-enlargement, and similarly there is none in G. Moreover,
by 7.5, we may assume that there is no overshadowed appearance of K4 in G or in G. We may
assume that there is an appearance of K4 in one of G,G, and consequently |V (G)| ≥ 8; and by
taking complements if necessary we may assume that L(H) is an appearance of K4 in G. By hy-
pothesis it is degenerate, and hence there is a striation in G; choose a maximal striation L. Let L
have strips Si = (Ai, Ci, Bi) (1 ≤ i ≤ m) and antistrips Tj = (Xj , Zj , Yj) (1 ≤ j ≤ n). By 9.4 we
can partition V (G) \ V (L) into two sets M,N , where for every vertex in M its set of neighbours
in V (L) is local with respect to L, and for every vertex in N , its set of neighbours in V (L) resolves L.

(1) If there exists f ∈ N with a nonneighbour in V (S1) ∪ · · · ∪ V (Sm) then the theorem holds.
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For let f have a nonneighbour in S1 say. Let N1 be the anticomponent of N containing f , and
let X be the set of all N1-complete vertices in V (G). From 9.5 applied in the complement, it follows
that X resolves L. Since f has a nonneighbour in V (S1), there is a vertex u of S1 not in X. Let U be
the component of V (G) \ (X ∪N) containing u. We claim that U is disjoint from V (L) \ V (S1), and
no vertex in V (S2)∪ · · · ∪ V (Sm) has a neighbour in U . For suppose not; then there is a path P say
in G, from V (S1) to V (L) \ V (S1), with (X ∪N)∩ V (P ) ⊆ V (S2)∪ · · · ∪ V (Sm); choose such a path
minimal. It follows that no internal vertex of P is in V (L) or in X∪N ; and since X meets every edge
between V (S1) and V (L) \ V (S1), and there are no edges between V (S1) and V (S2) ∪ · · · ∪ V (Sm),
it follows that P ∗ is nonempty. Now no vertex of P ∗ is in N , since N ⊆ N1 ∪ X; and so there is
a component M1 of M including P ∗. From 9.5, the set of attachments of M1 in V (L) is local with
respect to L. Since it has an attachment in V (S1) it therefore has none in V (S2)∪ · · · ∪ V (Sm). But
the ends of P are attachments of M1, they are nonadjacent, and one is in V (S1) and the other is not,
a contradiction. This proves that U is disjoint from V (L) \V (S1). Let X ′ be the set of vertices in X
with neighbours in U , and let V = V (G) \ (U ∪N1 ∪X ′). Then V is nonempty because V (S2) ⊆ V ;
and so U ∪V,N1∪X ′ is a skew partition of G. Since there is a vertex of S2 in X (because X resolves
L), and this vertex is in V , we deduce that the skew partition is loose, and hence by 4.2 G admits a
balanced skew partition. This proves (1).

From (1) we may assume that N is complete to V (S1)∪· · ·∪V (Sm), and by taking complements,
that M is anticomplete to V (T1) ∪ · · · ∪ V (Tn).

(2) If M,N are both nonempty then the theorem holds.

For let M1 be a component of M , and N1 an anticomponent of N . By taking complements we
may assume that there is a nonedge between M1 and N1. Since the set of attachments of M1 in
V (L) is local by 9.5, and since it has no attachments in V (T1) ∪ · · · ∪ V (Tn), we may assume that
all its attachments are in V (S1). Let V = V (G) \ (M1 ∪ N1 ∪ V (S1)). Since every vertex of S1 is
N1-complete, it follows that (M1 ∪ V,N1 ∪ V (S1)) is a skew partition of G, and since there are N1-
complete vertices with no neighbours in M1 (for instance, any vertex of V (S2)), the skew partition
is loose, and by 4.2 G admits a balanced skew partition. This proves (2).

(3) If M,N are both empty then the theorem holds.

For then by 9.1, we may assume that for 1 ≤ j ≤ n all Qj-antirungs have length 1. If |V (S1)| > 2,
then (V (S1), V (L) \ V (S1)) is a proper 2-join of G; for every vertex in V (T1) ∪ · · · ∪ V (Tn) is either
complete to A1 and anticomplete to B1 ∪ C1, or complete to B1 and anticomplete to A1 ∪ C1 (since
all the antirungs have length 1). So we may assume that each Si has only two vertices. In particular,
every Si-rung has length 1, so by taking complements the same argument shows that we may assume
every V (Tj) has only two vertices. But then G is a double split graph and the theorem holds. This
proves (3).

From (2) and (3), and taking complements if necessary, we may assume that N is empty and M
is nonempty. For 1 ≤ i ≤ m let Mi be the union of the components of M that have an attachment
in V (Si), and let M0 be the union of the components of M that have no attachments in V (L).
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Then M0,M1, . . . ,Mn are pairwise disjoint and have union M . If M0 is nonempty then G is not
connected, and since |V (G)| ≥ 8 it therefore admits a balanced skew partition, so we may assume
that M0 is empty. Since M is nonempty we may assume that M1 is nonempty. We recall that
T1 = (X1, Z1, Y1); suppose that z ∈ Z1. Then z is complete to V (S1) by 9.1, and hence if we define
V = V (G) \ M1 ∪ V (S1) ∪ {z}, then (M1 ∪ V, V (S1) ∪ {z}) is a skew partition of G, and by 4.1 G
admits a balanced skew partition. So we may assume that Z1 is empty, and similarly every Zj is
empty. Then (M1 ∪ V (S1), V (G) \ (M1 ∪ V (S1)) is a proper 2-join of G. This proves 9.6.

It is convenient to combine three earlier results as follows.

9.7 Let G be a Berge graph, such that there is an appearance of K4 in G. Then either one of G,G
is a line graph, or G is a double split graph, or one of G,G admits a proper 2-join, or G admits a
balanced skew partition.

Proof. This is immediate from 9.6, 5.1 and 5.2.

10 The even prism

We have completed the first of the main steps of the proof, handling graphs that contain an appear-
ance of K4. The next big step is to handle graphs that do not contain an appearance of K4, but
do contain a long prism. For our purposes, “even” prisms are easier than odd ones, and we treat
them in this section. (Odd prisms are treated in sections 11-13.) Incidentally, in this section all we
need is that there is no nondegenerate appearance of K4 in G, and so the results of this section are
independent of those in the previous one; these two sections could be in either order. We begin with
some results about prisms in general.

For i = 1, 2, 3 let ai-Ri-bi be a path in G, such that these three paths form a prism K with
triangles {a1, a2, a3} and {b1, b2, b3}. A subset X ⊆ V (G) saturates the prism if at least two vertices
of each triangle belong to X; and a vertex is major with respect to the prism if its neighbour set
saturates it. A subset X ⊆ V (K) is local with respect to the prism if either X ⊆ V (Ri) for some i,
or X is a subset of one of the triangles. By 7.2, the three paths R1, R2, R3 all have lengths of the
same parity. A prism is even if the three paths R1, R2, R3 have even length, and odd otherwise.

10.1 Let R1, R2, R3 form a prism K in a Berge graph G, with triangles {a1, a2, a3} and {b1, b2, b3},
where each Ri has ends ai and bi. Let F ⊆ V (G)\V (K) be connected, such that its set of attachments
in K is not local. Assume no vertex in F is major with respect to K. Then there is a path f1- · · · -fn

in F with n ≥ 1, such that (up to symmetry) either:

1. f1 has two adjacent neighbours in R1, and fn has two adjacent neighbours in R2, and there
are no other edges between {f1, . . . , fn} and V (K), and (therefore) G has an induced subgraph
which is the line graph of a bipartite subdivision of K4, or

2. n ≥ 2, f1 is adjacent to a1, a2, a3, and fn is adjacent to b1, b2, b3, and there are no other edges
between {f1, . . . , fn} and V (K), or

3. n ≥ 2, f1 is adjacent to a1, a2, and fn is adjacent to b1, b2, and there are no other edges between
{f1, . . . , fn} and V (K), or
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4. f1 is adjacent to a1, a2, and there is at least one edge between fn and V (R3) \ {a3}, and there
are no other edges between {f1, . . . , fn} and V (K) \ {a3}.

Proof. We may assume that F is minimal such that it is connected and its set of attachments in
K is not local. Let X be the set of attachments of F in K. For 1 ≤ i ≤ 3, if X ∩ V (Ri) 6= ∅, let
ci and di be the vertices of Ri in X closest (in Ri) to ai and to bi respectively, and let Ci, Di be
the subpaths of Ri between ai and ci, and between di and bi respectively. Let A = {a1, a2, a3} and
B = {b1, b2, b3}.

We claim that some two-element subset of X is not local. For since X 6⊆ B we may assume that
c1 exists and c1 6= b1. Since X 6⊆ V (R1), we may assume d2 exists. If d2 6= a2 then {c1, d2} is the
desired subset; so we may assume d2 = a2, and similarly d3 = a3 if d3 exists. Since X 6⊆ A, it follws
that d1 6= a1, and then {a2, d1} is the desired subset. So some two-element subset {x1, x2} of X is
not local. Consequently x1, x2 are not adjacent. From the minimality of F , there is a path with
vertices x1, f1, . . . , fn, x2 such that F = {f1, . . . , fn}.

(1) If n = 1 then the theorem holds.

For assume n = 1; then F = {f1}. Since X is not local it meets at least two of the paths; suppose it
only meets R1 and R2. Suppose that c1 = d1. Then we may assume that c1 6∈ A and c2 6= b2, by ex-
changing A and B if necessary; but then c1 can be linked onto the triangle A, via the paths c1-C1-a1,
c1-f1-c2-C2-a2, and c1-D1-b1-b3-R3-a3, contrary to 2.4, since f has at most one neighbour in A. So
c1 is different from d1, and similarly c2 is different from d2 (and in particular, c2 6= b2). Suppose that
c1 is nonadjacent to d1. Then since f1 is not major, we may assume it has at most one neighbour in
A, by exchanging A and B if necessary; but it can be linked onto A, via f1-c1-C1-a1, f1-c2-C2-a2 and
f1-d1-D1-b1-b3-R3-a3, contrary to 2.4. So c1, d1 are adjacent, and similarly so are c2, d2, but then
statement 1 of the theorem holds. So we may assume that X meets all three of R1, R2, R3. Since
f1 is not major, we may assume that it has at most one neighbour in A, by exchanging A and B if
necessary, and therefore cannot be linked onto A. Since it has neighbours in all three of R1, R2, R3,
it follows that for at least two of these paths, the only neighbour of f1 in this path is in B. We may
assume therefore that c1 = b1 and c2 = b2. Since X is not local, c3 6= b3; but then statement 4 of the
theorem holds. This proves (1).

We may therefore assume that n ≥ 2. Let X1 be the set of attachments of F \ {f1}, and X2 the
set of attachments of F \ {fn}. From the minimality of F , both X1 and X2 are local. Moreover,
X = X1 ∪ X2, and for 2 ≤ i ≤ n − 1, every neighbour of fi in K belongs to X1 ∩ X2.

(2) If X1 ⊆ A and X2 ⊆ V (R1) then the theorem holds.

For then f1 has at least one neighbour in R1 \ a1, and fn is adjacent to at least one of a2, a3,
and there are no other edges between F and V (K) \ {a1}. If fn is adjacent to both a2, a3 then
statement 4 of the theorem holds, so we assume it is not adjacent to a3. But then a2 can be linked
onto the triangle B, via a2-fn-fn−1- · · · -f1-d1-D1-b1, a2-R2-b2, a2-a3-R3-b3, contrary to 2.4. This
proves (2).

From (2), since both X1 and X2 are local, we may assume that either X1 ⊆ A and X2 ⊆ B, or
X1 ⊆ V (R2) and X2 ⊆ V (R1). In either case X1∩X2 = ∅, so none of f2, . . . , fn−1 has any neighbours
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in V (K). Therefore X1 is the set of neighbours of fn in V (K), and X2 is the set of neighbours of f1

in V (K).

(3) If X1 ⊆ A and X2 ⊆ B then the theorem holds.

For then we may assume that fn is adjacent to a1 and f1 to b2. Suppose first that n has the
same parity as the length of R1. Since a2-R2-b2-f1- · · · -fn-a2 is not an odd hole, it follows that fn

is not adjacent to a2, and similarly f1 is not adjacent to b1. Since a3-R3-b3-b2-f1- · · · -fn-a1-a3 is
not an odd hole, either fn is adjacent to a3 or f1 to b3, and not both, as we saw before. But then
statement 4 of the theorem holds. Now suppose that n has different parity from the length of R1.
Since a1-a2-R2-b2-f1- · · · -fn-a1 is not an odd hole, fn is adjacent to a2, and similarly f1 to b1. If
there are no more edges between F and V (K) then statement 3 of the theorem holds, so we may
assume that fn is adjacent to a3. By the same argument as before it follows that f1 is adjacent to
b3, and then statement 2 of the theorem holds. This proves (3).

From (2) and (3) we may assume that X1 ⊆ V (R2) and X2 ⊆ V (R1). So f1 is adjacent to
the vertices of R1 that are in X, and fn to those of R2 in X. If c1 = d1, then from the symme-
try we may assume that c1 6= a1, and c2 6= b2; but then c1 can be linked onto A, via c1-C1-a1,
c1-f1- · · · -fn-c2-C2-a2, c1-D1-b1-b3-R3-a3, contrary to 2.4. So c1 6= d1 and similarly c2 6= d2; and
in particular c2 6= b2. If c1, d1 are nonadjacent, then f1 can be linked onto A via f1-c1-C1-a1,
f1- · · · -fn-c2-C2-a2, f1-d1-D1-b1-b3-R3-a3; but f1 has at most one neighbour in A (because n ≥ 2),
contrary to 2.4. So c1, d1 are adjacent, and similarly so are c2, d2; but then statement 1 of the
theorem holds. This proves 10.1.

10.2 Let R1, R2, R3,K, F be as in 10.1, and suppose that 10.1.1 holds. Then either R1 and R2 both
have length 1, or there is a nondegenerate appearance of K4 in G.

Proof. For let f1- · · · -fn be a path in F such that f1 has two adjacent neighbours in R1, and fn

has two adjacent neighbours in P2, and there are no other edges between {f1, . . . , fn} and V (K).
Then G|(V (K) ∪ {f1, . . . , fn} is a line graph of a bipartite subdivision of K4. We may assume it is
degenerate. Hence the prism is odd, for all prisms contained in a degenerate appearance of K4 are
odd. So R3 is odd, and therefore so is the path f1- · · · -fn, and the other four “rungs” of this line
graph have length 0. In particular, R1 and R2 both have length 1. This proves 10.2.

There is also a tighter version of 10.1, the following.

10.3 Let G be a Berge graph, such that there is no nondegenerate appearance of K4 in G. Let
R1, R2, R3 form a prism K in G, with triangles {a1, a2, a3} and {b1, b2, b3}, where each Ri has ends
ai and bi. Let F ⊆ V (G) \ V (K) be connected, such that no vertex in F is major with respect to K.
Let x1 be an attachment of F in the interior of R1, and assume that there is another attachment x2

of F not in R1. Then there is a path f1- · · · -fn in F such that (up to the symmetry between A and
B) f1 is adjacent to a2, a3, and fn has at least one neighbour in R1 \a1, and there are no other edges
between {f1, . . . , fn} and V (K) \ {a1}.

Proof. We may assume F is minimal such that it is connected, x1 is one of its attachments, and it has
some attachment x2 in R2 ∪R3. Hence there is a path x2-v1- · · · -vm-x1 where F = {v1, . . . , vm}. By
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10.1, there is a subpath f1- · · · -fn of v1- · · · -vm such that one of 10.1.1-4 holds. From the minimality
of F , v1 is the only vertex of F with a neighbour in V (R2) ∪ V (R3), and in particular, at most one
vertex of f1- · · · -fn has a neighbour in V (R2) ∪ V (R3). We deduce that f1- · · · -fn does not satisfy
10.1.2 or 10.1.3. Suppose it satisfies 10.1.1. By 10.2 the path f1- · · · -fn joins two of R1, R2, R3 that
are both of length 1, and therefore n is even. Since R1 has length ≥ 2 (because x1 is in its interior) it
follows that f1, fn are distinct vertices of F both with neighbours in V (R2)∪V (R3), a contradiction.
So f1- · · · -fn satisfies 10.1.4, and therefore we may assume that for some i with 1 ≤ i ≤ 3, f1 is
adjacent to the two vertices in A \ {ai}, and fn has at least one neighbour in Ri \ ai, and there are
no other edges between {f1, . . . , fn} and V (K) \ {ai}. Suppose first that i > 1, i = 2 say. Then both
f1, fn have neighbours in V (R2)∪ V (R3), and so from the minimality of F it follows that n = 1 and
f1 = v1. But then f1 can be linked onto the triangle B, via the path between f1 and b1 with interior
in {v2, . . . , vm} ∪ V (R1 \ a1), the path between f1 and b2 with interior in V (R2 \ a2), and the path
f1-a3-R3-b3, contrary to 2.4. Hence i = 1, and the theorem is satisfied. This proves 10.3.

Another useful corollary of 10.1 is the following.

10.4 Let G be Berge, such that there is no nondegenerate appearance of K4 in G. Let R1, R2, R3

form a prism K in a Berge graph G, with triangles {a1, a2, a3} and {b1, b2, b3}, where each Ri has
ends ai and bi. Let F ⊆ V (G) \ V (K) be connected, such that if the prism is even then no vertex in
F is major with respect to K. Assume that the set of attachments of F in K is not local, but none
are in V (R3). Then |F | ≥ 2, and the set of attachments of F in K is precisely {a1, b1, a2, b2}.

Proof. If there is a major vertex v ∈ F , then since it has no neighbours in R3, it is adjacent to
a1 and b2, and since v-a1-a3-R3-b3-b2-v is a hole, it follows that the prism is even, contrary to the
hypothesis. So there is no major vertex in F . By 10.3 no internal vertex of R1 or R2 is an attachment
of F . By 10.1, there is a path in F satisfying one of 10.1.1-4; and since it has no attachments in R3,
it must satisfy 10.1.1 or 10.1.3, and in either case a1, b1, a2, b2 are all attachments of F . Since no
vertex in F is major it follows that |F | ≥ 2. This proves 10.4.

The next result is a close relative of 7.5.

10.5 Let G be Berge, such that there is no nondegenerate appearance of K4 in G. If there is an
even prism K in G, such that some vertex of G is major with respect to K, then G admits a balanced
skew partition.

Proof. Any prism has six vertices of degree 3, called triangle-vertices; choose a prism K and a
nonempty anticonnected set Y ⊆ V (G) \ V (K), such that every vertex in Y is major with re-
spect to the prism, and as few triangle-vertices of K are Y -complete as possible. Let the paths
ai-Ri-bi(i = 1, 2, 3) form K, where {a1, a2, a3}, {b1, b2, b3} are its triangles. We may assume that Y
is maximal with the given property. Let X be the set of all Y -complete vertices in G. By 7.3, X sat-
urates K. Consequently there is one of R1, R2, R3 with both ends in X, say R1. Let X0 = X \V (K)
and X1 = {a1, b1}.

(1) If F ⊆ V (G) is connected and some vertex of V (R∗

1) has a neighbour in F , and so does some
vertex of V (R2) ∪ V (R3), then F ∩ (X0 ∪ X1 ∪ Y ) is nonempty.
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Suppose for a contradiction that some F exists not satisfying (1), and choose it minimal. Hence
G|F is a path, disjoint from K. Consequently F ∩ X = ∅. Suppose some vertex in v ∈ F is major
with respect to K. Then since v 6∈ X it follows that v has a nonneighbour in Y , and so Y ∪ {v} is
anticonnected; the maximality of Y therefore implies that v ∈ Y , and hence F ∩Y 6= ∅ and the claim
holds. So we may assume that no vertex in F is major. Let x1 be an attachment of F in R∗

1. By
10.3 we may assume that there is a path f1- · · · -fn in F such that f1 is adjacent to a2, a3, and fn has
neighbours in R1\a1, and f1a2, f1a3 are the only edges between {f1, . . . , fn} and V (R2)∪V (R3) Now
there is a path R from f1 to b1 with interior in {f2, . . . , fn} ∪ V (R1 \ a1), and hence R,R2, R3 form
a prism K ′ say. By 7.4, every vertex in Y is major with respect to K ′, and since a1 is Y -complete
and f1 is not, it follows that the number of Y -complete triangle-vertices in K ′ is smaller than the
number in K, a contradiction. This proves (1).

It follows from (1) that there is a partition of V (G) \ (X0 ∪ X1 ∪ Y ) into two sets L and M
say, where there is no edge between L and M , and V (R∗

1) ⊆ L and V (R2) ∪ V (R3) ⊆ M . So
(L∪M,X0 ∪X1 ∪Y ) is a skew partition of G. Since at least two vertices of A are in X and only one
is in X1, there is a vertex of X in M , and so the skew partition is loose. By 4.2 the result follows.
This proves 10.5.

The main result of this section is 1.8.4, which we restate.

10.6 Let G be a Berge graph, such that there is no nondegenerate appearance of K4 in G. If G
contains an even prism, then either G is an even prism with |V (G)| = 9, or G admits a proper 2-join
or a balanced skew partition.

Proof. Since G contains an even prism, we can choose in G a collection of nine sets

A1 C1 B1

A2 C2 B2

A3 C3 B3

with the following properties:

• all these sets are nonempty and pairwise disjoint

• for 1 ≤ i < j ≤ 3, Ai is complete to Aj and Bi is complete to Bj , and there are no other edges
between Ai ∪ Bi ∪ Ci and Aj ∪ Bj ∪ Cj

• for 1 ≤ i ≤ 3, every vertex of Ai ∪ Bi ∪ Ci belongs to a path between Ai and Bi with interior
in Ci

• some path between A1 and B1 with interior in C1 is even.

We call this collection of nine sets a hyperprism. Let H be the subgraph of G induced on the
union of the nine sets. Choose the hyperprism with V (H) maximal. For 1 ≤ i ≤ 3, a path from
Ai to Bi with interior in Ci is called an i-rung. Let us write Si = Ai ∪ Bi ∪ Ci for 1 ≤ i ≤ 3, and
A = A1 ∪ A2 ∪ A3, and B = B1 ∪ B2 ∪ B3.

(1) For 1 ≤ i ≤ 3, all i-rungs have even length.
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For we are given that some 1-rung R1 say has even length. Let R2 be an 2-rung; then the union of
R1 and R2 induces a hole, and so R2 is even. Hence every 2- or 3-rung is even, and hence so is every
1-rung. This proves (1).

A subset X ⊆ V (H) is local (with respect to the hyperprism) if X is a subset of one of S1, S2, S3, A
or B.

(2) We may assume that for every connected subset F of V (G) \ V (H), its set of attachments in H
is local.

For suppose not. Choose F minimal, and let X be the set of attachments of F in H. Suppose first
that there exists x1 ∈ X∩C1. Since X is not local, we may assume that there exists x2 ∈ X∩S2. For
i = 1, 2, 3 choose an i-rung Ri with ends ai ∈ Ai and bi ∈ Bi, such that xi ∈ V (Ri) for i = 1, 2. Then
R1, R2, R3 form an even prism K say. By 10.5 we may assume no vertex in F is major with respect
to K; so by 10.3, we may assume that there is a path f1- · · · -fn in F such that f1 is adjacent to
a2, a3, and fn has at least one neighbour in R1 \a1, and there are no other edges between {f1, . . . , fn}
and V (K) \ {a1}. From the minimality of F it follows that F = {f1, . . . , fn}. Since this holds for all
choices of R3 it follows that f1 is complete to A3 and there are no edges between {f1, . . . , fn} and
B3 ∪ C3. Since a3 ∈ X the same conclusion follows for all choices of R2, and so f1 is complete to
A2 and there are no edges between {f1, . . . , fn} and B2 ∪ C2. But then we can add f1 to A1 and
{f2, . . . , fn} to C1, contradicting the maximality of the hyperprism.

It follows that X ∩ C1 = ∅, and similarly X ∩ C2, X ∩ C3 = ∅. We claim there is a 2-element
subset of X which is also not local. For we may assume X ∩ A1 6= ∅; and hence if X meets B2

or B3 our claim holds. If not, then it meets B1 (since it is not a subset of A) and meets A2 ∪ A3

(since it is not a subset of S1), and again the claim holds. So there is a subset {x1, x2} of X which
is not local. We may assume that x1 ∈ A1 and x2 ∈ B2. From the minimality of F , there is a path
x1-f1- · · · -fn-x2 with F = {f1, . . . , fn}.

Suppose first that n is even. For any 3-rung R3 with ends a3 ∈ A3 and b3 ∈ B3,

x1-f1- · · · -fn-x2-b3-R3-a3-x1

is not an odd hole, and so some vertex of R3 is in X. Since X ∩C3 = ∅, and a3 has no neighbour in
{f2, . . . , fn} from the minimality of F , and similarly b3 has no neighbour in {f1, . . . , fn−1}, it follows
that either f1 is adjacent to a3, or fn to b3 (and not both, since otherwise f1- · · · -fn-b3-R3-a3 is an
odd hole). From the symmetry we may assume that fn is adjacent to b3. By exchanging S2 and S3

it follows that for every 2-rung with ends a2 ∈ A2 and b2 ∈ B2, either f1 is adjacent to a2 or fn to b2,
and not both. Suppose that fn is complete to B2 ∪B3; then f1 has no neighbours in S2 ∪S3, and we
can add fn to B1 and f1, . . . , fn−1 to C1, contrary to the maximality of the hyperprism. So fn is not
complete to B2 ∪ B3, and hence f1 has a neighbour in one of A2, A3, say A3; and by exchanging S1

and S2 it follows that for every 1-rung with ends a1 ∈ A1 and b1 ∈ B1, either f1 is adjacent to a1 or
fn to b1 and not both. In particular, f1 has no neighbours in B and fn has none in A. For i = 1, 2, 3
let A′

i be the set of neighbours of f1 in Ai, and let A′′

i = Ai \ A′

i; let B′′

i be the set of neighbours of
fn in Bi, and let B ′

i = Bi \ B′′

i . We have shown so far that every i-rung is either between A′

i and
B′

i or between A′′

i and B′′

i . Let C ′

i be the union of the interiors of the i-rungs between A′

i and B′

i,
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and C ′′

i the union of the interiors of the i-rungs between A′′

i and B′′

i . We observe that Ci = C ′

i ∪C ′′

i .
Moreover, C ′

i ∩ C ′′

i = ∅, for otherwise there would be an i-rung between A′

i and B′′

i . For the same
reason there are no edges between A′

i ∪C ′

i and C ′′

i ∪B′′

i , and no edges between A′′

i ∪C ′′

i and C ′

i ∪B′

i.
We claim that A′

i is complete to A′′

i . For if not, let R′′ be an i-rung with ends a′′ ∈ A′′

i and b′′ ∈ B′′

i ,
and let a′ ∈ A′

i be nonadjacent to a′′. Since we have seen that fn has neighbours in at least two
of B1, B2, B3, it follows that at least two of A′′

1, A
′′

2 , A
′′

3 are nonempty, and therefore we may choose
a ∈ A′′

j for some j 6= i. Then
a-a′-f1- · · · -fn-b′′-R′′-a′′-a

is an odd hole, a contradiction. So A′

i is complete to A′′

i for each i, and similarly B ′

i is complete to
B′′

i for each i. We showed already that we may assume that A′

1, A
′′

2 , A
′

3, A
′′

3 are all nonempty. But
then the nine sets

A′

1 C ′

1 B′

1

A′

2 ∪ A′

3 C ′

2 ∪ C ′

3 B′

2 ∪ B′

3

A′′

1 ∪ A′′

2 ∪ A′′

3 ∪ {f1} C ′′

1 ∪ C ′′

2 ∪ C ′′

3 ∪ {f2, . . . , fn} B′′

1 ∪ B′′

2 ∪ B′′

3

form a hyperprism, contrary to the maximality of V (H). This completes the argument when n is
even.

Now assume n is odd. f1 has a neighbour a1 say in A1; let R1 be a 1-rung with ends a1 and
b1 say. Similarly let R2 be a 2-rung with ends a2 and b2, where b2 ∈ B2 is adjacent to fn. Since
a1-f1- · · · -fn-b2-b1-R1-a1 is not an odd hole, it follows that b1 ∈ X, and similarly a2 ∈ X. From
the minimality of F , one of b1, a2 is adjacent to f1 and the other to fn, and neither has any more
neighbours in F . Suppose that fn is not adjacent to b1; so f1 is adjacent to b1, and n ≥ 2, and fn

is adjacent to a2. But then b1-f1- · · · -fn-b2-b1 is an odd hole, a contradiction. This proves that fn

is adjacent to b1 and f1 to a2. Hence for all 1 ≤ i ≤ 3, and for every i-rung with ends a ∈ A and
b ∈ B, a ∈ X if and only if b ∈ X, and if so then f1 is adjacent to a and fn to b. Consequently,
for every vertex in X ∩ A, f1 is its unique neighbour in F , and for every vertex in X ∩ B, fn is its
unique neighbour in F . For 1 ≤ i ≤ 3, let

A′

i = Ai ∩ X

B′

i = Bi ∩ X

A′′

i = Ai \ X

B′′

i = Bi \ X.

Let C ′

i be the union of the interior of the i-rungs between A′

i and B′

i, and C ′′

i the union of the interior
of the i-rungs between A′′

i and B′′

i . We have seen that every i-rung is of one of these two types, and
so Ci = C ′

i ∪ C ′′

i . Moreover, since there is no rung between A′

i and B′′

i , it follows that C ′

i ∩ C ′′

i = ∅,
and there are no edges between A′

i ∪ C ′

i and C ′′

i ∪ B′′

i , and similarly no edges between A′′

i ∪ C ′′

i and
C ′

i ∪ B′

i. We have seen that f1 has neighbours in at least two of A1, A2, A3, and fn has neighbours
in at least two of B1, B2, B3. We claim that also f1 has nonneighbours in at least two of A1, A2, A3,
and the same for fn. For suppose not, and f1 is complete to A1 ∪ A2 say. Then fn is complete to
B1 ∪B2; by 10.5 we may assume that n > 1, and so we can add f1 to A3, fn to B3 and f2, . . . , fn−1

to C3, contrary to the maximality of V (H). This proves that f1 has nonneighbours in at least two
of A1, A2, A3, and similarly fn has nonneighbours in at least two of B1, B2, B3. Let 1 ≤ i ≤ 3; we
claim that A′

i is complete to A′′

i . For we may assume that i = 1; suppose that a′ ∈ A′

1 and a′′ ∈ A′′

1
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are nonadjacent, and let R′′ be a 1-rung with ends a′′, b′′. Choose a ∈ A′′

2 ∪ A′′

3 and b ∈ B′

2 ∪ B′

3;
then a, b are not adjacent since all rungs have even length, and so a-a′-f1- · · · -fn-b-b′′-R′′-a′′-a is an
odd hole, a contradiction. This proves that A′

i is complete to A′′

i for i = 1, 2, 3, and similarly B ′

i is
complete to B ′′

i . We have seen that we may assume that A′

1, A
′

2 are nonempty. But then

A′

1 C ′

1 B′

1

A′

2 ∪ A′

3 C ′

2 ∪ C ′

3 B′

2 ∪ B′

3

A′′

1 ∪ A′′

2 ∪ A′′

3 ∪ {f1} C ′′

1 ∪ C ′′

2 ∪ C ′′

3 ∪ {f2, . . . , fn−1} B′′

1 ∪ B′′

2 ∪ B′′

3 ∪ {fn}

is a hyperprism, contrary to the maximality of V (H). This proves (2).

Suppose F is a component of V (G)\V (H), and all its attachments are in A. Then (V (G)\A,A)
is a skew partition of G. We must show that G admits a balanced skew partition. Choose b2 ∈ B2

and a3 ∈ A3. Then B1 ∪C1 ∪ {b2} is connected, and all vertices in A1 have neighbours in it. By 2.6,
(B1 ∪ C1 ∪ {b2}, A1) is balanced, and so by 2.7.1, so is (A1, F ). By 4.5, G admits a balanced skew
partition. So we may assume there is no such F , and the same for B.

From (2) it follows that for every component of V (G) \ V (H), all its attachments in H are a
subset of one of S1, S2, S3. Let X be the union of S1 and all components of V (G) \ V (H) whose
attachment set is a subset of S1, and let Y = V (G) \ X. Then |Y | ≥ 4, and so either (X,Y ) is a
proper 2-join in G, or both A1, B1 have one element and X is the vertex set of a path between these
two vertices. We may assume the latter, and the same for S2 and S3; and so G is an even prism.
Then either it admits a proper 2-join, or |V (G)| = 9. This proves 10.6.

11 Step-connected strips

Our next target is the statement analogous to 10.6 for long odd prisms, but we need to creep up on
it in stages. (A warning: we shall not prove the exact analogue, and we don’t know if it is true. We
need to permit more types of decomposition, namely proper 2-joins in G, and proper homogeneous
pairs.) The key idea is to start with a prism of three paths, R0, R1, R2, where R0 has length ≥ 3,
and to grow the union of the other two paths into a kind of strip (one strip, not two) with a richer
internal structure than we have seen hitherto, that we call being “step-connected”. If we expand
the union of these two paths into a maximal step-connected strip, then the remainder of the graph
attaches to this structure in ways that we can exploit. In this section we introduce step-connected
strips, and prove some preliminary lemmas about them.

Let (A,C,B) be a strip in G. A step is a pair a1-R1-b1, a2-R2-b2 of rungs such that

• V (R1) ∩ V (R2) = ∅

• a1 is adjacent to a2, and b1 to b2, and there are no other edges between V (R1) and V (R2).

The edges a1a2 and b1b2 such that there exists a step as above are called stepped edges. We say that
the strip is step-connected if every vertex of A∪B ∪C is in a step, and for every partition (X,Y ) of
A or of B into two nonempty sets, there is a step R1, R2 such that R1 has an end in X and R2 has
an end in Y . (This second condition is equivalent to requiring that the subgraph of G with vertex
set A and edges the stepped edges within A be connected, and the same for B.)
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Let (A,C,B) be a step-connected strip in a Berge graph G. A vertex v ∈ V (G) \ (A ∪ B ∪ C) is
a left-star for the strip if it is complete to A and anticomplete to B ∪ C, and it is a right-star if it
is complete to B and anticomplete to A ∪ C. A banister (with respect to the strip) is a path a-R-b
of G \ (A ∪ B ∪ C), such that a is a left-star, b is a right-star, and there are no edges between the
interior of R and V (S). (Here we distinguish between a-R-b and b-R-a; we follow the convention
that when describing a banister relative to a strip, the end which is the left-star is listed first.) A
banister can have length 1.

11.1 Let G be a Berge graph, such that there is no nondegenerate appearance of K4 in G. Let S =
(A,C,B) be a step-connected strip in G, and let a0-R0-b0 be a banister. Suppose that v ∈ V (G)\V (S)
has a neighbour in A ∪ C, and has no neighbour in B; and that P is a path in G \ (V (S) ∪ {a0})
from v to b0, such that there are no edges between P ∗ and V (S). Then v is a left-star.

Proof. Let F be a connected subset of V (P ), containing v and disjoint from V (R0), and with an
attachment in R0 \ a0.

(1) For every step a1-R1-b1, a2-R2-b2 , if v has a neighbour in R1 ∪ R2 then v is adjacent to a1, a2

and to no other vertices of R1 ∪ R2.

For assume v has a neighbour in R1 say, and hence in R1 \ b1. Now R0, R1, R2 form a prism K
say, and no vertex in F is major with respect to K since no vertex in F is adjacent to b1 or b2. Yet
F has an attachment in R0 \ a0 and one in R1 \ b1, so its set of attachments is not local. Since b1 is
not an attachment of F , it follows from 10.4 that F has an attachment in R2; and therefore v has
a neighbour in R2 \ b2. If v has any neighbours in R1 ∪ R2 different from a1, a2, say a neighbour in
the interior of R1, then v can be linked onto the triangle b0, b1, b2, via the paths v-P -b0, from v to b1

with interior in R1 \ a1, and from v to b2 with interior in R2; but this contradicts 2.4. This proves
(1).

From (1) it follows that v has no neighbour in C (since every vertex is in a step), and therefore v
has at least one neighbour in A; and from (1) again, v has no nonneighbour in A (for otherwise we
could choose the step in (1) with v adjacent to a1 and not to a2, since the strip is step-connected.)
This proves 11.1.

11.2 Let G be Berge, such that there is no appearance of K4 in G. Let S = (A,C,B) be a step-
connected strip in G, and let a0-R0-b0 be a banister. Let v ∈ V (G) \V (S) have a neighbour in V (S),
and be nonadjacent to b0. Let P be a path in G \ (V (S) ∪ {a0}) from v to b0, and let Q be a path
in G \ (V (S) ∪ {b0}) from v to a0, such there are no edges from P ∗ ∪ Q∗ to V (S). Then either v is
B-complete, or v is a left-star.

Proof. If v has no neighbours in B, then by 11.1 v is a left-star, so we may assume v has a neighbour
in B. Since we may assume it is not B-complete, there is a step a1-R1-b1, a2-R2-b2 such that v is
adjacent to b1 and not to b2. Let F ⊆ V (Q) be connected, containing v and disjoint from V (R0),
with an attachment in R0 \ b0. Now R0, R1, R2 form a prism K say, and no vertex of F is major with
respect to K since none of them has two neighbours in {b0, b1, b2}. But there is an attachment of F
in R0 \ b0, and b1 is also an attachment of F , so its set of attachments is not local with respect to
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the prism. By 10.1, one of 10.1.1-4 holds. Since there is no appearance of K4 in G, 10.1.1 does not
hold. Also 10.1.2, 10.1.3 do not hold, since v is the only vertex in F with neighbours in A ∪ B. So
10.1.4 holds, and therefore F has an attachment in R2, and so v has a neighbour in R2. But then v
can be linked onto the triangle {b0, b1, b2}, via v-P -b0, v-b1, and the path from v to b2 with interior
in R2, contrary to 2.4. This proves 11.2.

We remark:

11.3 Let G be Berge, containing no even prism, let S = (A,C,B) be a step-connected strip in G,
and let a0-R0-b0 be a banister. Then every rung of the strip has odd length, and so does R0.

Proof. Let a1-R1-b1, a2-R2-b2 be a step. Then these three paths form a prism, and it is not an
even prism by hypothesis. In particular R0 has odd length, by 7.2. For any rung a-R-b, the hole
a0-R0-b0-b-R-a-a0 has even length, and so R is odd. This proves 11.3.

11.4 Let G be a Berge graph, such that there is no appearance of K4 in G and no even prism in G.
Let S = (A,C,B) be a step-connected strip in G. Let F ⊆ V (G)\ (A∪B∪C) be connected, such that
there are no edges between F and A∪B∪C. There is no anticonnected set Q ⊆ V (G)\(A∪B∪C∪F )
such that:

• some right-star has a neighbour in F and a nonneighbour in Q,

• some vertex in B has a nonneighbour in Q,

• some left-star with a neighbour in F is Q-complete,

• every vertex in Q has a neighbour in F ,

• every vertex in Q has a neighbour in A ∪ B ∪ C, and

• no vertex in Q is a left-star.

Proof. Suppose that such a set Q exists. Let a0 be a left-star with a neighbour in F complete to
Q, and let b0 be a right-star with a neighbour in F and a nonneighbour in Q. Let R0 be a path
between a0 and b0 with interior in F . Hence a0-R0-b0 is a banister. By 11.3 R0 and every rung
has odd length. Since some vertex in B has a nonneighbour in F , there is an antipath q1- · · · -qn in
Q such that q1 is not adjacent to b0 and qn is not adjacent to some vertex in B. Choose such an
antipath with n minimum. Let B1 be the set of neighbours of qn in B, and B2 = B \B1. So B2 6= ∅.
Since qn is not a left-star, and there is a path from qn to b0 with interior in F , it follows from 11.1
that B1 6= ∅. Choose a step a1-R1-b1, a2-R2-b2 with b1 ∈ B1 and b2 ∈ B2.

(1) n ≥ 2.

For suppose n = 1. Then q1 is adjacent to a0 and to b1, and not to b0, so by 10.4, q1 has a neighbour
in R2 \ b2. Since q1 also has a neighbour in F , it can be linked onto the triangle {b0, b1, b2}, via a
path from q1 to b0 with interior in F , the path q1-b1, and the path from q1 to b2 with interior in R2,
contrary to 2.4. This proves (1).
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(2) (A ∪ B ∪ C, {b0, q1, . . . , qn}) is balanced.

For b1 ∈ B1 is complete to {b0, q1, . . . , qn} from the minimality of n. But b1 has no neighbour in F ,
so by 2.6, (F, {b0, q1, . . . , qn}) is balanced. Since F is connected and every vertex in {b0, q1, . . . , qn}
has a neighbour in F , the claim follows from 2.7.1. This proves (2).

Now the path a0-a2-R2-b2-b1 is odd, and its ends are complete to {q1, . . . , qn}; so by (2) and
2.1, there are two adjacent vertices u, v in this path, both complete to {q1, . . . , qn}. Since b2 is not
adjacent to qn, it follows that u, v ∈ {a0} ∪ V (R2 \ b2). Suppose that the hole a0-R0-b0-b2-R2-a2-a0

has length ≥ 6. Then one of u, v is nonadjacent to both b0, b2, say v, and hence n is odd, since
v-b0-q1- · · · -qn-b2-v is an antihole; but b1 is adjacent to b0 and b2, and has no other neighbours in this
hole, and is complete to {q1, . . . , qn}, contrary to 3.3. So the hole has length 4, and in particular a2

is adjacent to b2 and is complete to {q1, . . . , qn}, and a0 is adjacent to b0. Hence n is odd, because
b1-a2-b0-q1- · · · -qn-b2-a0-b1 is an antihole, and so a2-b0-q1- · · · -qn-b2 is an odd antipath, contrary to
(2). This proves 11.4.

A triple (S, F,Q) is called a 1-breaker in G if it satisfies the following.

• S = (A,C,B) is a step-connected strip in G,

• F ⊆ V (G) \ V (S) is connected, such that there are no edges between F and V (S), and there
is a left- and right-star, both with neighbours in F ,

• Q ⊆ V (G) \ (V (S) ∪ F ) is anticonnected,

• some vertex in A has a nonneighbour in Q, and so does some vertex in B,

• every vertex in Q has a neighbour in F and a neighbour in A ∪ B ∪ C,

• some left-star with a neighbour in F is Q-complete,

• no vertex in Q is a left-star.

11.5 Let G be a Berge graph, such that there is no appearance of K4 in G and no even prism in G.
If there is a 1-breaker in G then G admits a balanced skew partition.

Proof. Suppose that some 1-breaker (S, F,Q) exists, and for fixed G and S, choose F and Q with
|F |+ |Q| maximum such that all the hypotheses of the theorem remain satisfied (possibly exchanging
“left” and “right”). Let N be the set of vertices of G not in F but with a neighbour in F . Hence
Q ⊆ N , and every left- or right-star with a neighbour in F is in N . Let S = (A,C,B).

(1) Every vertex in N has a neighbour in A ∪ B ∪ C.

For suppose v ∈ V (G) \ F has a neighbour in F and has none in A ∪ B ∪ C. Let F ′ = F ∪ {v}.
Certainly F ′ is connected and disjoint from A ∪ B ∪ C, and there are no edges between F ′ and
A∪B∪C; and F ′ is disjoint from Q since every vertex in Q has a neighbour in A∪B∪C. It follows
that the hypotheses of the theorem remain true, contrary to the maximality of |F |+ |Q|. This proves
(1).
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(2) There is no left- or right-star in Q, and every left- and right-star with a neighbour in F is
Q-complete.

For we are given that there is no left-star in Q. Suppose there is a right-star with a neighbour
in F , either in Q or with a nonneighbour in Q. Then there is an antipath with interior in Q, between
B and some right-star with a neighbour in F ; but the set of vertices in such an antipath contradicts
11.4. So there is no right-star in Q, and every right-star with a neighbour in F is Q-complete. We are
given that there is a right-star with a neighbour in F , and so all hypotheses of the theorem are true
with “left” and “right” exchanged. It follows by the same argument, therefore, that every left-star
with a neighbour in F is Q-complete. This proves (2).

Since Q ⊆ N is anticonnected, it is contained in some anticonnected component of N , say N1.
We may assume that G admits no balanced skew partition, for otherwise the theorem holds.

(3) There is a left- or right-star in N1.

For let N2 be the union of all the anticomponents of N different from N1. Assume that no left-
and right-star is in N1. Let Y = V (G) \ (F ∪ N); then there are no edges between F and Y , from
definition of N . Also, A ∪ B ∪ C ⊆ Y , so in particular Y 6= ∅, and also N2 6= ∅ since by hypothesis
there is a left-star in N . Hence (F ∪ Y,N) is a skew partition of G. By (1), every vertex in N has a
neighbour in A ∪ B ∪ C and in F , and so every vertex in N1 has a neighbour in B (since otherwise
it would be a left-star by 11.1 and therefore belong to N2). Now (B ∪ C,N1) is balanced, by 2.6,
since any left-star is complete to N1 and anticomplete to B ∪C. Since B ∪ C is connected (because
every vertex of B ∪C is in a step and the strip is step-connected), it follows from 2.7.1 that (F,N1)
is balanced. From 4.5, G admits a balanced skew partition, a contradiction. This proves (3).

From (3), N1 6= Q; and hence there is a vertex v ∈ N \ Q with a nonneighbour in Q. From the
maximality of |F | + |Q|, replacing Q by Q ∪ {v} violates one of the hypotheses of the theorem. But
v has a neighbour in A ∪ B ∪ C by (1); v 6∈ F since it belongs to N ; v is not a left-star since all
left-stars in N are Q-complete by (2); and so no left-star in N is Q ∪ {v}-complete. Since they are
all Q-complete, it follows that v is nonadjacent to every left-star in N . Similarly v is nonadjacent
to every right-star in N .

(4) v is complete to A ∪ B.

For suppose not; then from the symmetry we may assume that v has a nonneighbour in B. By
11.2, v is a left-star, a contradiction. This proves (4).

Choose an antipath v-q1- · · · -qk in Q, such that qk has a nonneighbour in A∪B, with k minimum.
From (4), k ≥ 1. From the minimality of k, {v, q1, . . . , qk−1} is complete to A ∪ B. Let A1 be the
set of neighbours of qk in A, and A2 = A\A1, and define B1, B2 ⊆ B similarly. So A2∪B2 is nonempty.

(5) k is odd.
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For A2 ∪ B2 is nonempty. If there exists a2 ∈ A2, let b0 ∈ N be a right-star; then

b0-v-q1- · · · -qk-a2-b0

is an antihole, so it follows that k is odd. The result follows similarly if B2 is nonempty.

(6) A1 is complete to B2, and A2 is complete to B1.

For suppose that a1 ∈ A1 and b2 ∈ B2 are nonadjacent. Let b0 ∈ N be a right-star; then by
(5),

b0-v-q1- · · · -qk-b2-a1-b0

is an odd antihole, a contradiction. So A1 is complete to B2 and similarly A2 is complete to B1.
This proves (6).

(7) A1, B1, A2, B2 are all nonempty.

For we may assume that A2 is nonempty. Since the strip is step-connected, every vertex in A
has a nonneighbour in B, and so by (6), B1 6= B. Hence B2 is also nonempty. Since qk has a neigh-
bour in A ∪ B ∪ C it follows that it has a neighbour in B, by 11.1, and similarly it has a neighbour
in A. This proves (7).

Now the strip is step-connected, and so there is a step a1-R-b2, a2-R
′-b1 with a1 ∈ A1 and a2 ∈ A2.

Since a1 is not adjacent to b1 it follows that b1 ∈ B1 by (6), and similarly b2 ∈ B2. Also by (6), R
and R′ both have length 1. Let a0 ∈ N be a left-star and b0 ∈ N a right-star. Since v-a1-a0-b0-b2-v
is not an odd hole, it follows that a0 is not adjacent to b0.

For every vertex u ∈ V (G) \ F , let Fu be the set of vertices in F adjacent to u.

(8) Fa0
∩ Fb0 = ∅, and every path in F between Fa0

and Fb0 meets both Fv and Fqk
.

For if f ∈ Fa0
∩ Fb0 , then f -a0-a1-b2-b0-f is an odd hole, so Fa0

∩ Fb0 = ∅. Let p1-P -p2 be a
path in F between Fa0

and Fb0 , with V (P ) minimal, where p1 ∈ Fa0
and p2 ∈ Fb0 . Hence

a0-p1-P -p2-b0-b1-a2-a0

is a hole, and so P is odd. If P does not meet Fv then

v-a1-a0-p1-P -p2-b0-b1-v

is an odd hole, while if P does not meet Fqk
then

qk-a0-p1-P -p2-b0-qk

is an odd hole, in both cases a contradiction. This proves (8).

(9) Every path in F between Fv and Fqk
meets both Fa0

and Fb0 .
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For suppose not; then since F is connected and Fa0
∩ Fb0 = ∅, there is a connected subset F ′

of F meeting both Fv , Fqk
and meeting exactly one of Fa0

, Fb0 . From the symmetry we may assume
F ′ meets Fa0

and not Fb0 . Define qk+1 = a2; then qk+1 has no neighbour in F ′, so we may choose i
with 1 ≤ i ≤ k + 1 minimum such that qi has no neighbour in F ′. Note that v has a neighbour in F ′

(because F ′ meets Fv). If i is even, then b0-v-q1- · · · -qi is an odd antipath; its internal vertices have
neighbours in F ′, and its ends do not, and a1 is complete to its interior and has no neighbours in
F ′, contrary to 2.2 in the complement. If i is odd, then b1-a0-v-q1- · · · -qi is an odd antipath, and its
internal vertices have neighbours in F ′ and its ends do not, and again a1 is complete to its interior
and has no neighbours in F ′, contrary to 2.2 in the complement. This proves (9).

Let f1-f2- · · · -fn be a minimal path in F between Fa0
and Fb0 , where f1 ∈ Fa0

and fn ∈ Fb0 . Then
n ≥ 2 by (8), and by (8) and (9) it follows that f1-f2- · · · -fn is also a minimal path between Fv and
Fqk

, so we may assume that f1 ∈ Fv, fn ∈ Fqk
, and no other vertex of the path is in either set. Then

f1-f2- · · · -fn-qk-a0-f1 and f1-f2- · · · -fn-b0-b1-v-f1 are both holes, of different parity, a contradiction.
This proves 11.5.

12 Attachments in a staircase

For the next step of our approach towards the long odd prism, let us fix a little more than just the
strip. Let S = (A,C,B) be a step-connected strip in G, and let a0-R0-b0 be a banister of length ≥ 3.
We call the pair K = (S,R0) a staircase, and define V (K) = V (R0) ∪ V (S). (For brevity we often
speak of the staircase K = (S = (A,C,B), a0-R0-b0), meaning that K = (S,R0) is a staircase, and
S = (A,C,B), and R0 has ends a0, b0, where a0 is a left-star and b0 is a right-star.) The staircase is
maximal if there is no staircase (S ′ = (A′, C ′, B′), a′0-R

′

0-b
′

0) such that A ⊆ A′, B ⊆ B′, C ⊆ C ′ and
V (S) ⊂ V (S ′).

Let K = (S = (A,C,B), a0-R0-b0) be a staircase in G. Some definitions (all with respect to K):

• A subset X ⊆ V (K) is local if X is a subset of one of V (S), V (R0), A ∪ {a0}, B ∪ {b0}

• v ∈ V (G) \ V (K) is minor if its set of neighbours in V (K) is local

• v ∈ V (G) \ V (K) is major if it has neighbours in all of A,B and V (R0)

• v ∈ V (G)\V (K) is left-diagonal if v is (A∪{b0})-complete, and right-diagonal if it is (B∪{a0})-
complete

• v ∈ V (G) \ V (K) is central if it is (A ∪ B)-complete, and is nonadjacent to both a0 and b0.

First let us examine the possible types of vertices outside the staircase.

12.1 Let G be a Berge graph, such that there is no appearance of K4 in G, no even prism in G,
and no 1-breaker in G. Let K = (S = (A,C,B), a0-R0-b0) be a maximal staircase in G, and let
v ∈ V (G) \ V (K). Then exactly one of the following holds:

1. v is minor; and in that case, either v is a left-star or v is not A-complete, and either v is a
right-star or v is not B-complete.
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2. v is major; and in that case, it is either left- or right-diagonal or central.

3. v is a left-star with a neighbour in R0 \ a0, or a right-star with a neighbour in R0 \ b0.

Proof.

(1) If v is left- or right-diagonal then the theorem holds.

For assume v is right-diagonal say. If it has no neighbours in A∪C then statement 3 of the theorem
holds, so we assume there is a step a1-R1-b1, a2-R2-b2 such that v has a neighbour in R1 \ b1. Hence
it can be linked onto the triangle {a0, a1, a2}, via v-a0, the path from v to a1 with interior in R1 \ b1,
and the path from v to a2 with interior in R2, and so by 2.4, v has a neighbour in A. So it is major,
and therefore statement 2 holds. This proves (1).

(2) If v is adjacent to both a0, b0 then the theorem holds.

For then it has a neighbour in R∗

0, since R0 is odd and has length ≥ 3 and v is adjacent to both
its ends; and we may assume that v has a neighbour in V (S), for otherwise statement 1 of the
theorem holds. If v has no neighbour in B then it is a left-star by 11.1, and statement 3 of the
theorem holds, so we may assume it has neighbours in B and similarly in A. Hence it is major. Since
(S, V (R∗

0), {v}) is not a 1-breaker, v does not have nonneighbours in both A and B, so it is either
left- or right-diagonal and the claim follows from (1). This proves (2).

(3) If v is adjacent to a0 and not to b0 then the theorem holds.

For we may assume v has a neighbour in V (S). If v has a neighbour in R∗

0, then by 11.2 it is
either B-complete (when it is right-diagonal and the claim follows from (1)) or a left-star (when
statement 3 holds). So we may assume it has no neighbour in R∗

0. We may assume it has a neigh-
bour in B ∪C, for otherwise it is minor and statement 1 of the theorem holds; let a1-R1-b1, a2-R2-b2

be a step such that v has a neighbour in R1 \ a1, and in addition such that v is not adjacent to
b2 if possible. By 10.4, v has a neighbour in R2. If a2 is its only neighbour in R2, then the strip
S′ = (A∪ {v}, C,B) is step-connected, since v-R-b1, a2-R2-b2 is an S′-step where R is the path from
v to b1 with interior in R1 \ a1; and since v is adjacent to a0 and has no other neighbours in R0,
this is contrary to the maximality of the staircase. So v has a neighbour in R2 \ a2; and hence v can
be linked onto the triangle {b0, b1, b2} via v-a0-R0-b0, and for i = 1, 2, the path from v to bi with
interior in Ri \ai. By 2.4 it follows that v is adjacent to both b1, b2; and hence from our choice of the
step R1, R2, and since the strip is step-connected, it follows that v is right-diagonal, and the claim
follows from (1). This proves (3).

(4) If v is nonadjacent to both a0, b0 then the theorem holds.

For then we may assume that v has a neighbour in V (S), since otherwise it is minor, and state-
ment 3 of the theorem holds. Suppose first that v also has a neighbour in R∗

0. If v is a left-star then
statement 3 holds, so we assume not; and then by 11.2, v is B-complete. Similarly v is A-complete
and therefore central, and statement 2 holds. Thus we may assume that v has no neighbour in
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V (R0), and therefore v is minor. We claim that statement 1 holds, and to show this we may assume
that v is A-complete. Let a1-R1-b1, a2-R2-b2 be a step; then by 10.4, v has no neighbour in R1 \ a1

or in R2 \ a2, and therefore v is a left-star, and statement 1 holds. This proves (4).

But (2)-(4) cover all the possibilities, up to symmetry, and this completes the proof of 12.1.

Now let us do the same thing for connected sets.

12.2 Let G be a Berge graph, such that there is no appearance of K4 in G, no even prism in G,
and no 1-breaker in G. Let K = (S = (A,C,B), a0-R0-b0) be a maximal staircase in G, and let
F ⊆ V (G) \ V (K) be connected, such that its set of attachments in V (K) is not local with respect to
K. Then F contains either:

1. a major vertex, or

2. a banister u-R-v, such that there are no edges between V (R) and V (R0), or

3. (up to symmetry) a path u-R-v, where u is a left-star, v has a neighbour in R0 \ a0, and there
are no edges between V (R \ u) and V (S).

Proof. Let X be the set of attachments of F in V (K). We may assume that F is minimal (con-
nected) such that X is not local. Now a subset of V (K) is local if and only if it does not meet both
A ∪ C and V (R0 \ a0) and does not meet both B ∪ C and V (R0 \ b0); so we may assume that X
meets both A∪C and V (R0 \ a0), and therefore from the minimality of F , there is a path f1- · · · -fk

where F = {f1, . . . , fk} and f1 is the unique vertex of F with a neighbour in A ∪ C, and fk is the
unique vertex of F with a neighbour in V (R0 \ a0). If k = 1 then the claim follows from 12.1, so we
may assume that k ≥ 2.

(1) If f1 is A-complete then the theorem holds.

For assume f1 is A-complete. If there is no edge between F and B ∪ C, then statement 3 of
the theorem holds, so we assume that there is such an edge. Choose i with 1 ≤ i ≤ k minimum
such that fi has a neighbour in B ∪ C. Suppose first that there is no edge between {f1, . . . , fi} and
V (R0). Let a1-R1-b1, a2-R2-b2 be a step such that fi has a neighbour in R1 \ a1, and in addition
such that fi is nonadjacent to b2 if possible. With respect to the prism formed by R0, R1, R2, the
set of attachments of {f1, . . . , fi} is not local, and so by 10.4, i ≥ 2 and its attachments in the prism
are a1, a2, b1, b2. Hence the only edges between {f1, . . . , fi} and V (R1 ∪R2) are f1a1, f1a2, fib1, fib2.
From our choice of the step it follows that fi is B-complete. Consequently any step satisfies the con-
dition we imposed on R1, R2, and so the same conclusion follows for every step; that is, statement 2
of the theorem holds. Now assume that there is an edge between {f1, . . . , fi} and V (R0). Suppose
that i < k; then there is no edge between {f1, . . . , fi} and R0 \ a0, from the minimality of F , and
so a0 is an attachment of {f1, . . . , fi}. But this set also has an attachment in B ∪ C, so its set of
attachments is not local, contrary to the minimality of F . This proves that i = k. Since k ≥ 2, the
minimality of F implies that there are no edges between {f2, . . . , fk} and V (R0 \ b0); and so b0 is the
unique neighbour of fk in R0. Hence there are no edges between {f2, . . . , fk} and A ∪ C, from the
minimality of F . Also, there are no edges between {f1, . . . , fk−1} and B ∪ C, from the minimality
of i. Choose a step a1-R1-b1, a2-R2-b2 such that fk is adjacent to b1, and in addition such that fk is
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nonadjacent to b2 if possible. Since R1 is odd and a1-f1- · · · -fk-b1-R1-a1 is a hole, it follows that k
is even. Since a2-f1- . . . -fk-b0-b2-R2-a2 is not an odd hole, fk is adjacent to b2, and therefore to all
B from our choice of the step. Since a1-f1- · · · -fk-b0-R0-a0-a1 is not an odd hole and R0 is odd, it
follows that f1 is adjacent to a0. But then we can add f1 to A, fk to B, and {f2, . . . , fk−1} to C,
contrary to the maximality of the staircase. This proves (1).

By (1), we may assume there is a step a1-R1-b1, a2-R2-b2 such that f1 has a neighbour in R1 \ b1,
and a2 is not adjacent to f1. (To see this, first choose a step a1-R1-b1, a2-R2-b2 such that f1 has a
neighbour in R1 \ b1; this satisfies our requirements unless a2 is adjacent to f1. We may therefore
assume that f1 has a neighbour and a non-neighbour in A; but then since the strip is step-connected,
we may choose a step a1-R1-b1, a2-R2-b2 so that f1 is adjacent to a1 and not to a2, and again our
requirements are satisfied.) Then R0, R1, R2 form a prism K ′ say, and the set of attachments of F
in V (K ′) is not local with respect to K ′. Suppose that some vertex v in F is major with respect to
K ′. Then we claim v is major with respect to K. For it has a neighbour in A and in B, and if it
has none in R0 then it is adjacent to all of a1, a2, b1, b2, in which case v-a1-a0-R0-b0-b2-v is an odd
hole. So v is major with respect to K, and hence the theorem holds. Hence we may assume that no
vertex in F is major with respect to K ′, and so we may apply 10.1. By hypothesis, 10.1.1 does not
hold. Since no vertex of F is adjacent to a2, 10.1.2 does not hold.

Suppose that 10.1.3 holds. Since f1 is not adjacent to a2, it follows that f1 is adjacent to a0, a1,
and there exists i with 2 ≤ i ≤ k such that fi is adjacent to b0, b1, and there are no other edges
between {f1, . . . , fi} and V (K ′). Then we can add f1 to A, fi to B and {f2, . . . , fi−1} to C, contrary
to the maximality of the staircase. So 10.1.3 does not hold.

Hence 10.1.4 holds, that is, there is a path p1-P -p2 in F , such that for some j with 0 ≤ j ≤ 2,
either:

• p1 is adjacent to the two vertices in {a0, a1, a2} \ {aj}, and p2 has neighbours in Rj \ aj, and
there are no other edges between V (P ) and V (K ′) \ {aj}, or

• p1 is adjacent to the two vertices in {b0, b1, b2} \ {bj}, and p2 has neighbours in Rj \ bj, and
there are no other edges between V (P ) and V (K ′) \ {bj}

From the minimality of F , F = V (P ). If j > 0 then in the first case we can add p1 to A and V (P \p1)
to C, contrary to the maximality of the staircase; and in the second case we do the same with A and
B exchanged. So j = 0. The first case is impossible since no vertex in F is adjacent to a2; and the
second case is impossible since f1 ∈ F = V (P ) and f1 has a neighbour in R1 \ b1. This proves 12.2.

The previous result can be strengthened as follows.

12.3 Let G be a Berge graph, such that there is no appearance of K4 in G, no even prism in G,
and no 1-breaker in G. Let K = (S = (A,C,B), a0-R0-b0) be a maximal staircase in G, and let
F ⊆ V (G) \ V (S) be connected, containing a left-star and with an attachment in B ∪ C. (Note that
F may intersect V (R0).) Then F contains either a major vertex or a banister.

Proof. We may assume F is minimal (possibly exchanging A and B); so F is the vertex set of a
path f1- · · · -fk, where f1 is the unique left-star in F , and fk is the only vertex in F with a neighbour
in B ∪ C. Since f1 is a left-star and fk has a neighbour in B ∪ C it follows that k ≥ 2. We may
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assume there is no major vertex in F .

(1) We may assume that none of f1, . . . , fk is a right-star, and that fk is not B-complete.

For if there is a right-star in F , then it must be fk; and then from the minimality of F (exchanging
A and B), no vertex of F different from f1 has a neighbour in A∪C, and so f1- · · · -fk is a banister.
So we may assume that there is no right-star in F . Since fk is neither major nor a right-star, by
12.1 it is not B-complete. This proves (1).

(2) F ∩ V (R0) = ∅, and there are no edges between {f2, . . . , fk} and V (R0 \ b0).

For by (1), b0 /∈ F . Suppose that either {f2, . . . , fk} intersects V (R0 \ b0), or there is an edge
joining these two sets. Choose i with 2 ≤ i ≤ k maximum such that either fi ∈ V (R0 \ b0) or fi

has a neighbour in V (R0 \ b0). We claim that fi /∈ V (R0). For if i = k this is true, since fk has
neighbours in B ∪ C; and if i < k then fi+1 has no neighbour in V (R0 \ b0) from the maximality
of i, and therefore again fi /∈ V (R0). So none of fi, . . . , fk belong to V (R0). Since {fi, . . . , fk} has
attachments in V (R0 \ b0) and in B ∪ C, and contains no major vertex or left- or right-star, this
contradicts 12.2. So {f2, . . . , fk} is disjoint from V (R0 \ b0) and hence from V (R0), and there are
no edges between {f2, . . . , fk} and V (R0 \ b0). Since there is an edge between {f2, . . . , fk} and f1 it
follows that f1 /∈ V (R0), and so F ∩ V (R0) = ∅. This proves (2).

Let a1-R1-b1, a2-R2-b2 be a step such that fk has a neighbour in R1 \ a1 and fk is nonadjacent
to b2. (To see that such a step exists, we argue as follows: since fk has a neighbour in B ∪ C, there
is a step a1-R1-b1, a2-R2-b2 such that fk has a neighbour in R1 \ a1, and so we may assume that fk

is adjacent to b2. Hence fk has a neighbour and a nonneighbour in B, and the required step exists
since the strip is step-connected.)

(3) f1a2 is the only edge between F and R2.

For if fk has a neighbour in R2, then its neighbour set in the prism formed by R0, R1, R2 is not
local with respect to that prism, and therefore by 10.4, fk has a neighbour in R0; and then by 12.1
it is major, a contradiction. So fk has no neighbours in R2. From the minimality of F , there are no
edges between F and R2 \ a2. Suppose that a2 has a neighbour in {f2, . . . , fk}, and choose i maxi-
mum such that a2 is adjacent to fi. Since fk has a neighbour in V (R1 \ a1), the set of attachments
of {fi, . . . , fk} is not local with respect to the prism formed by R0, R1, R2; and since b2 is not an
attachment, it follows from 10.4 that there is an attachment of {fi, . . . , fk} in V (R0). By (2), b0 has
a neighbour in {fi, . . . , fk}; but then {fi, . . . , fk} violates 12.2. This proves (3).

(4) b0 has neighbours in {f1, . . . , fk−1}.

For first suppose that b0 has no neighbour in F . Since b2 is not an attachment of F , it follows
from 10.4 (applied to F and the prism formed by R0, R1, R2) that there is an edge between F and
V (R0), and so f1 has a neighbour in R0. But then f1 can be linked onto the triangle {b0, b1, b2},
via the path between f1 and b0 with interior in V (R0), the path between f1 and b1 with interior
in {f2, . . . , fk} ∪ (V (R1) \ {a1, b1}), and the path f1-a2-R2-b2. This contradicts 2.4, and therefore
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proves that b0 has a neighbour in F . Suppose that fk is the only neighbour of b0 in F . Then
since fk is not major, its unique neighbour in R1 is b1. From 11.3, R1, R2 are odd, and from the
hole f1- · · · -fk-b0-b2-R2-a2-f1 it follows that k is odd. If a1 has no neighbour in {f2, . . . , fk} then
f1- · · · -fk-b1-R1-a1-f1 is an odd hole, and if a1 has a neighbour in {f2, . . . , fk} then {f2, . . . , fk}
violates 12.2. So fk is not the unique neighbour of b0 in F . This proves (4).

Choose i with 1 ≤ i < k minimum such that b0 is adjacent to fi, and let R′

0 be the path
f1- · · · -fi-b0. There are no edges between {f1, . . . , fi} and B ∪ C from the minimality of F , and
from 12.2 there are no edges between {f2, . . . , fi, b0} and A ∪ C. Hence f1-R

′

0-b0 is a banister, and
in particular the three paths R′

0, R1, R2 form a prism, K ′ say. Let F ′ = {fi+1, . . . , fk}. Then F ′ is
connected and disjoint from V (K ′), and F ′ has attachments in R1 \ a1, and in R′

0 \ b0, and by (3) it
has no attachments in R2. By 10.4 applied to K ′, it follows that F ′ contains a path with one end
adjacent to a1, f1, the other end adjacent to b0, b1, and with no more edges between this path and
V (R′

0) ∪ V (R1). Since the only vertex of F ′ adjacent to f1 is f2, and that only if i = 1, and the
only vertex in F ′ adjacent to b1 is fk, it follows that i = 1, and the only edges between {f2, . . . , fk}
and V (R′

0) ∪ V (R1) are fkb1, fkb0, f2a1, f2f1. But then by (2), a1 can be linked onto the triangle
{b0, b1, fk}, via a1-a0-R0-b0, a1-R1-b1, a1-f2- · · · -fk, contrary to 2.4. This proves 12.3.

Now we turn to anticonnected sets of major vertices. We have already defined what it is for a
staircase to be maximal in G. We say a staircase K = (S = (A,C,B), a0-R0-b0) is strongly maximal if
it is maximal, and in addition, either C 6= ∅, or there is no staircase (S ′, R′) in G with V (S) ⊂ V (S ′).
A 2-breaker in G is a pair (K,Q) such that

• K = (S = (A,C,B), a0-R0-b0) is a strongly maximal staircase in G,

• Q ⊆ V (G) \ V (K) is anticonnected,

• some vertex of A is Q-complete, and some vertex of B is Q-complete

• a0, b0 are not Q-complete, and

• some vertex of R0 is Q-complete.

We observe that if q is a central vertex with respect to a strongly maximal staircase K, then
(K, {q}) is a 2-breaker, so it follows from the next result that we no longer have to worry about
central vertices.

12.4 Let G be a Berge graph, containing no appearance of K4, no even prism, and no 1-breaker. If
there is a 2-breaker in G then G admits a balanced skew partition.

Proof. Choose a 2-breaker (K,Q) in G, with notation as above, such that for fixed K the set Q is
maximal. Let a0-S-s and b0-T -t be the subpaths of R0 such that s is the unique Q-complete vertex
of S, and t is the unique Q-complete vertex of T .

(1) S, T both have odd length, and therefore s, t are different.

For choose a ∈ A and b ∈ B, both Q-complete; then a-a0-S-s has length > 1, and its ends are
Q-complete and its internal vertices are not, and b is also Q-complete and has no neighbours in the
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interior of a-a0-S-s. By 2.2, this path is even, and so S is odd, and similarly T is odd. Since R0 is
odd it follows that s, t are different. This proves (1).

(2) Every vertex in A ∪ B is Q-complete.

For suppose some vertex in A say is not Q-complete. Choose a step a1-R1-b1, a2-R2-b2 such that a1 is
Q-complete and a2 is not. Since s, t are different it follows that t is nonadjacent to both a0, a2; and so
by 2.8, Q cannot be linked onto the triangle {a0, a1, a2}. Hence there is no Q-complete vertex in R2.
Assume s, t are nonadjacent; then the subpath of R0 between them is odd, and a1 has no neighbour
in its interior, so by 2.2 it contains another Q-complete vertex u say; and then s-S-a0-a2-R2-b2-b0-T -t
is an odd path, its ends are Q-complete and its internal vertices are not, and u has no neighbour
in its interior, contrary to 2.2. So s, t are adjacent. Hence the hole a0-R0-b0-b2-R2-a2-a0 has length
≥ 6, and the only Q-complete vertices in it are the adjacent vertices s, t. By 2.10 Q contains a hat
or a leap; and in either case there is a vertex q ∈ Q with no neighbours in R2. But q is adjacent to
s and a1, contrary to 10.4 applied to the prism formed by R0, R1, R2. This proves (2).

(3) Every major vertex is either in Q or complete to Q.

For let v be a major vertex, and suppose v 6∈ Q, and Q′ is anticonnected, where Q′ = Q ∪ {v}.
From 12.1, v is either left- or right-diagonal, or central; and in either case it has neighbours a1 ∈ A
and b1 ∈ B that are nonadjacent. It follows that a1-a0-R0-b0-b1 is an odd path of length ≥ 5, and
its ends are Q′-complete. From the maximality of Q, none of its internal vertices are Q′-complete,
and so by 2.1, Q′ contains a leap q1, q2 say. So neither of q1, q2 has neighbours in the interior of R0;
but this is impossible since one of them is in Q and is therefore adjacent to s. This proves (3).

(4) There is no edge uv of G \ V (S) such that u is a left-star, v is a right-star, and u, v are not
Q-complete.

For suppose uv is such an edge. Since u, v have neighbours in A ∪ B, they do not belong to R∗

0.
Since u, v have nonneighbours in Q and Q is anticonnected, there is an antipath u-q1- · · · -qk-v with
q1, . . . , qk ∈ Q. Choose a step a1-R1-b1, a2-R2-b2. Then a1-b2-u-q1- · · · -qk-v-a1 is an antihole, so k is
even. Hence every Q-complete vertex w say is adjacent to one of u, v, for otherwise w-u-q1- · · · -qk-v-w
would be an odd antihole. In particular, there are no Q-complete vertices in C; and therefore a1-R1-b1

is an odd path with both ends Q-complete and no internal vertex Q-complete. Since a2 is Q-complete
and has no neighbour in the interior of R1, it follows from 2.2 that R1 has length 1, and similarly
R2 has length 1. Since this step was arbitrary, and every vertex is in a step, it follows that C = ∅.
Suppose that u has no neighbour in R∗

0. Then all Q-complete vertices in R∗

0 are adjacent to v. In
particular, v is adjacent to s, t and hence does not belong to R0 (because v is a right-star); and
s-S-a0-a1-b1 is an odd path, its ends are (Q ∪ {v})-complete, its internal vertices are not, and the
(Q ∪ {v})-complete t has no neighbour in its interior, contrary to 2.2. So u has a neighbour in R∗

0,
and similarly so does v. Now b1-u-Q-v-a1 is an odd antipath, all its internal vertices have neighbours
in the connected set R∗

0, and its ends do not. By 2.1 applied in G, there is a leap; that is, there exist
adjacent a, b ∈ R∗

0, both Q-complete, such that b-u-Q-v-a is an antipath. Define A′ = A ∪ {a} and
B′ = B ∪ {b}; then (A′, ∅, B′) is a strip (S ′ say) in G. For every edge a1b1 of G with a1 ∈ A and

75



b1 ∈ B, the pair a-b1, a1-b is a step of S ′ (in G), and every vertex of A∪B is in such an edge, and so
S′ is step-connected. Hence ((A′, ∅, B′), v-qk- · · · -q1-u) is a staircase in G, contrary to the hypothesis
that K is strongly maximal. This proves (4).

(5) Every path in G from an A-complete vertex to a vertex with a neighbour in B ∪ C contains
either a vertex in Q or a Q-complete vertex.

For suppose not, and choose a path p1- · · · -pk say, with k minimum such that p1 is A-complete
and pk has a neighbour in B ∪ C, and none of p1, . . . , pk is in Q or Q-complete. Since A ∪ B is
complete to Q it follows that none of p1, . . . , pk is in A∪B. Now p1 is not in C since no vertex in C is
A-complete (because they are all in steps), and if some pi ∈ C for i > 1, then p1- · · · -pi−1 is a shorter
path with the same properties, contrary to the minimality of k. So none of p1, . . . , pk is in V (S).
(Some may be in R0, however.) Since none of p1, . . . , pk is major by (3), it follows from 12.3 and
the minimality of k that p1- · · · -pk is a banister. From (4), since none of p1, . . . , pk is Q-complete, it
follows that k > 2. Let a1-R1-b1, a2-R2-b2 be a step. From the hole a1-p1- · · · -pk-b1-R1-a1 it follows
that k is even; and so a1-p1- · · · -pk-b2 is an odd path of length ≥ 5; its ends are Q-complete, and
its internal vertices are not. By 2.1, Q contains a leap a, b; so a-p1- · · · -pk-b is a path. But then
(A∪ {a}, C,B ∪ {b}) is a step-connected strip S ′ say (since for every nonadjacent a′ ∈ A and b′ ∈ B,
the two paths a-b′, a′-b make a step in this strip), and so (S ′, p1- · · · -pk) is a staircase, contrary to
the maximality of (S,R0). This proves (5).

Let X be the set of all Q-complete vertices in G; let M be the component of G \ (Q ∪ X) that
contains a0, and N the union of all the other components. By (5), b0 ∈ N , so N is nonempty, and
hence (M ∪N,Q ∪ X) is a skew partition of G. Choose b ∈ B; then b ∈ X, and it has no neighbour
in M by (5). Hence the skew partition is loose, and so G admits a balanced skew partition, by 4.2.
This proves 12.4.

12.5 Let G be a Berge graph, containing no appearance of K4, no even prism, no 1-breaker and no
2-breaker. Let K = (S = (A,C,B), a0-R0-b0) be a strongly maximal staircase in G. Let q1- · · · -qk

be an antipath such that q2, . . . , qk−1 are both left- and right-diagonal, and q1 is left- and not right-
diagonal, and qk is right- and not left-diagonal. Then q1 is a left-star and qk is a right-star.

Proof. First, obviously k ≥ 2. Let Q = {q1, . . . , qk}.

(1) If q1 is adjacent to a0 and qk to b0 then the theorem holds.

For then both a0, b0 are Q-complete, and q1 has a nonneighbour in B (for otherwise it would be
right-diagonal), and qk has a nonneighbour in A. Since R0 has odd length ≥ 3, it follows that each
of q1, . . . , qk has a neighbour in R∗

0. Since (S,R∗

0, Q) is not a 1-breaker, it follows that Q contains
a left-star, which must be q1; and similarly qk is a right-star. Then the theorem holds. This proves (1).

(2) If q1 is adjacent to a0 and qk is nonadjacent to b0 then the theorem holds.

For in this case, q1 has a nonneighbour in B, say b. From the antihole a0-b-q1- · · · -qk-b0-a0 we
deduce that k is odd. Now R0 is odd, of length ≥ 3, and its ends are complete to Q \ {qk}, and so is
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every a ∈ A, and a has no neighbour in the interior of R0, so by 2.2, there is a (Q \ {qk})-complete
vertex in the interior of R0, say t. Let T be the subpath of t to b0, and let us choose t with T of
minimum length, that is, such that t is the unique (Q\{qk})-complete vertex of T . If t is nonadjacent
to qk then t-b-q1- · · · -qk-t is an odd antihole (since k ≥ 2) , a contradiction. Hence t is Q-complete,
and in particular, all of q1, . . . , qk have neighbours in the interior of R0. By 11.4 it follows that Q
contains a left-star, which must be q1. We may assume that qk is not a right-star, for otherwise the
theorem holds. Since qk is right-diagonal, from 12.1 it follows that qk is major and therefore has
a neighbour in A. Choose a step a1-R1-b1, a2-R2-b2 such that qk is adjacent to a1, and if possible
nonadjacent to a2. Then t-T -b0-b1-R1-a1 is a path, and both its ends are Q-complete, and none of its
internal vertices are Q-complete (since q1 is a left-star). By 3.2 applied to t-T -b0-b1-R1-a1 and the
antipath b1-q1- · · · -qk-b0, it follows that t-T -b0-b1-R1-a1 has length 4, and so R1 has length 1 and T
has length 2; let its middle vertex be u say. Also from 3.2, u is Q \ {q1}-complete, and nonadjacent
to q1. Suppose that qk is nonadjacent to a2. Then there is no Q-complete vertex in R2. If t is
nonadjacent to a0 then a0-a2-R2-b2-b0-u-t is an odd path of length ≥ 5; its ends are Q-complete and
its internal vertices are not, so by 2.1, Q contains a leap, which is impossible since every vertex in
Q is adjacent to one of b0, b2. If t is adjacent to a0, then a0-a2-R2-b2-b0-R0-a0 is a hole of length
≥ 6, and the only Q-complete vertices in it are a0, t, and these are adjacent; so by 2.10 there is a
hat or a leap in Q; and again this is impossible since every vertex in Q is adjacent to one of b0, b2.
This proves that qka2 is an edge. From our choice of the step, it follows that qk is A-complete. But
therefore any step satisfies the condition we imposed on the step R1, R2; and therefore every path
in every step has length 1, that is C = ∅. Then S = (A ∪ {t}, ∅, B ∪ {u}) is a step-connected strip
in G, and (S ′, b0-qk- · · · -q1) is a staircase in G, contradicting that (S,R0) is strongly maximal. This
proves (2).

(3) If q1 is nonadjacent to a0 and qk is nonadjacent to b0 then the theorem holds.

For then a0-q1- · · · -qk-b0-a0 is an antihole, so k is even. Let A1 be the set of vertices in A adja-
cent to qk, and A2 = A \ A1; and let B1 be the set of vertices in B adjacent to q1, and B2 = B \B1.
If a1 ∈ A1 and b2 ∈ B2, then a1-b2-q1- · · · -qk-b0-a1 is not an odd antihole, and so a1 is adjacent to
b2; and hence A1 is complete to B2, and similarly A2 is complete to B1. If A1, B1 are both empty
then by 12.1, the theorem holds; so we may assume that A1 is nonempty. Choose a1 ∈ A1. Since
a1 is in a step, it has a nonneighbour in B, say b1. Since a1 is B2-complete it follows that b1 ∈ B1.
Then a1, b1 are both Q-complete, and since (K,Q) is not a 2-breaker, no internal vertex of R0 is
Q-complete. So a1-a0-R0-b0-b1 is an odd path of length ≥ 5, and its ends are Q-complete, and its
internal vertices are not. By 2.1, Q contains a leap. Since every vertex of Q except q1, qk has ≥ 2
neighbours in R0, it follows that k = 2 and q1, q2 both have no neighbours in the interior of R0. Then
S′ = (A ∪ {q2}, C,B ∪ {q1}) is a step-connected strip (since a1-q1, q2-b1 is a step of it), and (S ′, R0)
is a staircase, contrary to the maximality of (S,R0). This proves (3).

From (1),(2),(3), the theorem follows. This proves 12.5.
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13 The long odd prism

In this section we apply the results of the previous section to prove that a Berge graph containing a
long odd prism has a decomposition unless it is a line graph.

Let K = ((A,C,B), a0-R0-b0) be a strongly maximal staircase in a Berge graph G. From 12.1
there are three possible kinds of B-complete vertices; right-stars, vertices complete to both A and B,
and B-complete vertices adjacent to some but not all of A. The most difficult step in handling the
long odd prism is when there is a vertex of the third kind. In that case, we shall construct a subset
of B-complete vertices, including all these “mixed” vertices and some of the others, such that they
and their common neighbours form a cutset of the graph, and thereby give us a skew partition. We
define the set recursively as follows: initially let X be the set of all B-complete vertices adjacent to
some but not all of A. Then enlarge X by repeatedly applying the following two rules, in any order:

1. if there is an A ∪ B-complete vertex v that is not in X and not X-complete, add v to X

2. if there is a banister a-R-b such that a is not X-complete and b is not in X, add b to X.

The process eventually stops with some set X. We shall prove that X and its common neighbours
(say Y ) separate A (or at least the part of A that is not X-complete) from b0, and this will provide
a balanced skew partition. To prove that X ∪ Y separates G as described, we have to show that
every path from A to b0 meets X ∪ Y , and it turns out that there are only two kinds of paths
to worry about; banisters, and 1-vertex paths consisting of a major vertex. Any banister a-R-b is
automatically hit, because of the rule above; if a 6∈ Y then b ∈ X. The 1-vertex paths are trickier.
Let v be a major vertex. If it is B-complete, then it is in either Y or X by the rule above, so assume
it is not B-complete. By 12.1, it is left- and not right-diagonal, and now we have to show it belongs
to Y . If only we knew that every vertex in X was adjacent to a0, then it follows easily that v ∈ Y ,
because of 12.5. So that is what we need to do — to prove that every vertex in X is adjacent to a0.

Let us start again, more formally. Let K = ((A,C,B), a0-R0-b0) be a staircase in a Berge graph
G. We define a right-sequence to be a sequence x1, . . . , xt, with the following properties (which we
refer to as the right-sequence axioms):

1. x1, . . . , xt are distinct and B-complete

2. for 1 ≤ i ≤ t, if xi is A-complete then there exists h with 1 ≤ h < i such that xh is nonadjacent
to xi

3. for 1 ≤ i ≤ t, if xi is A-anticomplete then there is a banister r-R-xi such that r has a
nonneighbour in {x1, . . . , xi−1}.

Any initial subsequence of a right-sequence is therefore another right-sequence. We say xi is
earlier than xj if i < j. Let X = {x1, . . . , xt}. For each xi ∈ X that has an earlier nonneighbour,
we define its predecessor to be xh, where h is minimum such that 1 ≤ h < i and xh is nonadjacent
to xi. From the second axiom, every xi either has a nonneighbour in A or a predecessor, so we can
follow the sequence of predecessors until we get to some vertex that is not A-complete. For each x i

we therefore define the trajectory of xi to be the sequence w1- · · · -wn with the following properties:

• n ≥ 1, and w1 = xi
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• wn has a nonneighbour in A

• for 1 ≤ j < n, wj is A-complete, and wj+1 is the predecessor of wj.

Clearly the trajectory is unique, and is an antipath. If v ∈ V (G) is A-complete, not in X and not
X-complete, we define the trajectory of v to be the antipath v-w1- · · · -wn, where w1 is the earliest
nonneighbour of v in X, and w1- · · · -wn is the trajectory of w1.

Let a be a left-star. If it is not X-complete, we define the birth of a to be the earliest nonneighbour
of a in X. Now let b be a right-star. A banister a-R-b is said to be b-optimal if a is not X-complete,
and there is no banister a′-R′-b such that a′ is not X-complete and the birth of a′ is earlier than the
birth of a.

13.1 Let G be Berge, containing no appearance of K4, no even prism, no 1-breaker and no 2-
breaker. Let K = (S = (A,C,B), a0-R0-b0) be a strongly maximal staircase in G, and let x1, . . . , xt

be a right-sequence. Let b be a right-star, and let a-R-b be a b-optimal banister. Let a-w1- · · · -wn be
the trajectory of a. Then n is odd, and either:

• b is the unique vertex of R which is {w1, . . . , wn}-complete, or

• R has length 1, and there exists some even m with 1 ≤ m < n such that a-w1- · · · -wm-b is an
antipath.

Proof. We proceed by induction on t, and assume the result holds for all smaller values of t. Hence
we may assume that w1 = xt, for otherwise the result follows from the inductive hypothesis. Let W
= {w1, . . . , wn}; then every vertex in B is W -complete.

(1) n is odd.

For choose a2 ∈ A nonadjacent to wn, and b1 ∈ B nonadjacent to a2; then b1-a-w1- · · · -wn-a2-b1

is an antihole, so n is odd. This proves (1).

(2) If wn has a neighbour in A then the theorem holds.

For choose a step a1-R1-b1, a2-R2-b2 such that wn is adjacent to a1 and not to a2. Then a1,b2

are W -complete. Suppose first that there are no W -complete vertices in R. Then a1-a-R-b-b2 is an
odd path between W -complete vertices. If R has length 1 then there is an antipath Q joining a, b
with interior in W , and since it can be completed to an antihole via b-a1-b2-a, it has odd length
and the theorem holds. So we may assume R has length > 1, and hence by 2.1 W contains a leap.
Since all vertices of W except w1 are adjacent to a, the leap is w1, w2; and hence the only edges
between w1, w2 and R are w1b and w2a. Since n is odd it follows that n > 2 and so w1, w2 are both
A ∪ B-complete. But then S ′ = (A ∪ {w2}, C,B ∪ {w1}) is a step-connected strip, and (S ′, a-R-b) is
a staircase, contrary to the maximality of (S,R0). So we may assume there are W -complete vertices
in R. If b is the only one then the theorem holds, so assume there is another. But then W can be
linked onto the triangle {a, a1, a2}, via a subpath of R \ b, the 1-vertex path a1, and a subpath of
R2. Since b1 is W -complete and nonadjacent to both a, a2, this contradicts 2.8. This proves (2).

From (2) we may assume that wn has no neighbour in A. Let wn = xs say. From the third
axiom, there is a banister r′-R′-wn, such that r′ has a nonneighbour in {x1, . . . , xs−1}, and therefore
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we may choose this banister to be wn-optimal.

(3) R′ is disjoint from R, and there are no edges between V (R \ a) and V (R ′ \ wn).

Suppose that (R \ a) ∪ (R′ \ wn) is connected. Then it contains a path between r ′ and b, with
interior in the union of the interiors of R and R′, and therefore this path is a banister. But R is
b-optimal, and the birth of r′ is earlier than the birth of a, a contradiction. So R \ a is disjoint from
R′ \ wn, and there are no edges between them. Since a 6= r ′ (because their births are different), and
b 6= wn (because R is optimal for b) it follows that R is disjoint from R ′. This proves (3).

Let r′-v1- · · · -vm be the trajectory of r′, and let V = {v1, . . . , vm}. By the inductive hypothesis,
it follows that either wn is the unique V -complete vertex in R′, or R′ has length 1 and there is an
odd antipath between r′ and wn with interior in V . Since each of v1, . . . , vm is earlier than wn, it
follows from the definition of trajectory that v1, . . . , vm are all {a,w1, . . . , wn−1}-complete.

(4) If n = 1 then the theorem holds.

For let n = 1, and choose a step a1-R1-b1, a2-R2-b2 with a1 nonadjacent to vm. Suppose first
that a has no neighbour in R′. Now a is V -complete, and either w1 is the unique V -complete vertex
in R′, or R′ has length 1 and there is an odd antipath Q between r ′ and w1 with interior in V . In
the first case, a-a1-r

′-R′-w1 is an odd path, its ends are V -complete, its internal vertices are not,
and the V -complete vertex b2 has no neighbour in its interior, contrary to 2.2. In the second case,
a-r′-Q-w1-a is an odd antihole. This proves that a has a neighbour in R′. Now suppose it has a
neighbour different from r′; then R′ has length > 1, and so w1 is the unique V -complete vertex in
R′; and there is a path P ′ say from a to w1 with interior in R′ \ r′. Since the ends of this path are
V -complete and its internal vertices are not, and the V -complete vertex b1 has no neighbour in its
interior, it is even by 2.2. But it can be completed to an odd hole via w1-b1-R1-a1-a, a contradiction.
This proves that r′ is the unique neighbour of a in R′. Since a-r′-R′-w1-b1-b-R-a is not an odd hole,
it follows from (3) that w1 has a neighbour in R. If b is its unique neighbour in R then the theorem
holds, so we assume not. Then there is a path P say from w1 to a with interior in R \ b. Since
w1-P -a-r′-R′-w1 is a hole it follows that P is even; but P can be completed via a-a1-R1-b1-w1, a
contradiction. This proves (4).

We may therefore assume that n ≥ 3 (since it is odd.)

(5) C = ∅.

For suppose not, and choose a step a1-R1-b1, a2-R2-b2 where R1 has length > 1. Since R1 is odd,
and its ends are (W \ {wn})-complete, and the (W \ {wn})-complete vertex b2 has no neighbour in
its interior, there is a (W \ {wn})-complete vertex v in the interior of R1, by 2.2. But then v is non-
adjacent to both a and wn, since they are left- and right-stars respectively, and so v-a-w1- · · · -wn-v
is an odd antihole, a contradiction. This proves (5).

(6) If b is not (W \ {wn})-complete and no edge of R is (W \ {wn})-complete then the theorem
holds.
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For choose a step a1-R1-b1, a2-R2-b2. Then a1-a-R-b-b2 is an odd path, its ends are (W \ {wn})-
complete, and none of its edges are (W \{wn})-complete. Suppose first that R has length ≥ 3. Then
by 2.1 there is a leap in W \ {wn}; and so there are nonadjacent vertices x, y ∈ W \ {wn} such that
x-a-R-b-y is a path. But then ((A∪{x}, ∅, B ∪{y}), a-R-b) is a staircase, contrary to the maximality
of (S,R0). So R has length 1, and there exists i with 1 ≤ i < n such that a-w1- · · · -wi-b is an odd
antipath. But then the theorem holds. This proves (6).

(7) If no vertex in R is W -complete then the theorem holds.

For by (6) we may assume that there is a vertex v of R which is (W \ {wn})-complete. Hence
v is nonadjacent to wn. Since n ≥ 3 and is odd, and a-w1- · · · -wn-v-a is not an odd antihole, it
follows that v is adjacent to a. Consequently v is the unique (W \ {wn})-complete vertex in R.
From (6) we may assume that v = b, and R has length 1. Choose a step a1-R1-b1, a2-R2-b2. Then
b1-a-w1- · · · -wn-b is an odd antipath, of length ≥ 5. All its internal vertices have neighbours in the
connected set V (R′ \wn)∪{a2}, and its ends do not. By 2.1 applied in G, there are adjacent vertices
x, y in V (R′ \wn)∪{a2}, such that x-a-w1- · · · -wn-y is an odd antipath. Since x is adjacent to wn, it
follows that x is the neighbour of wn in R′, and therefore either y is the second neighbour of x in R′,
or R′ has length 1 and y = a2. Assume first that R′ has length > 1, and so both x, y belong to the
interior of R′. Hence x, y are both anticomplete to A∪B, and so ((B∪{x}, ∅, A∪{y}), a-w1- · · · -wn)
is a staircase in G, contradicting that (S,R0) is strongly maximal. Now assume that R′ has length 1.
Then x = r′ and y = a2, and ((B ∪ {r′}, ∅, A∪{b}), a-w1- · · · -wn) is a staircase in G, a contradiction
as before. This proves (7).

We may therefore assume that some vertex of R\b is W -complete, for otherwise the theorem holds
by (7). Let a-P -p be the subpath of R \ b such that p is the unique W -complete vertex of P . Choose
a1 ∈ A and b1 ∈ B, adjacent (this is possible by (5)). Let us apply 3.2 to the path p-P -a-a1-b1, and
the even antipath a-w1- · · · -wn-a1. Both ends of the path are complete to the interior of the antipath,
so by 3.2 it follows that P has length 2, and if q denotes its middle vertex then q is nonadjacent to
wn and adjacent to w1, . . . , wn−1. But then ((B ∪ {p}, ∅, A ∪ {q}), a-w1- · · · -wn) is a staircase in G,
a contradiction. This completes the proof of 13.1.

13.2 Let G be Berge, containing no appearance of K4, no even prism, no 1-breaker and no 2-
breaker. Let K = (S = (A,C,B), a0-R0-b0) be a strongly maximal staircase in G, and let x1, . . . , xt

be a right-sequence. Then x1, . . . , xt are all adjacent to a0.

Proof. Suppose the theorem is false, and choose t is small as possible such that the statement of
the theorem does not hold. So t ≥ 1, and x1, . . . , xt−1 are all adjacent to a0, and xt is not.

(1) a0-R0-b0 is not an optimal banister for b0.

For suppose it is, and let a0-w1- · · · -wn be the trajectory of a0. Since R0 has length > 1 it fol-
lows from 13.1 that b0 is the unique W -complete vertex of R0, where W = {w1, . . . , wn}. Suppose
first that n = 1. Then b0 is the unique neighbour of w1 in R0, and w1 has a nonneighbour in A,
and so by 12.1 it is a right-star. By axiom 3 there is a banister r-R-w1 such that the birth of r
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is earlier than w1. Since a0-R0-b0 is optimal for b0, it follows as in the proof of 13.1 that R is
disjoint from R0, and there are no edges between R0 \ a0 and R \ w1. Choose an S-rung a1-R1-b1.
Since a1-a0-R0-b0-w1-R-r-a1 is not an odd hole it follows that a0 has neighbours in R. If it has a
neighbour different from r, then the path from a0 to w1 with interior in R \ r can be completed via
w1-b0-R0-a0 and via w1-b1-R1-a1-a0, and one of the resulting holes is odd, a contradiction. So the
unique neighbour of a0 in R is r. But then we can add r to A, w1 to B and the interior of R to C,
contradicting the maximality of (S,R0). So n ≥ 2. Now all of w1, . . . , wn−1 are left-diagonals, and
all of w2, . . . , wn are right-diagonals. But w1 is not a right-diagonal, and wn is not a left-diagonal,
and w1 is not a right-star, contrary to 12.5. This proves (1).

Now since a0 has a nonneighbour in {x1, . . . , xt}, it follows that there is an optimal banister
r-R-b0 for b0. From (1), r has a nonneighbour in {x1, . . . , xt−1}. From the minimality of t (replacing
R0 by R) it follows that R has length 1, and so rb0 is an edge. Let r-w1- · · · -wn be the trajectory of
r; so w1 is earlier than xt. Let W = {w1, . . . , wn}; hence a0 is W -complete. By 13.1, n is odd.

(2) b0 is W -complete.

For suppose not. Then by 13.1, there exists i with 1 ≤ i < n such that r-w1- · · · -wi-b0 is an odd
antipath. Now r, w1, . . . , wi−1 are all left-diagonals; w1, . . . , wi are all right-diagonals; r is not a right-
diagonal (since it is a left-star); and wi is not a left-diagonal (since it is nonadjacent to b0) and not a
right- or left-star (since it is A∪B-complete, because i < n). This contradicts 12.5, and so proves (2).

(3) a0 is adjacent to r, and wn is a right-star.

Let a1-R1-b1 be an S-rung with wn nonadjacent to a1. Since a0-r-w1- · · · -wn-a1-b0-a0 is not an
odd antihole it follows that a0 is adjacent to r. So each of r, w1, . . . , wn−1 is left-diagonal, each of
w1, . . . , wn is right-diagonal, r is not right-diagonal, wn is not left-diagonal, and the claim follows
from 12.5. This proves (3).

(4) There is no (W ∪ {r})-complete vertex in the interior of R0.

For suppose there is, v say. Let a1-R1-b1 be an S-rung. Then a0-a1-R1-b1-b0 is an odd path;
both its ends are (W ∪ {r})-complete; and the (W ∪ {r})-complete vertex v has no neighbour in its
interior, so by 2.2 there is a (W ∪ {r})-complete vertex in R1. But r is a left-star and by (3), wn is
a right-star, so they have no common neighbour in R1, a contradiction. This proves (4).

(5) n = 1.

For assume n > 1. Now R0 is odd, and both its ends are (W ∪ {r})-complete. Suppose first
that R0 has length ≥ 5. By 2.1 and (4) there is a leap; that is, there are two nonadjacent vertices
x, y ∈ W ∪ {r} joined by an odd path P whose interior is the interior of R0. Choose b1 ∈ B; then
b1-x-P -y-b1 is not an odd hole, and so one of x, y is nonadjacent to b1. Since b1 is W -complete, we may
assume y = r; and hence x = w1 since that is the only vertex in W nonadjacent to r. Choose a1 ∈ A;
then since a1-r-P -w1-a1 is not an odd hole it follows that a1 is not adjacent to w1 and so n = 1. Now
assume that R0 has length 3, and let its internal vertices be x, y (in some order). By 2.1 there exists
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an odd antipath Q joining x, y with interior in W ∪ {r}. If r 6∈ V (Q) then b1-x-Q-y-b1 is an odd
antihole, where b1 ∈ B; and if wn 6∈ V (Q) then a1-x-Q-y-a1 is an odd antihole, where a1 ∈ A. Hence
we may assume that x-r-w1- · · · -wn-y is an antipath. We claim that C = ∅. For suppose there is an
S-rung a1-R1-b1 say of length > 1. Then a1-R1-b1-b0-r-a1 is a hole of length ≥ 6; and r-w1- · · · -wn-a1

is an even antipath of length ≥ 4; and a0 is complete to the antipath, and has no other neighbours
on the hole; and at least two vertices of the hole are complete to the interior of the antipath, namely
b0 and b1. This contradicts 3.3. So C = ∅. Hence ((B ∪ {x}, ∅, A ∪ {y}), r-w1- · · · -wn) is a staircase
in G, a contradiction. This proves (5).

From (4), (5) we may apply 2.1 to R0 and the anticonnected set {r, w1}, and since the latter has
only two members, 2.1 implies that there is an odd path P joining r and w1 with interior equal to
the interior of R0. From (3), w1 is a right-star, and from axiom 3 there is a banister r ′-R′-w1 (and
we may choose it optimal for w1) such that the birth of r′ is earlier than w1. Now R′ is disjoint from
R0, and there are no edges between R0 \a0 and R′ \w1; for otherwise there would be a banister from
r′ to b0, contradicting that r-b0 is optimal for b0. Suppose that r has a neighbour in R′; then the
path between r and w1 with interior in R′ can be completed to holes via w1-b0-r and via w1-P -r,
a contradiction since one of these holes is odd. So r has no neighbour in R ′. Let r′-v1- · · · -vm be
the trajectory of r′. Since v1, . . . , vm are earlier than w1, and w1 is the earliest nonneighbour of r, it
follows that r is adjacent to all of v1, . . . , vm. Now by 13.1, either

• w1 is the unique {v1, . . . , vm}-complete vertex in R′; but then w1-R
′-r′-a1-r (where a1 ∈ A is

nonadjacent to vm) is an odd path; its ends are {v1, . . . , vm}-complete and its internal vertices
are not; and the {v1, . . . , vm}-complete vertex b1 (for any b1 ∈ B nonadjacent to a1) has no
neighbour in its interior, contrary to 2.2.

• R′ has length 1, and there is an odd antipath Q between r ′ and w1 with interior in {v1, . . . , vm};
but then r-r′-Q-w1-r is an odd antihole, a contradiction.

This completes the proof of 13.2.

Now we are ready to apply 13.2 to produce a skew partition. Let us say a 3-breaker in G is
a pair (K,x) such that K = (S = (A,C,B), a0-R0-b0) is a strongly maximal staircase in G, and
x ∈ V (G) \ V (K) is B-complete, and not A-complete, and not A-anticomplete.

13.3 Let G be Berge, containing no appearance of K4, no even prism, no 1-breaker and no 2-breaker.
Suppose that there is a 3-breaker in G; then G admits a balanced skew partition.

Proof. Let (K,x1) be a 3-breaker, where K = (S = (A,C,B), a0-R0-b0). The 1-vertex sequence x1

is a right-sequence; so there exists a right-sequence x1, . . . , xt of maximum length, with t ≥ 1. Let
X = {x1, . . . , xt}, and let Y be the set of all A ∪X-complete vertices in V (G) \ V (S). So a0 ∈ Y by
13.2.

(1) X ∪ Y ∪ B meets the interior of every path in G from A ∪ C to b0.

For suppose P is a path from A ∪ C to b0 with no internal vertex in X ∪ Y ∪ B. Note that
b0 6∈ X by 13.2, and so b0 /∈ X ∪ Y ∪ B (since it is not A-complete). We may assume P is minimal,
and therefore no internal vertex of P is in V (S). Let P be from p ∈ A ∪ C to b0. By 12.3, P \ p
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contains either a major vertex or a banister. Suppose first that it contains a banister a-R-b say.
Hence a, b /∈ X ∪ Y ∪ B. Since a is A-complete it is therefore not X-complete (because it is not
in Y ), and then we can set xt+1 = b, contradicting the maximality of the right-sequence. So P \ p
contains no banister. Now assume it contains a major vertex v say. Since v /∈ X ∪ Y ∪ B, it follows
that v is not X ∪ A-complete. Suppose v is B-complete. Since it is major it has a neighbour in
A. If it is not A-complete we can set xt+1 = v and obtain a longer right-sequence, a contradiction;
and if v is A-complete then since it is not X ∪ A-complete, it is not X-complete and so again we
can set xt+1 = v and obtain a longer right-sequence, a contradiction. So v is not B-complete. By
12.1 and since there is no 2-breaker in G and therefore no central vertex, v is left-diagonal, and not
right-diagonal; and since it is not X ∪ A-complete, it is not X-complete. Let v-w1- · · · -wn be the
trajectory of v. Then each of w1, . . . , wn is right-diagonal, since they are all B∪{a0}-complete. Since
wn has a nonneighbour in A, it is not left-diagonal; and so there is a minimum i with 1 ≤ i ≤ n
such that wi is not left-diagonal. By 12.5 applied to the sequence v, w1, . . . , wi, we deduce that v is
a left-star, contradicting that v is major. This proves (1).

Now since S is step-connected, it follows that A ∪ C is connected; and therefore belongs to a
component A1 of G \ (X ∪ Y ∪ B). Let A2 be the union of all the other components. So by (1),
b0 ∈ A2 , and (A1 ∪A2, X ∪Y ∪B) is a skew partition of G (since Y ∪B is complete to X, and X is
nonempty). We need to find a balanced skew partition. By 4.2 we may assume this skew partition is
not loose; so every X-complete vertex in G either belongs to B or is also A-complete. Every vertex
in Y ∪B has a neighbour in A∪C, so A∪C is a kernel for this skew partition, in G. By 4.6 it suffices
to show that in G, any two nonadjacent vertices in Y ∪ B are joined by an even path with interior
in A1 ∪ A2, and any two adjacent vertices of A ∪ C are joined by an even antipath with interior in
X ∪ Y ∪ B. Now let u, v ∈ Y ∪ B be nonadjacent. If they are both adjacent to b0, then any path
joining them with interior in A∪C (and there is one) is even, since it can be completed to a hole via
v-b0-u. So we may assume that u is nonadjacent to b0, and hence u /∈ B, so u ∈ Y . If they are both
in Y , then they are joined by an even path u-a1-v for any a1 ∈ A. So we may assume that v ∈ B.
Since u is nonadjacent to b0 and to v, it is neither left- nor right-diagonal, and it is not central since
there is no 2-breaker; so from 12.1 it is a left-star. Let a1-R1-v be an S-rung; then u-a1-R1-v is the
desired even path between u and v. Now for antipaths, let uv be an edge with u, v ∈ A ∪ C. They
both therefore have nonneighbours in B, and since B ∪ {a0} is anticonnected, they are joined by
an antipath Q with interior in B ∪ {a0}. It suffices to show that Q is even, since Q∗ ⊆ Y ∪ B. If
a0 /∈ Q∗, then Q is even since b0-u-Q-v-b0 is an antihole. So a0 is in Q∗. But there are no edges
between a0 and B, and so a0 is nonadjacent to every other vertex in the interior of Q; and since Q
is an antipath, it therefore has at most 3 internal vertices, so its length is ≤ 4. If it is odd, then it
has length 3, that is, there are nonadjacent vertices u′ ∈ Y and v′ ∈ B, joined by an odd path with
interior in A ∪ C. But we have already shown that they are joined by an even path, and the result
follows from 4.3. This proves 13.3.

Now we can prove 1.8.5, the main result of this section. We restate it (proper homogeneous pairs
were defined in section 1.)

13.4 Let G be Berge, such that there is no appearance of K4 in either G or G. Suppose that G
contains a long odd prism as an induced subgraph. Then either one of G,G admits a proper 2-join,
or G admits a balanced skew partition, or G admits a proper homogeneous pair.
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Proof. We assume that G does not admit a balanced skew partition, and G,G do not admit proper
2-joins. Since G contains a long odd prism, and therefore G,G are not even prisms, it follows from
10.6 that G,G contain no even prism. By 11.5, 12.4 and 13.3, G,G contain no 1-, 2- or 3-breaker.

Since G contains a long odd prism, it contains a staircase; and therefore (possibly by replacing
G by its complement) there is a strongly maximal staircase K = (S = (A,C,B), a0-R0-b0) say in
G. Let A0 be the set of all left-stars, B0 the set of all right-stars, and N the set of all vertices that
are A ∪ B-complete. By 12.1, every non-major A-complete vertex is in A0, and since there is no
3-breaker, every major A-complete vertex is in N , so every A-complete vertex is in A0 ∪ N ; and
similarly every B-complete vertex is in B0 ∪ N . Let H = G \ (V (S) ∪ A0 ∪ B0 ∪ N).

(1) Let F be a component of H, and let X be the set of attachments of F in V (S) ∪ A0 ∪ B0.
Then either X ∩ V (S) = ∅, or X ⊆ V (S) and X meets both A ∪ C and B ∪ C.

We may assume that X meets V (S), and therefore from the symmetry we may assume that X
meets A ∪ C. Since no vertex in F is A- or B-complete, and therefore no vertex in F is major or a
left- or right-star, it follows from 12.3 that X is disjoint from B0. If X meets B∪C then similarly X
is disjoint from A0, and so X ⊆ V (S) and the claim holds. We assume therefore that X ⊆ A ∪ A0.
Now if v ∈ V (G) \ F has a neighbour in F , then v /∈ V (H), and so v ∈ V (S) ∪ A0 ∪ B0 ∪ N , and
therefore v ∈ X ∪N ⊆ A∪A0∪N . Hence (V (G)\ (A∪A0 ∪N), A∪A0∪N) is a skew partition of G,
since F is a component of V (G) \ (A∪A0 ∪N) and b0 is in a different component, and A,A0 ∪N are
both nonempty and complete to each other. Now by 2.6, (B∪C,A) is balanced, since a0 is complete
to A and anticomplete to B∪C; and therefore from 2.7, (F,A) is balanced (since B∪C is connected
and all vertices in A have neighbours in it). Hence from 4.5, G admits a balanced skew partition, a
contradiction. This proves (1).

Let M be the union of all components of H with no attachment in V (S). Then M is nonempty,
since by (1) the component of H containing the interior of R0 has no attachments in V (S). Let D be
the union of all the components of H that have an attachment in V (S). Hence V (G) is partitioned
into A,B,C,D,A0, B0, N,M , where possibly C,D or N may be empty.

(2) N 6= ∅.

For assume that N = ∅. Then the only edges between V (S)∪D and A0 ∪B0∪M are the edges from
A to A0 and those from B to B0; and since R0 is an odd path from A0 to B0 of length ≥ 3 and with
V (R0) ⊆ A0 ∪ B0 ∪ M , and both A and B contain at least two vertices, it follows that G admits a
proper 2-join, a contradiction. This proves (2).

(3) C ∪ D = ∅.

For assume that C ∪ D is nonempty. By (1) there are no edges between C ∪ D and A0 ∪ B0 ∪ M .
Since N is complete to A∪B, it follows that (C ∪D∪A0 ∪B0 ∪M,N ∪A∪B) is a skew partition of
G. By 4.2, it is not loose, and so there is no N ′-complete vertex in R0, where N ′ is an anticomponent
of N . Let a1-R1-b1, a2-R2-b2 be a step; then a1-a0-R0-b0-b2 is an odd path of length ≥ 5; its ends
are N ′-complete, and its internal vertices are not. By 2.1, there is a leap in N ′, and so there exist
nonadjacent x, y in N such that x-a0-R0-b0-y is a path. But then ((A ∪ {x}, C,B ∪ {y}), a0-R0-b0)
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is a staircase, contradicting the maximality of (S,R0). This proves (3).

But then (A,B) is a proper homogeneous pair in G. (This is the only place in the entire paper
where we use such pairs.) This proves 13.4.

Let us say a graph G is recalcitrant if:

• G is Berge

• G and G are not line graphs, and G is not a double split graph

• G and G do not admit proper 2-joins, and

• G does not admit a proper homogeneous pair or balanced skew partition.

The remainder of the paper is basically a proof of the following.

13.5 If G is recalcitrant then either G or G is bipartite.

Clearly any counterexample to 1.3 is recalcitrant, so 13.5 will imply 1.3.
On the other hand, for some future applications, it is desirable to keep closer track of which

results hold under which hypotheses, instead of just using the blanket “recalcitrant” hypothesis. But
at least, for the remainder of the paper we shall only be concerned with Berge graphs G such that
in both G,G there is no appearance of K4 and no long prism; that is, with the members of the class
F5 introduced in section 1. Certainly every recalcitrant graph belongs to F5, by 10.6 and 9.7.

It turns out that for such graphs, there is a useful strengthening of 2.1 — the second alternative
of that theorem can no longer hold.

13.6 Let G ∈ F5, and let P be a path in G with odd length. Let X ⊆ V (G)\V (P ) be anticonnected,
such that both ends of P are X-complete. Then either:

1. some edge of P is X-complete, or

2. P has length 3 and there is an odd antipath joining the internal vertices of P with interior in
X.

Proof. Let P be p1- · · · -pn. By 2.1, we may assume that P has length ≥ 5 and X contains a leap
u, v say; so u-p2- · · · -pn−1-v is a path. But then the three paths p1-v, u-pn, p2- · · · -pn−1 form a long
prism, contrary to G ∈ F5. This proves 13.6.

There is an analogous strengthening of 2.9, as follows.

13.7 Let G ∈ F5, and let X,Y be disjoint nonempty anticonnected subsets of V (G), complete to
each other. Let P be a path in G with even length > 0, with vertices p1, . . . , pn in order, such that
p1 is the unique X-complete vertex of P and pn is the unique Y -complete vertex of P . Then P has
length 2 and there is an antipath Q between p2 and p3 with interior in X, and an antipath R between
p1 and p2 with interior in Y , and exactly one of Q,R has odd length.

Proof. Let us apply 2.9. We may therefore assume that P has length ≥ 4 and there are nonadjacent
x1, x2 ∈ X such that x1-p2- · · · -pn-x2 is a path P ′ say, of odd length ≥ 5. But the ends of P ′ are
Y ∪ {p1}-complete, and its internal vertices are not, contrary to 13.6. This proves 13.7.
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14 The double diamond

We are finished with prisms — we cannot dispose of the prism where all three paths have length 1
(yet), and we have disposed of all others. Now we turn to a different type of subgraph, the double
diamond. A double diamond means the graph with eight vertices a1, . . . , a4, b1, . . . , b4 and with the
following adjacencies: every two ai’s are adjacent except a3a4, every two bi’s are adjacent except
b3b4, and aibi is an edge for 1 ≤ i ≤ 4.

Let G be Berge. If A,B are disjoint subsets of V (G), we say a square in (A,B) is a hole
a1-b1-b2-a2-a1 of length 4, where a1, a2 ∈ A and b1, b2 ∈ B. The pair (A,B) is square-connected if:

• |A|, |B| ≥ 2,

• for every partition (X,Y ) of A with X,Y nonempty, there is a square a1-b1-b2-a2-a1 with
a1 ∈ X and a2 ∈ Y

• for every partition (X,Y ) of B with X,Y nonempty, there is a square a1-b1-b2-a2-a1 with
b1 ∈ X and b2 ∈ Y .

It follows that if (A,B) is square-connected then every vertex of A∪B is in a square. An antisquare
is a square in G; that is, an antihole a1-b1-b2-a2-a1 with a1, a2 ∈ A and b1, b2 ∈ B; and (A,B) is
antisquare-connected if it is square-connected in G. For strips in which every rung has length 1 (and
from now on, those are the only kind of strips we shall need), being square-connected is the same as
being step-connected. We have renamed the concepts because we wanted to improve our notation
for a step.

We say a quadruple (A,B,C,D) of subsets of V (G) is a cube in G if it satisfies the following
conditions:

• A,B,C,D are pairwise disjoint and nonempty

• A is complete to C, and B to D, and A is anticomplete to D, and B to C

• (A,B) is square-connected, and (C,D) is antisquare-connected.

If G contains a double diamond, then it contains a cube in which A,B,C,D all have two elements,
and that turns out to be the right approach to the double diamond — grow the cube until it is
maximal, and analyze how the remainder of G attaches to it. That is our goal in this section. A
cube (A,B,C,D) is maximal if there is no cube (A′, B′, C ′, D′) with A ⊆ A′, B ⊆ B′, C ⊆ C ′, and
D ⊆ D′ such that (A,B,C,D) 6= (A′, B′, C ′, D′). The subgraph G|(A ∪ B ∪ C ∪ D) is called the
graph formed by the cube. Note that if (A,B,C,D) is a cube in G, then (C,D,B,A) is a cube in G.
(This is very convenient, because it reduces our work by half — we are going to have the usual minor
vertices and major vertices, and they switch when we take complements, so whatever we can prove
about minor vertices will also give us information about major vertices by going to the complement.)

14.1 Let G ∈ F5. Let (A,B,C,D) be a maximal cube in G, forming K, let v ∈ V (G) \ V (K), and
let X be the set of neighbours of v in V (K). Then either

• X is a subset of one of A∪B,C∪D,A∪C,B∪D, and X ∩ (A∪C) is complete to X ∩ (B∪D),
or
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• X includes one of A∪B,C ∪D,A∪D,B ∪C, and (A∪D) \X is anticomplete to (B ∪C) \X.

Proof. Note that under taking complements the two outcomes become exchanged. If X ⊆ A ∪ B,
and there exists a ∈ X ∩A and b ∈ X ∩B, nonadjacent, then choose c ∈ C and d ∈ D, adjacent, and
v-a-c-d-b-v is an odd hole. So if X ⊆ A∪B then the theorem holds. Similarly it holds if X ⊆ C ∪D;
and trivially it holds if X is a subset of one of A∪C,B∪D. So we may assume that X meets both A
and D. From the same argument in G, we may also assume that none of A∪B,C ∪D,A∪D,B ∪C
is a subset of X, that is, either X includes neither of A,C or it includes neither of B,D. These two
cases are exchanged when we pass to the complement; so we may assume by taking complements that
X includes neither of B,D. Let A1 = A∩X, and A2 = A \A1; and define B1, B2 etc. similarly. We
have shown so far that A1, B2, D1, D2 are nonempty. Choose an antisquare c2-d1-d2-c1-c2 such that
d1 ∈ D1 and d2 ∈ D2, and choose b2 ∈ B2. Since v-c2-d2-b2-d1-v is not an odd hole, it follows that
c2 ∈ C2. Hence A1 is complete to B1; for if a1 ∈ A1 and b1 ∈ B1 are nonadjacent then v-a1-c2-d2-b1-v
is an odd hole. If A1 = A, then since (A,B) is square-connected and A1 is complete to B1 it follows
that B1 is empty; but then we can add v to C (because v-d2-d1-c2-v becomes a new antisquare),
contrary to the maximality of the cube. So A2 is nonempty. Hence there is a square a1-b1-b2-a2-a1

with a1 ∈ A1 and a2 ∈ A2. Since a1 is nonadjacent to b2 and complete to B1, it follows that b2 ∈ B2;
but then v-a1-a2-b2-d1-v is an odd hole, a contradiction. This proves 14.1.

Say a vertex v ∈ V (G) \ V (K) is minor if the first case of 14.1 applies to it, and major if the
second case applies. Then every such vertex is either minor or major and not both; and by taking
complements, the minor and major vertices are exchanged.

14.2 Let G ∈ F5. Let (A,B,C,D) be a maximal cube in G, forming K, let F ⊆ V (G) \ V (K) be
a connected set of minor vertices, and let X be the set of attachments of F in V (K). Then X is a
subset of one of A ∪ B,C ∪ D,A ∪ C,B ∪ D. Moreover, X ∩ (A ∪ C) is complete to X ∩ (B ∪ D).

Proof. Suppose the first assertion is false, and choose F minimal with this property. We may
assume that X meets both of A,D. Since all vertices in F are minor, it follows that F is a path
f1-f2- · · · -fk of length ≥ 1. We may assume f1 is the unique vertex of F with a neighbour in A, and
fk is the unique vertex of F with a neighbour in D. Let X1, X2 be the sets of attachments in V (K)
of F \ {fk}, F \ {f1} respectively. From the minimality of F it follows that X1 is a subset of one of
A ∪ B,A ∪ C, and X2 is a subset of one of B ∪ D,C ∪ D.

(1) Not both X1 ⊆ A ∪ B and X2 ⊆ B ∪ D .

For suppose that both these hold. If k is even, choose a ∈ A is adjacent to f1, and d ∈ D is
adjacent to fk, and c ∈ C is adjacent to d; then a-f1- · · · -fk-d-c-a is an odd hole , a contradiction. So
k is odd. Suppose first that f1 is complete to A. Since it is minor, it has no neighbours in B (for no
vertex in B is A-complete). If there are no edges between B and F , let a1-b1-b2-a2-a1 be a square,
and let d ∈ D be adjacent to fk; then a1-b1, a2-b2, f1- · · · -fk-d form a long prism, a contradiction. So
there are edges between B and F . Choose i with 1 ≤ i ≤ k minimum such that fi has a neighbour in
B. If fi is not complete to B, choose a square a1-b1-b2-a2-a1 such that fi is adjacent to b1 and not to
b2; then b1 can be linked onto the triangle {f1, a1, a2}, via b1-fi- · · · -f1, b1-a1, b1-b2-a2, contrary to
2.4. So fi is complete to B. Let a1-b1-b2-a2-a1 be a square; then since a1-b1, a2-b2, f1- · · · -fi do not
form a long prism (because G ∈ F5), it follows that i = 2. But k > 2 since k is odd; so we can add f1
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to C and f2 to D, contrary to the maximality of the cube. This proves (1) if f1 is A-complete. Now
assume f1 is not A-complete, and choose a square a1-b1-b2-a2-a1 such that f1 is adjacent to a1 and not
to a2. Since a1-f1- · · · -fk-d-b2-a2-a1 is not an odd hole (where d ∈ D is adjacent to fk), it follows that
b2 has a neighbour in F . Choose i minimum such that b2 is adjacent to fi. Let c ∈ C and d ∈ D be
any adjacent pair of vertices. Then the three paths a1-b1, a2-b2, c-d form a prism, and since the set of
attachments of {f1, . . . , fi} in this prism is not local, and does not include a2, it has an attachment in
the third path c-d, by 10.4; and hence i = k, and fk is D-complete. Again, let c ∈ C and d ∈ D be ad-
jacent. Then the prism formed by a1-f1- · · · -fk,a2-b2,c-d is long, contrary to G ∈ F5. This proves (1).

(2) Not both X1 ⊆ A ∪ C and X2 ⊆ C ∪ D .

For assume these both hold. Choose a square a1-b1-b2-a2-a1 such that f1 is adjacent to a1, and
choose d ∈ D adjacent to fk. If a2 is adjacent to f1 then a1-b1, a2-b2, f1- · · · -fk-d form a long odd
prism, a contradiction. If a2 is not adjacent to f1 then a1 can be linked onto the triangle {b1, b2, d},
via a1-b1,a1-a2-b2, a1-f1- · · · -fk-d, a contradiction. This proves (2).

(3) Not both X1 ⊆ A ∪ B and X2 ⊆ C ∪ D .

For assume these both hold. Then X1 ∩ X2 = ∅, and so f1 is the unique neighbour in F of the
vertices in X1, and fk is the unique neighbour of those in X2. From (1), X2 6⊆ B ∪ D and so
X2 ∩ C 6= ∅; and similarly from (2), X1 ∩ B 6= ∅. Also we are given that X1 ∩ A,X2 ∩ D 6= ∅. Since
a1-f1- · · · -fk-c1-a1 is a hole (where a1 ∈ A ∩ X1 and c1 ∈ C ∩ X2) it follows that k is even. Since f1

is minor, X1 ∩ A is complete to X1 ∩ B, and so A,B are not subsets of X1; and similarly C ∩ X2 is
complete to D ∩ X2 and therefore C,D are not subsets of X2. So all the eight sets A ∩ X1, A \ X1

etc. are nonempty. Choose a square a1-b1-b2-a2-a1 such that f1 is adjacent to a1 and not to a2; and
choose an antisquare c1-d1-d2-c2-c1 such that fk is adjacent to d1 and not to d2. It follows that f1 is
nonadjacent to b2, since X1∩A is complete to X1∩B, and fk is not adjacent to c1 since X2∩C is com-
plete to X2∩D. But then a1-f1- · · · -fk-d1-b2-d2-c1-a1 is an odd hole, a contradiction. This proves (3).

(4) Not both X1 ⊆ A ∪ C and X2 ⊆ B ∪ D .

For assume both these hold. Then again, the only edges between V (K) and F are between X1 and
f1 and between X2 and fk. By (1) and (2), again all four of the sets A∩X1, B ∩X2, C ∩X1, D ∩X2

are nonempty. There are two cases, depending on the parity of k. First assume k is odd. Then
A ∩ X1 is anticomplete to B ∩ X2 (for if ab were an edge there, then a-f1- · · · -fk-b-a would be an
odd hole), and so A \ X1, B \ X2 are nonempty; and similarly C ∩ X1 is anticomplete to D ∩ X2,
and therefore C \ X1, D \ X2 are nonempty. Choose a square a1-b1-b2-a2-a1 such that f1 is adjacent
to a1 and not to a2, and choose an antisquare c1-d1-d2-c2-c1 such that fk is adjacent to d1 and not
to d2. Since A ∩ X1 is anticomplete to B ∩ X2 it follows that b1 /∈ X2, and c2 /∈ X1 similarly; and
since a1-f1- · · · -fk-d1-b2-a2-a1 is not an odd hole it follows that b2 ∈ X2. But then the three paths
a2-b2, c2-d1, a1-f1- · · · -fk form a long prism, contrary to G ∈ F5. Now assume k is even. Then A∩X1

is anticomplete to B \X2 (for if a ∈ A∩X1 is adjacent to b ∈ B \X2 then a-f1- · · · -fk-d-b-a is an odd
hole, where d ∈ X2∩D) . Similarly A\X1 is anticomplete to B∩X2, C∩X1 is anticomplete to D\X2,
and C \X1 is anticomplete to D∩X2. Choose a ∈ A∩X1 and a neighbour b of a in B; then b ∈ X2.
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Similarly choose c ∈ C ∩X1 and d ∈ D ∩X2, adjacent. Then the three paths a-b, c-d, f1- · · · -fk form
a prism, and so k = 2. If f1 is C-complete then since C∩X1 = C is anticomplete to D\X2, it follows
that f2 is D-complete; and then we can add f1 to A and f2 to B, contrary to the maximality of the
cube. So C 6⊆ X1. Choose an antisquare c1-d1-d2-c2-c1 such that f1 is adjacent to c1 and not to c2. It
follows that f2 is adjacent to d2 and not to d1. If f1 is A-complete, then as before f2 is B-complete,
and we can add f1 to C and f2 to D (because f1-d1-f2-c2-f1 is a new antisquare), a contradiction.
So f1 has a nonneighbour in A, and we can choose a square a1-b1-b2-a2-a1 such that f1 is adjacent to
a1 and not to a2. It follows that f2 is adjacent to b1 and not to b2. But then a1-f1-f2-d2-b2-d1-c2-a1

is an odd hole, a contradiction. This proves (4).

From (1)-(4), the first assertion of the theorem follows. Now let us prove the second assertion.
We may assume X meets both A∪C and B∪D, and so from what we just proved, either X ⊆ C∪D
or X ⊆ A ∪ B. Suppose first that X ⊆ C ∪ D. If possible, choose c ∈ C ∩ X and d ∈ D ∩ X,
nonadjacent, and choose a path P joining them with interior in F . Let a1-b1-b2-a1-a1 be a square;
then the three paths a1-b1, a2-b2, c-P -d form a long prism, a contradiction. So there are no such c, d,
and the theorem holds.

Now assume that X ⊆ A ∪ B. Assume X ∩ A is not complete to X ∩ B, and choose a path
a-f1- · · · -fk-b, where a ∈ A, b ∈ B are nonadjacent and f1, . . . , fk ∈ F , with k minimum. Since f1 is
minor, its neighbours in A are complete to its neighbours in B, and so k ≥ 2. Let A ′ be the set of
all vertices a ∈ A such that a is adjacent to f1 and there is a nonneighbour b of a in B adjacent to
fk. By assumption A′ 6= ∅. Define B ′ similarly in B. If A′ = A and B′ = B, then f1 is A-complete,
and so there are no edges between {f1, . . . , fk−1} and B, from the minimality of k; and similarly fk

is B-complete and there are no edges between {f2, . . . , fk} and A. Choose a square a1-b1-b2-a2-a1;
then a1-b1, a2-b2, f1- · · · -fk form a prism, so k = 2, and we can add f1 to C and f2 to D, contrary to
the maximality of the cube. So we may assume that A′ 6= A. Choose a square a1-b1-b2-a2-a1 such
that a1 ∈ A′ and a2 /∈ A′. Choose c ∈ C and d ∈ D, adjacent. Choose b ∈ B ′ nonadjacent to a1 (this
exists from the definition of A′). From the minimality of k, a1-f1- · · · -fk-b is a path. From the hole
a1-f1- · · · -fk-b-d-c-a1 we deduce that k is even. Since b is not adjacent to a1, b is different from b1.
Suppose that fk is adjacent to b2. Then the set of attachments of {f1, . . . , fk} with respect to the
prism formed by a1-b1, a2-b2, c-d is not local, and yet it has no attachment in c-d, so by 10.4, both
a2 and b1 are attachments. Since a2, b1 are nonadjacent, it follows from the minimality of k and 10.1
that a2 is adjacent to f1 and b1 to fk, contradicting that a2 /∈ A′.

So fk is not adjacent to b2. Then b is different from b2. Since c has no neighbour in the connected
set F ′ = {f1, . . . , fk, b}, and the set of attachments of F ′ is not local with respect to the prism
formed by a1-b1, a2-b2, c-d, it follows from 10.4 that F ′ has an attachment in a2-b2. If a2 is not an
attachment then b2 is, and from the minimality of k it follows that b is the unique neighbour of b2

in F ′; but then a2-b2, c-d, a1-f1- · · · -fk-b form a long prism, a contradiction. So a2 is an attachment
of F ′. Since a2-a1-f1- · · · -fk-b-a2 is not an odd hole, a2 has a neighbour in {f1, . . . , fk}. If b1 also
has a neighbour in {f1, . . . , fk}, then (since a2, b1 are nonadjacent) from the minimality of k and
10.1 it follows that a2 is adjacent to f1 and b1 to fk, and hence a2 ∈ A′, a contradiction. So b1 has
no neighbour in {f1, . . . , fk}. Since a1-f1- · · · -fk-b-b1-a1 is not an odd hole it follows that b1 is not
adjacent to b, and therefore has no neighbours in F ′. Let P be the path between a2 and b with
interior in F ′. From 10.4, a1 has a neighbour in P \ a2. But the only neighbour of a1 in F ′ is f1, so
f1 is in P \ a2, and therefore f1 is adjacent to a2, and there are no other edges between a2 and F ′.
Since a2 /∈ A′ it follows that a2 is adjacent to b. But then the set of neighbours of b in the prism
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formed by a1-b1, a2-b2, c-d is not local, and yet none are in the path a1-b1, contrary to 10.4. This
proves 14.2.

The main result of this section is 1.8.6, which we restate, the following:

14.3 Let G ∈ F5. If G contains a double diamond as an induced subgraph, then either one of G,G
admits a proper 2-join, or G admits a balanced skew partition. In particular, every recalcitrant graph
belongs to F6.

Proof. We may assume that G,G do not admit proper 2-joins, and G does not admit a balanced
skew partition. Suppose for a contradiction that G contains a double diamond; then it contains a
cube, and so there is a maximal cube (A,B,C,D) in G, forming K. Let F be the set of all minor
vertices in V (G) \ V (K), and Y the set of all major ones.

(1) Every anticomponent Y1 of Y is complete to one of A ∪ B,C ∪ D,A ∪ D,B ∪ C, and every
edge from A ∪ D to B ∪ C has a Y1-complete end.

This is immediate from 14.2 by taking complements.

(2) There is no anticomponent of Y that is complete to A ∪ D or B ∪ C.

For suppose such a component exists, say Y1. From the symmetry we may assume it is complete to
A∪D. Define L to be the union of C and all components of F with an attachment in C, and M to be
the union of B and all other components of F ; and define X to be the set of all Y1-complete vertices
of G not in L ∪ M . So all major vertices belong to Y1 ∪ X, and the four sets L,M,X ∪ A ∪ D,Y1

are nonempty and partition V (G); and since Y1 is complete to X ∪ A ∪ D, and there are no edges
between L,M by 14.2, it follows that (L ∪ M,X ∪ A ∪ D ∪ Y1) is a skew partition of G. By 4.2
it is not loose. We claim it is balanced. For by 2.6, (L,D) is balanced, since any vertex in B is
D-complete and L-anticomplete. Let u, v ∈ L be adjacent, and suppose they are joined by an odd
antipath Q1 with interior in Y1. If they both have nonneighbours in D, then since D is anticonnected
they are also joined by an antipath Q2 with interior in D, which is also odd since its union with
Q1 is an antihole, contradicting that (L,D) is balanced. So we may assume that u is D-complete.
Hence u /∈ C, and so u belongs to some component F1 of F with an attachment in C. Since u is
minor, all its neighbours in C are adjacent to all its neighbours in D, and hence it has no neighbours
in C; so v ∈ F1. Since F1 has an attachment in C and in D (because u has neighbours in D) it
follows that F has no attachments in A, and so u, v have no neighbours in A. But then a-u-Q1-v-a
is an odd antihole (where a ∈ A), a contradiction. Next suppose there exist nonadjacent u, v ∈ Y1,
joined by an odd path P with interior in L. By what we just proved about odd antipaths, it follows
that P has length ≥ 5. Now A ∪ D is anticonnected, and there is no A ∪ D-complete vertex in L,
since every vertex in L is minor or belongs to C. Hence the ends of P are A ∪ D-complete and its
internal vertices are not. But this contradicts 13.6. By 4.5, G admits a balanced skew partition, a
contradiction. This proves (2).

(3) There is no component of F such that its set of attachments in K is a subset of one of A∪C,B∪D.

This follows from (2) by taking complements.
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(4) There do not exist both a component F1 of F with set of attachments contained in A∪B and an
anticomponent Y1 of Y complete to A ∪ B; and the same holds with A ∪ B replaced by C ∪ D.

For the first assertion, assume that such F1, Y1 exist. Define M = C ∪ D ∪ (F \ F1), and X to
be the set of all Y1-complete vertices in V (G) \ (M ∪ F1). So A ∪ B ⊆ X, and the four sets
F1,M, Y1, X are all nonempty and form a partition of V (G). Since Y1 is complete to X and there
are no edges between F1 and M , it follows that (F1 ∪ M,Y1 ∪ X) is a skew partition of G. Choose
a ∈ A and b ∈ B, nonadjacent. By 14.2, not both a, b are attachments of F1, and therefore the skew
partition is loose, and so by 4.5 G admits a balanced skew partition, a contradiction. This proves
the first assertion and the second is proved similarly. This proves (4).

Now if Y = ∅, then by (3) it follows that G admits a proper 2-join, a contradiction. So Y
is nonempty, and by taking complements, F is nonempty. By (4), passing to the complement if
necessary, we may assume that there is no anticomponent of Y that is complete to A ∪ B. Hence
Y is complete to C ∪ D, by (1) and (2). Since Y is nonempty, it follows from (4) that there is no
component F1 of F with set of attachments contained in C ∪ D; so by (3), all attachments of F
belong to A ∪ B. Choose an anticomponent Y1 of Y . By (3) and 14.2, Y1 is not A-complete or
B-complete. Let X be the set of Y1-complete vertices in A∪B ∪C ∪D. Let L be the union of A \X
and all components of F that have an attachment in A \ X; and let M be the union of B \ X and
all other components of F . By (1) there are no edges between A \ X and B \ X; and therefore by
14.2, no component of F has attachments in both A \X and B \X. Hence there is no edge between
L and M . Since L,M,X ∪ (Y \ Y1), Y1 is a partition of V (G), and Y1 is complete to X ∪ (Y \ Y1), it
follows that (L ∪ M,X ∪ (Y \ Y1) ∪ Y1) is a skew partition of G. No vertex of D has a neighbour in
L, and so it is loose, contrary to 4.2. Hence there is no such graph G. This proves 14.3.

15 Consequences

Disposal of the long prism and double diamond has a number of consequences that we develop in this
section. First, since we have shown that every minimum imperfect graph is recalcitrant and therefore
belongs to F6, the next result (together with 1.5) implies that that no minimum imperfect graph G
admits a skew partition. This is essentially Chvátal’s skew partition conjecture [6]. (Chvátal actually
conjectured that no minimal imperfect graph admits a skew partition, which is slightly stronger.)

15.1 If G ∈ F6 admits a skew partition, then G admits a balanced skew partition.

Proof. Let (A,B) be a skew partition in G, which by 4.2 we may assume is not loose. We may
assume that there is an odd path P of length ≥ 3 with ends in B and with interior in A. Let P
have ends b1, b

′

1, and let their neighbours in P be a1, a
′

1 respectively. Let A1 be the component of
A including the interior of P , and let B1 be the anticomponent of B containing b1, b

′

1. Let A2 be a
second component of A, and B2 a second anticomponent of B. Now the ends of P are B2-complete,
and its internal vertices are not, since the skew partition is not loose; suppose that P has length at
least 5. Then by 2.1, B2 contains a leap x, y for P , and then the subgraph induced on V (P )∪ {x, y}
is a long prism, a contradiction since G ∈ F6. So no such path has length ≥ 5; and similarly no odd
antipath with ends in A and interior in B has length ≥ 5. Hence P has vertices b1-a1-a

′

1-b
′

1 in order.
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Now a1, a
′

1 both have non-neighbours in B2, and hence are joined by an antipath with interior in B2;
this antipath is odd, since its union with b1, b

′

1 induces an antihole, and since all such antipaths have
length 3 it follows that there exist nonadjacent b2, b

′

2 ∈ B2 such that b2-a1-a
′

1-b
′

2 is a path. Now b1, b
′

1

both have neighbours in A2, since the skew partition is not loose, and hence are joined by a path
with interior in A2, and it is odd as usual, and hence has length 3; so there exist adjacent a2, a

′

2 ∈ A2

such that b1-a2-a
′

2-b
′

1 is a path. Since b2-b1-a2-a
′

2-b
′

1-b2 is not an odd hole, b2 is adjacent to one of
a2, a

′

2, and similarly so is b′2. But b2, b
′

2 have no common neighbour in A2, for if v ∈ A2 were adjacent
to them both then v-b2-a1-a

′

1-b
′

2-v would be an odd hole. So there are exactly two edges between
{a2, a

′

2} and {b2, b
′

2}, forming a 2-edge matching. There are two possible pairings; in one case the
subgraph induced on these eight vertices is a double diamond, and in the other it is L(K3,3 \ e). In
both cases this contradicts that G ∈ F6. This proves 15.1.

Consequently we have the following:

15.2 Let G ∈ F6, and assume that G admits no balanced skew partition. Let X,Y ⊆ V (G) be
nonempty, disjoint, and complete to each other.

• If X ∪ Y = V (G), then either G is complete, or G has exactly two components, both with ≤ 2
vertices (and hence |V (G)| ≤ 4).

• If X ∪ Y 6= V (G), then V (G) \ (X ∪ Y ) is connected, and if in addition |X| > 1, then every
vertex in X has a neighbour in V (G) \ (X ∪ Y ).

Proof. By 15.1, G admits no skew partition. Assume first that X ∪ Y = V (G). Then G is not
connected; let the anticomponents of G be B1, . . . , Bk say, where k ≥ 2. We may assume that G is not
complete, and therefore we may assume that some Bi, say B1, has cardinality > 1. Choose x, y ∈ B1,
nonadjacent. Then ({x, y}, V (G) \ {x, y}) is not a skew partition, and so G \ {x, y} is anticonnected.
Hence k = 2 and B1 = {x, y}. Similarly B2 has cardinality ≤ 2, and so |V (G)| ≤ 4 and the theorem
holds. Now assume that G \ (X ∪ Y ) is nonnull. Suppose that V (G) \ (X ∪ Y ) is not connected;
then (V (G) \ (X ∪ Y ), X ∪ Y ) is a skew partition, a contradiction. So V (G) \ (X ∪ Y ) is connected.
Now suppose some x ∈ X has no neighbour in V (G) \ (X ∪ Y ). Hence V (G) \ ((X \ {x})∪ Y ) is not
connected, and since G admits no skew partition it follows that X = {x}. This proves 15.2.

Here is another consequence:

15.3 Let G ∈ F6. Let C be a cycle in G of length ≥ 6, with vertices p1, . . . , pn in order, and let
1 < h < i and i+1 < j < n. Let C be induced except possibly for an edge phpj. Let Y ⊆ V (G)\V (C)
be anticonnected, such that the only Y -complete vertices in C are pn, p1, pi, pi+1. Suppose there is a
path F of G \Y from ph to pj (possibly of length 1), such that there are no edges between its interior
and V (C) \ {ph, pj}. Then some vertex of F is Y -complete.

Proof. Assume no vertex of F is Y -complete. Since the hole

p1- · · · -ph-F -pj- · · · -pn-p1

is even, and the path p1- · · · -ph- · · · -pi is even (by 2.2), it follows that the path

pi-pi−1- · · · -ph-F -pj- · · · -pn
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is odd, and therefore has length 3 by 13.6. So F has length 1, and i = h+1 and n = j +1. Similarly
h = 2 and j = i + 2, and so n = 6. Then p2, p5 are adjacent, so there is an antipath Q joining
them with interior in Y . But then in G, the three paths p1-p4,p5-p2, p3-Q-p6 form a long prism, a
contradiction. This proves 15.3.

There is a variant of 3.2, the following.

15.4 Let G ∈ F6, and let p1- · · · -pm be a path in G. Let 2 ≤ s ≤ m − 2, and let ps-q1- · · · -qn-ps+1

be an antipath, where n ≥ 2. Assume that p1, pm are both adjacent to all of q1, . . . , qn. Then n is
even and m = 4.

Proof. If n is even then ps-q1- · · · -qn-ps+1 is an odd antipath, and p1, pm are complete to its interior;
and hence p1, pm are both adjacent to one of ps, ps+1. So s = 2 and m = s+ 2, and therefore m = 4.
Now assume n is odd; then ps-q1- · · · -qn-ps+1 is an even antipath of length ≥ 4, contrary to 13.7
applied in G to this antipath and the sets {p1, . . . , ps−1},{ps+2, . . . , pn}. This proves 15.4.

There is a strengthening of 2.3:

15.5 Let G ∈ F6, let C be a hole in G, and let X ⊆ V (G) \V (C) be anticonnected. Let P be a path
in C of length > 1 such that its ends are X-complete and its internal vertices are not. Then P has
even length.

Proof. The claim is trivial if C has length 4, so we assume it has length ≥ 6. Let the vertices of
C be p1, . . . , pn in order, and let P be p1- · · · -pk say, where 3 ≤ k < n. Assume k is even. Then
by 13.6 applied to P we deduce that P has length 3, so k = 4. By 2.2 every X-complete vertex is
adjacent to one of p2, p3, so there are none in the interior of the odd path p4-p5- · · · -pn-p1. By 13.6
this path also has length 3, so n = 6. Let Q be the shortest antipath with interior in X, joining
either p2, p3 or p5, p6. From the symmetry we may assume its vertices are p2-q1- · · · -qm-p3 say. Then
Q is odd since it can be completed to an antihole via p3-p1-p4-p2; and since p5-p2-Q-p3-p5 is therefore
not an antihole, it follows that p5 (and similarly p6) has a nonneighbour in the interior of Q. From
the choice of Q it follows that p5, p6 both have exactly one nonneighbour in the interior of Q; one
is nonadjacent to q1 and the other to qm. Suppose that m > 2. If p5 is nonadjacent to q1 then
the three antipaths q1- · · · -qm, p5-p3, p2-p6 for a long prism in G, contrary to G ∈ F6; while if p5 is
nonadjacent to qm then q1- · · · -qm, p6-p3, p2-p5 form a long prism, again a contradiction. So m = 2.
But then G|{p1- · · · -p6, q1, q2} is L(K3,3 \ e) if p5 is nonadjacent to q1, and a double diamond if p5 is
nonadjacent to q2, again contrary to G ∈ F6. This proves 15.5.

There is also a strengthening of 3.3; we no longer need the vertex z.

15.6 Let G ∈ F6, let C be a hole in G of length ≥ 6, with vertices p1, . . . , pm in order, and let Q be
an antipath with vertices p1, q1, . . . , qn, p2, with length ≥ 4 and even. There is at most one vertex in
{p3, . . . , pm} complete to either {q1, . . . , qn−1} or {q2, . . . , qn}, and any such vertex is one of p3, pm.

Proof. Suppose first that one of q1, . . . , qn belongs to the hole. Since it is adjacent to at least
one of p1, p2 (since Q is an antipath), we may assume that it is pm; and since it is nonadjacent
to p2, it follows that pm = qn. So p3 6= q1 (since q1 is adjacent to qn), and therefore no more of
q1, . . . , qn belong to C. Suppose that there exists i with 3 ≤ i < m such that pi is complete to either
{q1, . . . , qn−1} or {q2, . . . , qn}. If i < m − 1 then pi is not adjacent to pm = qn, so pi is complete
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to {q1, . . . , qn−1}; but then pi-p1-q1- · · · -qn-pi is an odd antihole. So i = m − 1. By 15.5 applied to
the path pm−1-pm-p1-p2 it follows that pm−1 is not complete to {q1, . . . , qn−1}, and therefore it is
complete to {q2, . . . , qn} and nonadjacent to q1. But then p2-pm−1-q1- · · · -qn-p2 is an odd antihole, a
contradiction. So there is no such i, and therefore the theorem holds in this case.

So we may assume that none of q1, . . . , qn belong to C. Let X = {q1, . . . , qn}, and let Y1, Y2 be
the sets of vertices in {p3, . . . , pm} complete to X \ {qn}, X \ {q1} respectively.

(1) Y1 ⊆ Y2 ∪ {pm}, and Y2 ⊆ Y1 ∪ {p3}.

This is proved as in the proof of 3.3.

(2) If Y1 6⊆ {pm} then p3 ∈ Y1 ∩ Y2, and if Y2 6⊆ {p3} then pm ∈ Y1 ∩ Y2.

For assume Y1 6⊆ {pm}, and choose i with 3 ≤ i ≤ m − 1 minimum so that pi ∈ Y1. By (1),
pi ∈ Y2, so we may assume i > 3, for otherwise the claim holds. By 15.5 applied to the anticonnected
set X \{qn}, i is even. The path p1- · · · -pi is odd, and between X \{q1}-complete vertices, so by 15.5
it contains another in its interior, say ph. From the minimality of i, ph /∈ Y1, so by (1) h = 3, and
15.5 applied to the path p3- · · · -pi implies that i = 4. Choose j with 4 ≤ j ≤ m maximum such that
pj ∈ Y2. By (1), pj is X-complete. By 15.4 applied to pj- · · · -pm-p1- · · · -p4 we deduce that j ≤ 5,
and so j 6= m. By 15.5 applied to the path pj- · · · -pm-p1 and anticonnected set X \ {q1}, it follows
that j is odd, and so j = 5. From 15.5 applied to the path p5- · · · -pm-p1-p2 and anticonnected set
X \ {qn}, we deduce that there exists k with 6 ≤ k ≤ m such that pk ∈ Y1. Since it is not in Y2, it
follows from (1) that k = m, and so pm ∈ Y1 \ Y2. But then p3-q1- · · · -qn-pm-p3 is an odd antihole, a
contradiction. This proves (2).

Now not both p3, pm are in Y1 ∩ Y2, for otherwise Q could be completed to an odd antihole via
p2-pm-p3-p1. Hence we may assume p3 /∈ Y1∩Y2, and so from (2), Y1 ⊆ {pm}. By (1), Y2 ⊆ {p3}∪Y1,
and so Y1 ∪ Y2 ⊆ {p3, pm}. We may therefore assume that Y1 ∪ Y2 = {p3, pm}, for otherwise the
theorem holds. In particular, p3 ∈ Y2. If also pm ∈ Y2, then p3-p4- · · · -pm is an odd path between
X \ {q1}-complete vertices, and none of its internal vertices are X \ {q1}-complete, contrary to 15.5.
So pm /∈ Y2, and so pm ∈ Y1; but then p3-q1-q2- · · · -qn-pm-p3 is an odd antihole, a contradiction. This
proves 15.6.

This implies a strengthening of 3.1:

15.7 Let G ∈ F6. Let C be a hole of length > 4 and D an antihole of length > 4. Then |V (C) ∩
V (D)| ≤ 2.

Proof. Assume that |V (C) ∩ V (D)| ≥ 3; then by taking complements if necessary, we may assume
that there are three vertices in V (C) ∩ V (D) such that exactly one pair of them is adjacent. Hence
we can number the vertices of C as p1, . . . , pm in order, and the vertices of D as p1, q1, . . . , qn, p2, pk

for some k with 4 ≤ k ≤ m−1. (Possibly the hole and antihole also share some fourth vertex.) Hence
the antipath p1-q1- · · · -qn-p2 has length ≥ 4 and even. The vertex pk is complete to {q1, . . . , qn}, and
different from p3, pm, contrary to 15.6. This proves 15.7.
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16 Odd wheels

Now we begin the third of the major parts of the proof, handling Berge graphs that do not contain
appearances of K4, long prisms or double diamonds, but do contain wheels. A wheel in a graph G is
a pair (C, Y ), satisfying:

• C is a hole of length ≥ 6

• Y is a non-null anticonnected set disjoint from C

• there are two disjoint Y -complete edges of C.

We need to study how the remainder of a recalcitrant graph can attach onto a wheel. (Conforti,
Cornuéjols, Vušković and Zambelli [11] also made such a study, and their paper contains results
related to ours.) We call C the rim and Y the hub of the wheel. A maximal path in a path or hole
H whose vertices are all Y -complete is called a segment or Y -segment of H. A wheel (C, Y ) is odd
if some segment has odd length. Odd wheels are much easier to handle than general wheels, and
in this section we prove that there are no odd wheels in a recalcitrant graph. (Gérard Cornuéjols
informs us that he and his co-workers proved the same result, independently, but, like us, assuming
the truth of 13.4 — see [11].)

Let us say that distinct vertices u, v of the rim of a wheel (C, Y ) have the same wheel-parity if
there is a path of the rim joining them containing an even number of Y -complete edges (and hence
by 2.3, so does the second path, if u, v are nonadjacent); and opposite wheel-parity otherwise. In any
odd wheel (C, Y ), there are vertices u, v in C of opposite wheel-parity that are not Y -complete, and
we shall show that, if the odd wheel has been chosen optimally, then Y and its common neighbours
separate u, v and thereby give us a balanced skew partition.

16.1 Let G ∈ F6, and let (C, Y ) be a wheel in G. Let v ∈ V (G) \ (V (C) ∪ Y ), such that v is not
Y -complete. Suppose that there exist neighbours of v in C with opposite wheel-parity. Then in every
path of C between them there is a Y ∪ {v}-complete edge. Moreover, either:

• v has only two neighbours in C, and they are adjacent and both Y -complete, or

• there is a 3-vertex path p1-p2-p3 in C, such that p1, p2, p3 are all Y ∪ {v}-complete, and every
other neighbour of v in C has the same wheel-parity as p1, or

• (C, Y ∪ {v}) is a wheel.

Proof.

(1) Let P be a path in C of length ≥ 1, such that its ends are adjacent to v and have opposite
wheel-parity. Then either some internal vertex of P is a neighbour of v, or P has length 1.

For let C have vertices p1, . . . , pn in order, and let P be the path p1- · · · -pj say, where j < n.
We assume no internal vertex of P is a neighbour of v, and that j ≥ 3. From the hole v-p1- · · · -pj-v
it follows that j is odd. Since p1, pj have opposite wheel-parity with respect to (C, Y ), there are an
odd number of Y -complete edges in P . Choose Y ′ ⊆ Y minimal such that Y ′ is anticonnected and
there are an odd number of Y ′-complete edges in P . From 2.3 applied to the hole v-p1- · · · -pj-v,
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it contains just one Y ′-complete edge and only two Y ′-complete vertices. Hence there exists i with
1 ≤ i < j such that pi, pi+1 are the only Y ′-complete vertices in P . Since j is odd, it follows that
exactly one of i − 1, j − i is even; so (by replacing P by its reverse if necessary) we may assume
that i is odd. So pj is different from pi+1, and hence pj is not Y ′-complete. There are two disjoint
Y ′-complete edges in C, so one of them does not use pi; and therefore it does not use p1 either (for p1

is not Y ′-complete unless i = 1). Hence both its ends are in {pj+1, . . . , pn}. Consequently n ≥ j +2,
and since n is even and j is odd it follows that n ≥ j + 3. Therefore there is a Y ′-complete vertex
in {pj+2, . . . , pn−1}.

Suppose that v has a neighbour in {pj+2, . . . , pn−1}. Then there is a path Q from v to a Y ′-
complete vertex u say, with V (Q) ⊆ {v, pj+2, . . . , pn−1}, such that no internal vertex of Q is Y ′-
complete. The path pi- · · · -p1-v-Q-u has both ends Y ′-complete, and no internal vertex Y ′-complete,
and the Y ′-complete vertex pi+1 has no neighbour in its interior; so this path is even, that is, Q is
odd. Hence the path pi+1- · · · -pj-v-Q-u is odd, and so by 13.6 has length 3; and hence j = i+2 and Q
has length 1. Also, every Y ′-complete vertex is adjacent to one of pj, v, by 2.2; and so pi is adjacent
to v, and so i = 1, j = 3; and v is adjacent to every Y ′-complete vertex in C except p2 and possibly
p4 (for no others are adjacent to p3). In particular, there are two nonadjacent Y ′ ∪ {v}-complete
vertices in C, and so by 2.3 there are an even number of Y ′ ∪ {v}-complete edges in C. But all
Y ′-complete edges of C are Y ′∪{v}-complete except p1p2 and possibly p4p5; and since there are also
an even number of Y ′-complete edges in C, it follows that p4, p5 are Y ′-complete, and v is adjacent
to p5 and not to p4. But then the vertices v, p1, p2, p3, p4, p5 violate 15.3.

This proves that v has no neighbour in {pj+2, . . . , pn−1}. Choose k with j ≤ k ≤ n minimum
such that pk is Y ′-complete. Since there is a Y ′-complete vertex in {pj+2, . . . , pn−1}, it follows that
k < n. From 2.3 it follows that the path pi+1- · · · -pk is even, and so k is even. Suppose that v is
not adjacent to pj+1. Since v-pj- · · · -pn-v is not an odd hole, it follows that v is not adjacent to pn,
so p1, pj are its only neighbours in C. But pi- · · · -p1-v-pj- · · · -pk is odd, and therefore has length
3 by 13.6; and by 2.2, every Y ′-complete vertex in C is adjacent to v except possibly pj−1, pj+1, a
contradiction since there is a Y ′-complete vertex in {pj+2, . . . , pn−1}. So v is adjacent to pj+1. Since
v-pj+1- · · · -pn-p1-v is not an odd hole, it follows that v is also adjacent to pn, so it has exactly four
neighbours in C. Choose m with k ≤ m ≤ n maximum such that pm is Y ′-complete. It follows that
m ≥ j + 2. If m = n then a Y ′-complete vertex in {pj+2, . . . , pn−1} has no neighbours in the interior
of the odd path pi+1- · · · -pj-v-pn, and the ends of this path are Y ′-complete and its internal vertices
are not, contrary to 2.2. So m < n. Then 2.3 applied to the path pm- · · · -pn-p1- · · · -pi implies that
m is odd, and therefore m > k. Suppose that m > k + 1. Then pm- · · · -pn-v-pj+1- · · · -pk is an odd
path, and pi+1 has no neighbour in its interior, contrary to 2.2. So m = k+1, and there is symmetry
between the paths p1- · · · -pj and pj+1- · · · -pn. Both these paths have length ≥ 2; suppose they both
have length 2. Then n = 6, and the only Y ′ ∪ {v}-complete vertices in C are p1, p4, contrary to
15.5. So one of the paths has length > 2, and from the symmetry we may assume that j ≥ 4. Hence
the hole H = v-p1- · · · -pj-v has length ≥ 6, and the only Y ′-complete vertices in it are pi, pi+1. By
2.10, Y ′ contains a hat or a leap. But pk+1 has no neighbour in this hole, so the pair (V (H), Y ′)
is balanced by 2.6, and hence there is no leap. So there is a hat; that is, there exists y ∈ Y ′ with
no neighbours in H except pi, pi+1. From the minimality of Y ′ it follows that Y ′ = {y}. But then
G|(V (C)∪{v, y}) is the line graph of a bipartite subdivision of K4, a contradiction. This proves (1).

From (1) the first assertion of the theorem follows. Now we prove the second assertion. Suppose
that v has at least four neighbours in C, two with the same wheel-parity, and two others with the
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opposite wheel-parity. Then there are two disjoint paths as in (1), and therefore from (1) there are
two disjoint Y ∪ {v}-complete edges in C, and so (C, Y ∪ {v}) is a wheel and the theorem holds. So
we may assume that C has vertices p1, . . . , pn in order, and v is adjacent to p1, and v has no other
neighbour in C with the same wheel-parity as p1. Since v has at least one other neighbour, we may
assume it has a neighbour in V (C) \ {p1, pn}. Choose i > 1 minimum such that v is adjacent to pi;
then i < n, so by (1), i = 2. So p2 is Y ∪{v}-complete. If v has a third neighbour in C then similarly
pn is Y ∪{v}-complete and the theorem holds; and if not then again the theorem holds. This proves
16.1.

16.2 Let G ∈ F6, and let (C, Y ) be a wheel in G. Let F ⊆ V (G) \ (V (C) ∪ Y ) be connected, such
that no vertex in F is Y -complete. Let X ⊆ V (C) be the set of attachments of F in C. Suppose
that there exist vertices in X with opposite wheel-parity, and there are two vertices in X that are
nonadjacent. Then either:

• there is a vertex v ∈ F such that (C, Y ∪ {v}) is a wheel, or

• there is a vertex v ∈ F with at least four neighbours in C, and a 3-vertex path p1-p2-p3 in C,
such that p1, p2, p3 are all Y ∪{v}-complete, and every other neighbour of v in C has the same
wheel-parity as p1, or

• we can number the vertices of C as p1, . . . , pn in order, such that p1, p2, p3 are all Y -complete,
and there is a path p1-f1- · · · -fk-p3 with interior in F , such that there are no edges between
{f1, . . . , fk} and {p4, . . . , pn}.

Proof. We may assume that F is minimal. If |F | = 1 then the result follows from 16.1, so we
assume |F | ≥ 2.

(1) If there do not exist nonadjacent vertices in X with different wheel-parity, then the theorem holds.

For there exist vertices in X with different wheel-parity, which are therefore adjacent; say p1, p2,
where C has vertices p1, . . . , pn in order. So p1, p2 are both Y -complete, since they have different
wheel-parity. There is a third attachment of F , since there are two that are nonadjacent, say pi

where 3 ≤ i ≤ n. Since p1, p2 have different wheel-parity, we may assume that p2, pi have different
wheel-parity; and therefore p2, pi are adjacent, that is, i = 3, and p3 is Y -complete. Suppose F has
a fourth attachment pj say, where 4 ≤ j ≤ n. From the symmetry we may assume j 6= n; and so pj

is nonadjacent to both p1, p2, and one of these has different wheel-parity from pj , a contradiction.
So p1, p2, p3 are the only attachments of F , and then the theorem holds. This proves (1).

From (1) we may assume there are nonadjacent vertices in X with opposite wheel-parity, say
x1, x2, and therefore F is the interior of a path between x1, x2, from the minimality of F . Let C
have vertices p1, . . . , pn in order; then we may assume that there exists m with 3 ≤ m ≤ n − 1 such
that p1, pm have opposite wheel-parity, and there is a path p1-f1- · · · -fk-pm where F = {f1, . . . , fk}.
Let X1 be the set of attachments in C of F \ {fk}, and X2 the set of attachments of F \ {f1}. From
the minimality of F , for i = 1, 2 either all members of Xi have the same wheel-parity, or there are
at most two members of Xi, adjacent if there are two. Since k ≥ 2 it follows that X1 ∪ X2 = X.
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(2) X1 and X2 do not both have members of opposite wheel-parity.

For suppose they do; then X1, X2 both consist of exactly two adjacent vertices of opposite wheel-
parity, say X1 = {p1, p2} and X2 = {pm′ , pm′+1}. So p1, p2, pm′ , pm′+1 are all Y -complete, and all
distinct since two of them are nonadjacent and of opposite wheel-parity. So the only edges between
F and {p1, p2} are incident with f1, and similarly for fk. But then G contains a long prism since
n ≥ 6, a contradiction. This proves (2).

(3) If X1 has members of opposite wheel-parity then the theorem holds.

For assume X1 has members of opposite wheel-parity. Then we may assume its only members
are p1, p2, and they are both Y -complete. From (2) we may assume that all members of X2 have
the same wheel-parity as p2. In particular, p1 has no neighbour in F \ {f1}. So the only edges
between F and C are f1p1, edges incident with p2, and edges incident with fk. Suppose that p2

also has no neighbour in F \ {f1}, and therefore p2 is adjacent to f1. If fk has a unique neighbour
x in C, then x can be linked onto the triangle {p1, p2, f1}; if fk has two nonadjacent neighbours
in C then fk can be linked onto the same triangle; and if it has exactly two neighbours and they
are adjacent, then G contains a long prism, in each case a contradiction. So p2 has a neighbour in
F \ {f1}. Let R1 be the path p1-f1- · · · -fk, and let R2 be the path from p2 to fk with interior in
F \ {f1}. Then p1 has no neighbours in R2 \ p2. Let Q1 be the path from fk to pn with interior in
C \ p1. Now p1-R1-fk-Q1-pn-p1 is a hole, so R1 and Q1 have lengths of opposite parity; and since
this hole contains an odd number of Y -complete edges (since all neighbours of fk have wheel-parity
opposite from that of p1) it follows from 2.3 that it contains exactly one such edge and only two
Y -complete vertices. Since p1 is Y -complete, the other is therefore pn. The path p2-R2-fk-Q1-pn

is between Y -complete vertices, and no internal vertex is Y -complete, and the Y -complete vertex
p1 has no neighbour in its interior; so it is even by 2.2, that is, R1, R2 have opposite parity. Now
there is a Y -complete vertex in {p4, . . . , pn−1}; for there are two disjoint Y -complete edges in C,
and an even number of Y -complete edges in C. Let ps be such a vertex, where 4 ≤ s ≤ n − 1. We
claim that fk has a neighbour in {p4, . . . , pn−1}. For if not, then since X 6= {pn, p1, p2} (because
there are nonadjacent vertices in X of opposite wheel-parity), it follows that fk is adjacent to p3.
Since ps is not in Q1, it follows that p3 is not in Q1, and so fk has another neighbour, which must
be pn; but then fk-p3-p4- · · · -pn-fk is an odd hole. So fk has a neighbour in {p4, . . . , pn−1}; and
therefore there is a path Q2 from fk to some x, such that x is the unique Y -complete vertex in Q2,
and V (Q2 \ {fk}) ⊆ {p4, . . . , pn−1}. Now the path p2-R2-fk-Q2 has both ends Y -complete, and no
internal vertex Y -complete, and the Y -complete vertex p1 has no neighbour in its interior, so it is
even by 2.2. Therefore the path p1-R1-fk-Q2 is odd, since R1, R2 have opposite parity; and again its
ends are Y -complete and its internal vertices are not. So it has length 3, by 13.6, and so k = 2; and
every Y -complete vertex is adjacent to one of f1, f2. Consequently there is no Y -complete vertex in
C different from p1 with the same wheel-parity as p1, a contradiction. This proves (3).

From (3) we may assume that all members of X1 have the same wheel-parity, and all members of
X2 have the opposite wheel-parity. It follows that X1 ∩ X2 = ∅, and so there are no edges between
the interior of F and C. So X1 is the set of neighbours of f1 in C, and X2 is the set of neighbours
of fk in C.
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(4) At least one of f1, fk has only one neighbour in C.

For assume they both have at least two. Then there are disjoint paths Q,R of C, both containing
neighbours of both f1, fk. Choose Q,R minimal, and let Q have ends q1, q2; then from the minimality
of Q, q1 is the unique neighbour of one of f1, fk in Q, and q2 is the unique neighbour of the other.
Let f1q1 and fkq2 be edges say. Similarly let R have ends r1, r2, where f1r1, fkr2 are edges. Since
q1, q2 have opposite wheel-parity, it follows that there are an odd number of Y -complete edges in the
hole f1- · · · -fk-q2-Q-q1-f1; so by 2.3 there is exactly one, and just two Y -complete vertices. If there
are no edges between Q and R this contradicts 15.3, applied to the cycle f1-q1-Q-q2-fk-r2-R-r1-f1.
Since Q,R are disjoint subpaths of C, all the edges between them join their ends; so we may assume
that q1 is adjacent to one of r1, r2. From the hole f1- · · · -fk-q2-Q-q1-f1 it follows that Q has parity
k − 1, and similarly so does R. Suppose first that q1 is adjacent to r1. Since q1-Q-q2-fk-r2-R-r1-q1

is not an odd hole, it follows that q2 is adjacent to r2, and hence G contains a long prism, since
C has length ≥ 6, a contradiction. So q1 is adjacent to r2. Since q1 is a neighbour of f1 and r2

of fk, it follows that q1, r2 have opposite wheel-parity, and since they are adjacent, they are both
Y -complete. Let q′ be the neighbour of q1 in Q, let Q′ = Q \ q1, let r′ be the neighbour of r2 in R,
and let R′ = R \ r2. Since in the hole f1- · · · -fk-q2-Q-q1-f1 there are only two Y -complete vertices
and they are adjacent, it follows that the second is q ′, and similarly r′ is Y -complete. If q2 is adjacent
to r1 then not both q2, r1 are Y -complete since C has length ≥ 6; and so there are exactly three
Y -complete edges in C, contrary to 2.3. It follows that q2 is not adjacent to r1. From the hole
q1-Q-q2-fk-r2-q1 it follows that Q has odd length, and therefore so does R and k is even. But then
the path q′-Q′-q2-fk- · · · -f1-r1-R

′-r′ has odd length, its ends are Y -complete and its internal vertices
are not, and so by 13.6 it has length 3; that is, Q,R have length 1 and k = 2. Hence the path
r1-f1-f2-q2 is odd, its ends are Y -complete, and its internal vertices are not, so every Y -complete
vertex is adjacent to one of f1, f2. Let ab, a′b′ be two Y -complete edges of C, disjoint and such that
there are no edges from {a, b} to {a′, b′}. Then each of a, b, a′, b′ is adjacent to one of f1, f2, and
since all neighbours of f1 in C have opposite wheel-parity from all neighbours of f2 in C, we may
assume that a, a′ are adjacent to f1 and b, b′ to f2. But this contradicts 15.3, applied to the cycle
a-f1-a

′-b′-f2-b-a. This proves (4).

From (4) we may assume that X1 has only one member, say p1. Choose i, j with 2 ≤ i, j ≤ n, such
that pi, pj are adjacent to fk, with i minimum and j maximum. From the hole p1-f1- · · · -fk-pi-pi−1- · · · -p1

(= H1 say) we deduce that i, k have the same parity, and from the hole p1-f1- · · · -fk-pj-pj+1- · · · -pn-p1

(= H2 say) that j, k have the same parity. (So either pi = pj or pi, pj are nonadjacent.) Since p1, pi

have different wheel-parity, and so do p1, pj, there is an odd number of Y -complete edges in each
of H1,H2; and therefore there is exactly one Y -complete edge and exactly two Y -complete vertices
in each of the holes, by 2.3. Suppose that i = j. Then there are only two Y -complete edges in
C, and therefore they are disjoint, and p1, pi are not Y -complete (since H1,H2 both have only two
Y -complete vertices), contrary to 15.3 applied to C. So j > i, and hence j ≥ i + 2. If p1 is not
Y -complete, then the Y -complete edge in H1 is disjoint from the path p1-f1- · · · -fk, and so is the one
in H2; but this contradicts 15.3 applied to the hole p1- · · · -pi-fk-pj- · · · -pn-p1. So p1 is Y -complete.
Since H1 contains only two Y -complete vertices and they are adjacent, the other is p2, and similarly
pn is Y -complete.

(5) fk has no neighbour in {p3, . . . , pj−2}.
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For assume it does. We claim there is also a Y -complete vertex in this set; for otherwise the only Y -
complete vertices in C are pn, p1, p2 and possibly pj−1, which is impossible since there are two disjoint
Y -complete edges and an even number of Y -complete edges in C. Hence there is a path P say from
fk to some x such that x is the unique Y -complete vertex in P and V (P \ fk) ⊆ {p3, . . . , pj−2}. The
path pn-pn−1- · · · -pj-fk-P -x is even, since its ends are Y -complete, no internal vertex is Y -complete,
and the Y -complete vertex p1 has no neighbour in its interior. The path p1-f1- · · · -fk-P -x is there-
fore odd (since k, j have opposite parity), and also its ends are Y -complete and no internal vertex is
Y -complete; so it has length 3 by 13.6, and hence k = 2 and every Y -complete vertex is adjacent to
one of f1, f2, by 2.2. So there is no Y -complete vertex in C \ p1 with the same wheel-parity as p1, a
contradiction. This proves (5).

Since fk is adjacent to pi, and i < j and j − i is even, it follows from (5) that i = 2, and similarly
fk has no neighbours in {pi+2, . . . , pn−1} and j = n. So fk has no neighbours in

{p3, . . . , pj−2} ∪ {pi+2, . . . , pn−1} = {p3, . . . , pn−1},

and therefore p2, pn are its only neighbours, contradicting that there are nonadjacent vertices in X
of opposite wheel-parity. This proves 16.2.

The main result of this section is 1.8.7, which we restate, the following.

16.3 Let G ∈ F6. If there is an odd wheel in G then G admits a balanced skew partition. In
particular, every recalcitrant graph belongs to F7.

Proof. Suppose (C, Y ) is an odd wheel with Y maximal, and subject to that, such that the number
of Y -complete edges in C is minimum. (We refer to these conditions as the “optimality” of (C, Y ).)

(1) There is no vertex v ∈ V (G) \ (V (C) ∪ Y ) such that v is not Y -complete and has nonadja-
cent neighbours in C of opposite wheel-parity.

Suppose there is such a vertex v. Suppose first that there is an odd Y ∪{v}-segment in C. From the
maximality of Y , (C, Y ∪ {v}) is therefore not a wheel, and so there is a unique Y ∪ {v}-complete
edge in C. By 2.10, either v has only two neighbours in C, or some vertex of Y has only three,
in either case a contradiction. So there is no odd Y ∪ {v}-segment in C. Define a “line” to be a
maximal subpath of C with no internal vertex adjacent to v. It follows that every edge of C is in a
unique line. Let C have vertices p1, . . . , pn in order, and let S be an odd Y -segment.

Since there are no odd Y ∪ {v}-segments, it follows that an even number of edges of S are
Y ∪ {v}-complete. Hence an odd number are not, and therefore there is a line L containing an odd
number of edges of S that are not Y ∪ {v}-complete. In particular it contains at least one edge that
is Y -complete and not Y ∪ {v}-complete, so L has length > 1. Let the ends of L be p, q. By 16.1, p
and q have the same wheel-parity with respect to (C, Y ), and so L contains an odd number of edges
of some other Y -segment S ′ 6= S. In particular, there are two disjoint Y -complete edges in the hole
v-p-L-q-v ( = H say); so H has length ≥ 6 (because v is not Y -complete) and so (H,Y ) is a wheel.
Moreover it is an odd wheel, for it contains an odd number of edges of S, and those edges form either
one or two Y -segments in H, and one of these segments is odd. Since there is a Y ∪ {v}-complete
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edge in C (by 16.1, since v has neighbours in C of opposite wheel-parity) which therefore does not
belong to L, this contradicts the optimality of (C, Y ). This proves (1).

Since (C, Y ) is an odd wheel, C has at least two segments, and therefore there are vertices u, v in
C with different wheel-parity and neither of them Y -complete. Let X be the set of all Y -complete
vertices in V (G). Then |X| > 1, since |X∩V (C)| ≥ 4; so by 15.2, we may assume that V (G)\(X∪Y )
is nonempty and connected ( = Z say), and every vertex in X has a neighbour in it, for otherwise G
admits a balanced skew partition and the theorem holds. In particular u, v ∈ Z, so there is a minimal
connected subset F of Z such that there are two vertices of C \X (say p, q) of opposite wheel-parity,
both with neighbours in F . Since p, q have opposite wheel-parity and are not Y -complete, they are
not adjacent. From the minimality of F , F is a path, and no vertex of F is in C. By 16.2 and (1),
there is a 3-vertex path p1-p2-p3 in C, all Y -complete, and a path p1-f1- · · · -fk-p3 with interior in F ,
such that there no edges between {f1, . . . , fk} and {p4, . . . , pn}. But then C \p2 can be completed to
a hole C ′ say, via p1-f1- · · · -fk-p3; and C ′ has length ≥ 6. For every odd segment S of (C, Y ), either
it contained both or neither of the edges p1p2, p2p3; and so in either case an odd number of edges
of S belong to C ′. Since (C, Y ) has an odd segment and there are an even number of Y -complete
edges in C, it has at least two odd segments. It follows that there are two disjoint Y -complete edges
in C ′, and so (C ′, Y ) is a wheel. Since an odd number of edges of the odd segment S belong to C ′,
it follows that (C ′, Y ) is an odd wheel, contrary to the optimality of (C, Y ). This proves 16.3.

17 Another extension of the Roussel-Rubio lemma

A “pseudowheel” is a variant of an odd wheel, defined in the next section, and we want to show that
Berge graphs containing pseudowheels and nothing better admits balanced skew partitions. The
main result of this section is a lemma about graphs in F7, that will be used in when we handle
pseudowheels in section 18.

Let {a1, a2, a3} be a triangle in G. A reflection of this triangle is another triangle {b1, b2, b3} of
G, disjoint from the first, such that a1b1, a2b2, a3b3 are edges, and these are the only edges between
the two triangles. Hence these six vertices induce a prism. A subset F of V (G) is said to catch the
triangle {a1, a2, a3} if it is connected and disjoint from that triangle and a1, a2, a3 all have neighbours
in F . We begin with the following extremely useful little fact.

17.1 Let A be a triangle in a graph G ∈ F7, and let F ⊆ V (G)\A catch A. Then either F contains
a reflection of A, or some vertex of F has ≥ 2 neighbours in A.

Proof. Suppose not, and choose F minimal such that it catches A. Let A = {a1, a2, a3} say, and
for i = 1, 2, 3, let Bi be the set of neighbours of ai in F . Thus the three sets B1, B2, B3 are pairwise
disjoint and nonempty.

(1) There is no path in F meeting all of B1, B2, B3.

For assume there is, and choose it minimal. So then we may assume there is a path P from b1 ∈ B1

to b2 ∈ B2, such that some vertex of P is in B3, and for i = 1, 2, bi is the only vertex of P in Bi.
Since B3 is disjoint from B1 ∪ B2, every vertex of B3 in P is an internal vertex of P ; and so P has
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length ≥ 2. But then (C, {a3}) is an odd wheel, where C is the hole a1-b1-P -b2-a2-a1, contrary to
G ∈ F7. This proves (1).

Choose b1 ∈ F such that F \ {b1} is connected; then from the minimality of F , F \ {b1} does not
catch A, and so we may assume that B1 = {b1}. Since F is connected and |F | ≥ 2, there is a second
vertex b2 6= b1 in F such that F \ {b2} is connected, and so similarly we may assume B2 = {b2}. Let
P be a path in F between b1, b2. By (1) no vertex of P is in B3, so F contains a connected subset
F ′ including V (P ) which contains exactly one vertex of B3. From the minimality of F , |B3| = 1;
let B3 = {b3} say. Let Q be a minimal path in F such that b3 ∈ V (Q) and some vertex of P has
a neighbour in Q. From the minimality of Q it follows that Q is vertex-disjoint from P , and Q has
ends b3, x say, where x is the unique vertex of Q with neighbours in P . From the minimality of
F , x either has one neighbour in P , or just two neighbours and they are adjacent; for if it has two
nonadjacent neighbours, any vertex of P between them could be deleted from F , contrary to the
minimality of F . If x has just one neighbour (y say) in P , then y can be linked onto the triangle A,
contrary to 2.4; so it has two adjacent neighbours. Since G does not contain a long prism it follows
that Q has length 0 and P has length 1, and so F contains a reflection of A, as required. This proves
17.1.

We did not use the full strength of G ∈ F7 in proving 17.1; we just used that there were no odd
wheels with hubs of cardinality 1. This suggests that there should be some generalization of 17.1
whose proof does use the full strength of the hypothesis that there are no odd wheels, and that is
true, but not easy — it will be a consequence of the main result of this section.

Before we start on that, let us give a strengthening of 2.10 for graphs in F7.

17.2 Let G ∈ F7, and let F, Y ⊆ V (G) be disjoint, such that F is connected and Y is anticonnected.
Let a0, b0 ∈ V (G) \ (F ∪ Y ) and a, b ∈ F such that a-a0-b0-b is a 3-edge path in G. Suppose that:

• a0, b0 are both Y -complete, and a, b are not Y -complete,

• the only neighbours of a0, b0 in F are a and b respectively,

• F \ {a} and F \ {b} are both connected.

Then either:

1. there is a vertex in Y with no neighbour in F , or

2. there are two nonadjacent vertices y1, y2 ∈ Y , such that a is the only neighbour of y1 in F , and
b is the only neighbour of y2 in F .

Proof. We may assume that every vertex in Y has a neighbour in F , for otherwise statement 1 of
the theorem holds.

(1) There exist nonadjacent y1, y2 in Y , such that y1 is adjacent to a and not b, and y2 is adja-
cent to b and not a.

For choose a path P between a and b with V (P ) ⊆ F . Then the hole a0-a-P -b-b0-a0 (= C, say) has
length ≥ 6. If there are any Y -complete vertices in P , then they belong to the interior of P since a, b
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are not Y -complete, and there is an odd number of Y -complete edges in P , by 2.3; but then (C, Y )
is an odd wheel (the path a0-b0 is an odd Y -segment), a contradiction. So there are no Y -complete
vertices in P . By 2.10 applied to C, Y contains either a hat or a leap. Suppose first it contains a
hat, that is, there is a vertex y ∈ Y with no neighbour in P . By the assumption above, y has a
neighbour in F . Consequently F catches the triangle {a0, b0, y}. But y is not adjacent to a or b since
it has no neighbour in P , and a is the only vertex in F adjacent to a0, and the same for b, b0; and
a, b are nonadjacent, so F contains no reflection of the triangle. This contradicts 17.1. Hence there
is no such y, and so there is a leap. This proves (1).

(2) There is no path in F between a and b such that y1 or y2 has a neighbour in its interior.

For suppose there is such a path, P ′ say. Then the set {y1, y2} contains neither a leap not a
hat for the hole a0-a-P ′-b-b0-a0 ( = C say), and so by 2.10 there is a vertex in P adjacent to both
y1, y2. By 2.3 there is an even number of {y1, y2}-complete edges in this hole, and since a, b are not
{y1, y2}-complete, (C, {y1, y2}) is an odd wheel, a contradiction. This proves (2).

Now if neither of y1, y2 has any more neighbours in F then statement 2 of the theorem holds;
so we assume at least one of them has another neighbour in F . Since F \ {a}, F \ {b} are both
connected, there is a connected subset F ′ of F \{a, b}, such that both a and b have neighbours in F ′,
and at least one of y1, y2 has a neighbour in F ′. Choose F ′ minimal with these properties. At least
one of y1, y2 has a neighbour (say x) in F ′. We claim that F ′ \ {x} is connected. For if not, let L be
a component of it, and M the union of the other components. From the minimality of F , not both
a, b have neighbours in L ∪ {x}, and not both have neighbours in M ∪ {x}; so we may assume all
neighbours of a in F ′ are in L, and all neighbours of b are in M . But then there is a path from a to b
with interior in F and with x in its interior, contrary to (2). This proves that F ′ \ {x} is connected.
There is a path from a to b with interior in F ′, and x is not in it, by (2), and it has length > 1 since
a, b are nonadjacent. So a,b both have neighbours in F ′ \ {x}. From the minimality of F ′, y1 and
y2 both have no neighbours in F ′ \ {x}. We claim that x is adjacent to both y1 and y2. For it is
adjacent to at least one, say y1; let Q be a path from x to b with interior in F ′. Then y1-x-Q-b is a
path, since y1 has no more neighbours in F ′. Since b0-y1-x-Q-b-b0 is a hole it follows that Q is odd.
Therefore a0-y1-x-Q-b-y2-a0 is not a hole, and so y2 has neighbours in Q. Since it has no neighbours
in F ′ \ {x}, this proves our claim that x is adjacent to both y1, y2.

With Q as before, and therefore odd, it follows that y2-x-Q-b-y2 is not a hole, and therefore Q
has length 1, that is, x is adjacent to b. Similarly x is adjacent to a; but then x-a-a0-b0-b-x is an
odd hole, a contradiction. This proves 17.2.

The following is a variant of 17.2, not so symmetrical, but more useful.

17.3 Let G ∈ F7, and let F, Y ⊆ V (G) be disjoint, such that F is connected and Y is anticonnected.
Let a0, b0 ∈ V (G) \ (F ∪ Y ) and a, b ∈ F such that a-a0-b0-b is a 3-edge path in G. Suppose that:

• a0, b0 are both Y -complete, and a, b are not Y -complete,

• the only neighbours of a0, b0 in F are a and b respectively,

• F \ {a} is connected.

Then there is a vertex y ∈ Y with no neighbour in F \ {a}.

104



Proof. If F \ {b} is connected, the result follows from 17.2. So assume it is not, and let F ′

1 be the
component of F \ {b} that contains a, and F ′

2 the union of all the other components. For i = 1, 2
let Fi = F ′

i ∪ {b}. Then F1 \ {a}, F1 \ {b} are both connected, so by 17.2 either there exists y ∈ Y
with no neighbour in F1, or there exist nonadjacent y1, y2 ∈ Y with no neighbours in F1 except a, b
respectively. Suppose the first. If y has a neighbour in F2 then b can be linked onto the triangle
{y, a0, b0}, a contradiction to 2.4; and if not then y satisfies the theorem. Now suppose the second.
If y1 has neighbours in F2 then (F \ {a}) ∪ {y2} catches the triangle {a, a0, y1}; the only neighbours
of a, a0, y1 belong to the disjoint sets F ′

1, {y2}, F
′

2; and there is no reflection since there are no edges
between y2 and F ′

1, contrary to 17.1. So y1 has no neighbours in F2. This proves 17.3.

The next result is just a technical lemma for use in proving the main result of this section, which
is 17.5.

17.4 Let G ∈ F7 and let P be a path in G with length > 1, with vertices p1, . . . , pn in order. Let
X,Y ⊆ V (G) \ V (P ) be anticonnected sets, such that X ∪ Y is anticonnected, p1 is X-complete,
and pn is the unique Y -complete vertex in P . (Note that X,Y need not be disjoint.) Let z ∈
V (G) \ (X ∪ Y ∪ V (P )), complete to X ∪ Y and with no neighbours in P . Assume that pn is not
X-complete. Let pn-x1- · · · -xk-y be an antipath with interior in X from pn to some y ∈ Y . Then
pn−1 is nonadjacent to x1.

Proof. Let F = {pn−1, x1, . . . , xk} ∪ Y . Since pn−1 is not Y -complete it follows that F is anticon-
nected, and both F \ {pn−1}, F \ {x1} are anticonnected. The only nonneighbour of z in F is pn−1,
and the only nonneighbour of pn in F is x1; and we may assume that pn−1 is adjacent to x1. Now
pn−1-z-pn-x1 is a path in G, and F is connected in G, and {p1, . . . , pn−2} is anticonnected in G. Also,
z and pn are {p1, . . . , pn−2}-complete in G, and pn−1, x1 are not. We may therefore apply 17.2 in G,
and deduce that there is a vertex in {p1, . . . , pn−2} which is complete (in G) to F \ {pn−1}. But then
this vertex is Y -complete, a contradiction. This proves 17.4.

We gave in 2.9 an extension of the Roussel-Rubio lemma to two anticonnected sets instead of
one (we haven’t had much use of that theorem yet, but its time is coming.) In that extension the
two sets had to be complete to each other. Now we prove a similar result where the two sets are
not complete to each other. Incidentally, unlike 2.9, what we are going to prove here is not true for
general Berge graphs — we need the hypothesis that G ∈ F7.

17.5 Let G ∈ F7 and let P be an odd path in G with length > 1, with vertices p1, . . . , pn in
order. Let X,Y ⊆ V (G) \ V (P ) be anticonnected sets, such that X ∪ Y is anticonnected, p1 is X-
complete, and pn is the unique Y -complete vertex in P . (Note that X,Y need not be disjoint.) Let
z ∈ V (G) \ (X ∪ Y ∪ V (P )), complete to X ∪ Y and with no neighbours in P . Then an odd number
of edges of P are X-complete.

Proof. If possible choose a counterexample P,X, Y such that

1. P is minimal

2. subject to condition 1, X ∪ Y is minimal, and

3. subject to conditions 1 and 2, |X| + |Y | is minimum.
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We refer to this property as the “optimality” of P,X, Y .

(1) No vertex of P \ p1 is X-complete.

If pn is X-complete, then since P has odd length > 1, and the X-complete vertex z has no neighbour
in P , it follows from 2.2 and 2.3 that there are an odd number of X-complete edges in P , and
the theorem holds, a contradiction. So pn is not X-complete. By 17.4, pn−1 is not X-complete.
Since p1 is X-complete, we can choose i with 1 ≤ i ≤ n maximum such that pi is X-complete. So
i ≤ n − 2. Since z has no neighbour in the path p1- · · · -pi, if i is even then there is an odd number
of X-complete edges in this path and hence in P , by 2.2 and 2.3. So we may assume that i is odd.
Hence the theorem is also false for X,Y and the path pi- · · · -pn. From the optimality of P,X, Y it
follows that i = 1. This proves (1).

In view of (1), there is symmetry between X and Y .

(2) Suppose that x1, x2 ∈ X are distinct and such that X \ {xi} is anticonnected for i = 1, 2.
Then X ∩ Y = ∅, and one of x1, x2 is the unique vertex of X with a nonneighbour in Y .

For if (X \ {xi}) ∪ Y is not anticonnected for some i, then Y is disjoint from X \ {xi} (since
both these sets are anticonnected), and Y is complete to X \{xi}; and therefore xi /∈ Y (since xi has
a nonneighbour in X \ {xi}), so X ∩Y = ∅. But then the statement of (2) holds. So we may assume
that (X \ {xi}) ∪ Y is anticonnected for i = 1, 2. From the optimality of P,X, Y it follows that the
theorem holds for X \ {xi}, Y, P ; and so, since pn is the unique Y -complete vertex in P , it follows
that there are an odd number of X \{xi}-complete edges in P , for i = 1, 2. For i = 1, 2 let Wi be the
set of X \ {xi}-complete vertices in P . So W1 ∩ W2 = {p1}. Let Q be an antipath in X between x1

and x2. We claim that Q is odd. For since W1 ∩ W2 = {p1}, there are nonadjacent vertices pi, pj of
P , such that pi ∈ W1 \W2 and pj ∈ W2 \W1; and since pi-x1-Q-x2-pj-pi is an antihole it follows that
Q is odd. Let us say a line is a minimal subpath of P \p1 meeting both W1 and W2. So every line has
length ≥ 1, and has one end in W1 and the other in W2, and has no more vertices in either W1 or W2.
If some line L has odd length > 1, then the triple L,X \{x1}, X \{x2} is another counterexample to
the theorem, contrary to the optimality of P,X, Y ; and if some line has length 1, say pi-pi+1 where
pi ∈ W1, then z-pi-x1-Q-x2-pi+1-z is an odd antihole, a contradiction. Hence every line is even.
Choose i minimum with 2 ≤ i ≤ n such that {p2, . . . , pi} includes a line. (This is possible since both
W1,W2 meet P \ p1.) Since all lines have length ≥ 2 it follows that i ≥ 4. From the minimality
of i, {p2, . . . , pi−1} does not include a line, and so for some k ∈ {1, 2}, the path p1- · · · -pi has both
ends X \ {xk}-complete and no internal vertex X \ {xk}-complete. But this path has length ≥ 2,
and z has no neighbour in it, so by 2.2 it is even, that is, i is odd. Choose j with j ≥ 2 maximum
such that {pj , . . . , pn} includes a line. Since every line has length ≥ 2 it follows that 2 ≤ j ≤ n − 2.
From the maximality of j it follows that for some k ∈ {1, 2}, Wk ∩ {pj , . . . , pn} = {pj}. If the path
pj- · · · -pn has odd length, then pj, . . . , pn, X \ {xk}, Y is a counterexample to the theorem, contrary
to the optimality of P,X, Y . So n − j is even, and hence j is even. Now i is odd, so if i ≥ j then
pj- · · · -pi is an odd line, a contradiction. Hence i < j, and j − i is odd. Now the edges pi−1pi, pjpj+1

are in lines. Consequently we may choose r, s with i ≤ r < s ≤ j such that pr, ps ∈ W1 ∪ W2, and
the edges pr−1pr, psps+1 are in lines, and s − r is odd; and therefore we may choose such r, s with
s − r minimum. If there is a line contained in the path pr- · · · -ps, say ph- · · · -pk, then since k − h
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is even, one of the paths pr- · · · -ph and pk- · · · -ps is odd, contrary to the minimality of s − r. So we
may assume that none of pr, . . . , ps belong to W2, and in particular pr, ps ∈ W1. Since pr−1pr, psps+1

are in lines, and pr, ps ∈ W1, there exist q, t with 2 ≤ q < r < s < t ≤ n such that pq- · · · -pr and
ps- · · · -pt are lines. All lines are even, so r−q and t−s are even, and therefore t−q is odd. Moreover
pq, pt ∈ W2, and none of pq+1, . . . , pt−1 belongs to W2, and the path pq- · · · -pt is odd, and z has no
neighbour in it, contrary to 2.2. This proves (2).

(3) There is an antipath x1- · · · -xs-y1- · · · -yt such that s, t > 1 and X = {x1, . . . , xs}, and Y =
{y1, . . . , yt}.

For if |X| = 1, X = {x} say, then z-x-p1- · · · -pn is an odd path of length ≥ 5 between Y -complete
vertices, and none of its internal vertices are Y -complete, contrary to 13.6. So |X| ≥ 2, and similarly
|Y | ≥ 2. Hence there are at least two vertices x ∈ X such that X \ {x} is anticonnected, and from
(2), X ∩ Y = ∅, and there is a unique vertex x ∈ X with nonneighbours in Y . By (2), there do not
exist two vertices x′ ∈ X \ {x} such that X \ {x′} is anticonnected; and therefore X is an antipath
with one end x′. Because of the symmetry between X,Y , the same applies for Y , and this proves
(3).

Choose t′ with 1 ≤ t′ ≤ t, minimum such that p1 is nonadjacent to yt′ . (This is possible since p1

is not Y -complete.) So x1- · · · -xs-y1- · · · -yt′-p1 is an antipath. Define W = (X\{x1})∪{y1, . . . , yt′−1}.

(4) For every subpath P ′ of P , if the ends of P ′ are adjacent to x1, then there are an even number
of W -complete edges in P ′.

For suppose not; then we may choose P ′ such that no internal vertex of P ′ is adjacent to x1.
Let P ′ be ph- · · · -pk say, where 1 ≤ h < k ≤ n. Choose i, j with h ≤ i ≤ j ≤ k such that pi, pj

are W -complete, with i minimum and j maximum. Since pk is not X-complete it follows that pk

is not W -complete (because it is adjacent to x1), and so j < k. Since there are an odd number of
W -complete edges in ph- · · · -pk, it follows that k ≥ h + 2, and x1-ph- · · · -pk-x1 is a hole (so k − h
is even), containing an odd number of W -complete edges. By 2.3 it contains exactly one, and only
two W -complete vertices; so j = i + 1. The path z-x1-ph- · · · -pi has both ends W -complete, and no
internal vertex W -complete, and the W -complete vertex pj has no neighbour in its interior (since
j < k); so it is even, by 2.2, and hence i−h is even. Since k−h is even, it follows that pj- · · · -pk-x1-z
is an odd path; and again its ends are W -complete and its internal vertices are not. By 13.6 it has
length 3, so k = j + 1; and by 2.2, every W -complete vertex is adjacent to one of pk, x1. But no
W -complete vertex in P is adjacent to x1 except p1, since no other vertex of P is X-complete. So
every W -complete vertex in P \ p1 is adjacent to pk, and so must be one of pk−1, pk+1. In particular,
since i < k− 1 it follows that i = 1, and so j = 2, k = 3, and the W -complete vertices in P are p1, p2

and possibly p4.
By 17.4 (with X and Y exchanged), p2 is nonadjacent to yt′ . Choose d with 1 ≤ d ≤ n minimum

such that yt′ is adjacent to pd; then d ≥ 3. Then the path p1- · · · -pd-yt′ -z has length ≥ 4, and its
ends are W ∪ {x1}-complete, and its internal vertices are not, so it is even by 13.6. Hence d is odd,
and the path p1- · · · -pd-yt′ is odd. None of its internal vertices are X-complete, and the X-complete
vertex z has no neighbour in its interior, and one end p1 is X-complete, so the other end yt′ is not;
and hence t′ = 1, since all other vertices of Y are X-complete. So W = X \ {x1}. Let V = X \ {xs}.
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Now the path p1- · · · -pd-y1 is between V -complete vertices, and is odd and has length > 1, and the
V -complete vertex z has no neighbour in its interior; so by 2.2, there is a V -complete edge in its
interior. Choose c with 2 ≤ c ≤ d minimum such that pc is V -complete. Since p2 is nonadjacent to
x1 it follows that c ≥ 3. Since p1- · · · -pc is between V -complete vertices and its internal vertices are
not V -complete and z has no neighbour in it, it is even by 2.2, and so c is odd. We already saw that
p1, p2 and possibly p4 are W -complete, and c ≥ 3, so we may choose b with 2 ≤ b ≤ c maximum
such that pb is W -complete. Hence b = 2 or 4. The path pb- · · · -pc is odd, and pb is W -complete,
and pc is V -complete, and no other vertices of the path are either W - or V -complete. If c − b > 1
then pb- · · · -pc,W, V is a counterexample to the theorem, contradicting the optimality of X,Y, P . So
c = b + 1. Then z-pb-x1- · · · -xs-pc-z is an antihole, so s is odd. But then p2-x1- · · · -xs-y1-p2 is an
odd antihole, a contradiction. This proves (4).

Choose h with 1 ≤ h ≤ n maximum such that x1 is adjacent to ph. Since x1-ph- · · · -pn is be-
tween Y -complete vertices (since s ≥ 2) and none of its internal vertices are Y -complete, and the
Y -complete vertex z has no neighbour in its interior, this path either has length 1 or even length by
2.2. So either h = n or h is odd. From the optimality of P,X, Y , it follows that P,W, Y is not a
counterexample to the theorem, and so there are an odd number of W -complete edges in P . Since
x1 is adjacent to p1, from (4) there are an even number of W -complete edges between p1 and ph, so
there are an odd number in the path ph- · · · -pn, and in particular h < n, so h is odd. Choose i, j
with h ≤ i ≤ j ≤ n such that pi, pj are W -complete, with i minimum and j maximum. Hence j > i.
Since z-x1-ph- · · · -pi is a path of length ≥ 2 between W -complete vertices, and its internal vertices
are not W -complete, and the W -complete vertex pj has no neighbour in its interior, it follows from
2.2 that i − h is even.

(5) h > 1.

For assume h = 1; so p1 is the only neighbour of x1 in P . Let S be the antipath

x1- · · · -xs-y1- · · · -y
′

t-p1.

Now x1-S-p1-z is an antipath, of length ≥ 4; all its internal vertices have neighbours in P \ p1,
and its ends do not. By 13.6 applied in G, it follows that this antipath has even length and so
S has odd length. Its ends have no neighbours in P \ {p1, p2}, and z is complete to its interior
and also has no neighbours in P \ {p1, p2}; so by 2.2 applied in G, some internal vertex of S has
no neighbour in P \ {p1, p2}. But they are all adjacent to pj or to pn, so j = 2. By 17.4, p2 is
nonadjacent to yt′ , and also to x1 since it is not X-complete. Therefore p2-x1- · · · -xs-y1- · · · -yt′ -p2 is
an antihole D say. Choose d with 1 ≤ d ≤ n minimum such that yt′ is adjacent to pd; then d ≥ 3,
and so x1-p1- · · · -pd-yt′-x1 is a hole of length ≥ 6, with three vertices in common with D, namely
p2, x1, yt′ . From 15.7, D has length 4, and so t′ = 1 and s = 2. Since W = {x2} and j = 2, it
follows that the only edges between x1, x2 and P are x1p1, x2p1, x2p2. But then the three paths
p1-x1, x2-z, p2- · · · -pd-y1 form a long prism, a contradiction. This proves (5).

From (5), since ph is adjacent to x1, it follows that ph is not complete to X\{x1}, and therefore h <
i < j. Choose s′ with 1 ≤ s′ ≤ s minimum such that ph is nonadjacent to xs′ . So pj-x1- · · · -xs′ -ph-pj

is an antihole, and so s′ is even. Hence x1- · · · -xs′-ph-z is an odd antipath; all its internal vertices
have neighbours in {ph+1, . . . , pn}, and its ends do not, so by 13.6 it has length 3, that is, s′ = 2. The
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set F = {x2, ph, . . . , pn} is connected; the only neighbour of x1 in F is ph; the only neighbour of z in
F is x2. Since x1, z are (X \ {x1, x2})∪Y -complete, and ph, x2 are not (for ph is not Y -complete), it
follows from 17.2 that there is a vertex in (X \ {x1, x2})∪ Y with no neighbour in F except possibly
x2. But every vertex in (X \ {x1, x2}) ∪ Y is adjacent to either pj or to pn, a contradiction. This
proves 17.5.

18 Pseudowheels

Let us say a pseudowheel in a graph G is a triple (X,Y, P ), satisfying:

• X,Y are disjoint nonempty anticonnected subsets of V (G), complete to each other

• P is a path p1- · · · -pn of G \ (X ∪ Y ), where n ≥ 5

• p1, pn are the only X-complete vertices of P

• p1 is Y -complete, and so is at least one other vertex of P ; and p2, pn are not Y -complete.

A wheel (C, Y ) with a Y -segment S of length one can be viewed as a pseudowheel, taking X to
consist of one of the vertices of S. We recommend that the reader think of a general pseudowheel as
such an odd wheel, where a vertex of S has “blown up” to become the anticonnected set X.

Our current goal is to prove an analogue of 16.3 for pseudowheels. Fortunately we don’t need to
generalize 16.3 completely, just the case when there is a segment of the wheel of length 1, and one
of its vertices has blown up. We did in fact try to generalize 16.3 completely, but were unable to do
it and it gave us a lot of trouble; so eventually we found a way to make do with this special case.

We begin with an even more special case, a form of 15.3 when one vertex is replaced by an
anticonnected set.

18.1 Let G ∈ F7, and let X,Y be disjoint nonempty anticonnected subsets of V (G), complete to
each other. Let p1-p2-p3-p4-p5 be a track in G \ (X ∪ Y ), induced except possibly for the edge p2p5.
Let X be complete to p1, p5 and not to p2, p3, p4. If p1, p3, p4 are Y -complete then so is one of p2, p5.

Proof. Assume not. Then in G, {p1, p3, p5} is a triangle, and the connected set F = X∪Y ∪{p2, p4}
catches it. In G, the only neighbours of p5 in F are in Y ∪{p2}, the only neighbours of p3 in F are in
X, and the only neighbour of p1 in F is p4. Hence no vertex of F has two neighbours in the triangle,
so by 17.1, F contains a reflection of the triangle. So (back in G) there are vertices b1 ∈ X and
b2 ∈ Y ∪ {p2} such that b1, b2, p4 are pairwise nonadjacent, and b1 is adjacent to p1, p5 and not p3,
and b2 is adjacent to p1, p3 and not p5. Since p4 is Y -complete and b2, p4 are nonadjacent it follows
that b2 /∈ Y , and so b2 = p2, and p2 is not adjacent to p5. Then Y and the six vertices p1, . . . , p5, b1

form an odd wheel, a contradiction. This proves 18.1.

There is a reformulation of 13.7 that we sometimes need:

18.2 Let G ∈ F7, and let X,Y be disjoint nonempty anticonnected subsets of V (G), complete to
each other. Let P be a path in G with even length > 0, with vertices p1, . . . , pn in order, such that
p1 is X-complete, pn is not X-complete and pn is the unique Y -complete vertex of P . Suppose that
there is a Y -complete vertex in G nonadjacent to both pn−1, pn−2. Then either:
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• there is an odd number of X-complete edges in P , or

• n = 3 and there is an odd antipath joining pn−1 and pn with interior in X.

Proof. Choose an X-complete vertex pi in P with i maximum. Suppose first that i is even. Then
the path p1- · · · -pi is odd, and we may assume that an even number of its edges are X-complete.
So it has length > 1; by 2.3, none of its internal vertices are X-complete; and by 13.6 it has length
3 (that is, i = 4), and there is an odd antipath Q joining p2, p3 with interior in X. Let R be an
antipath joining p2, p3 with interior in Y . Since n ≥ i = 4 and n is odd, it follows that n ≥ 5, and
so one of p2-R-p3-Q-p2, pn-p2-R-p3-pn is an odd antihole, a contradiction.

Thus i is odd. Hence the path pi- · · · -pn is even, and by 13.7 it has length 2, that is, i = n−2. Let
Q be the antipath between pn−2, pn−1 with interior in Y , and R the antipath between pn−1, pn with
interior in X. By hypothesis there is a Y -complete vertex nonadjacent to pn−1, pn−2, and therefore
Q is even, so R is odd by 13.7. Hence R cannot be completed to an antihole via pn-p1-pn−1; and so
n = 3 and the theorem holds. This proves 18.2.

We need the following extension of 2.3.

18.3 Let G ∈ F7, and let X,Y be disjoint nonempty anticonnected subsets of V (G), complete to
each other. Let P be a path p1- · · · -pn of G \ (X ∪ Y ), where n ≥ 5, such that p1, pn are the only
X-complete vertices of P . Then P has even length. Assume that at least two vertices of P are Y -
complete, and let P ′ be a maximal subpath of P such that none of its internal vertices are Y -complete.
Then the length of P ′ has the same parity as the number of ends of P ′ that belong to {p1, pn} and are
not Y -complete. Moreover, the number of Y -complete edges of P has the same parity as the number
of elements of {p1, pn} that are Y -complete.

Proof. Since P is a path of length ≥ 4, and its ends are X-complete and its internal vertices are
not, it follows that P has even length, by 13.6. Let us say a line is a maximal subpath P ′ of P such
that no internal vertex of P ′ is Y -complete. Let P ′ be a line of length ≥ 2, and assume first that
both ends of P ′ are Y -complete. Suppose P ′ has odd length, and let its ends be pi, pj where i < j.
Then 13.6 implies that j − i = 3, and there is an odd antipath Q joining pi+1, pi+2 with interior in
Y . Since n ≥ 5, either n > j or 1 < i, and from the symmetry between p1 and pn we may assume
the latter. Since pi+1, pi+2 are not X-complete, they are joined by an antipath Q′ with interior in X.
Since Q∪Q′ is an antihole it follows that Q′ is odd. But then p1-pi+1-Q

′-pi+2-p1 is an odd antihole,
a contradiction. So in this case P ′ has even length. We may therefore assume that an end of P ′ is
not Y -complete, and from the maximality of P ′, any such end is either p1 or pn, and we may assume
it is pn from the symmetry. The other end of P ′ is therefore not p1 since at least two vertices of
P are Y -complete, and so it is pi, where i is maximum with 2 ≤ i ≤ n such that pi is Y -complete.
Since i > 1, no vertex of P ′ is X-complete except pn. Suppose that P ′ is even; then we may apply
13.7. We deduce that P ′ has length 2, and so i = n − 2. Now the antipath joining pn−2, pn−1 with
interior in X is even since it can be completed to an antihole via pn−1-p1-pn−2; and the antipath
joining pn−1, pn with interior in Y is even since it can be completed to an antihole via pn-ph-pn−1,
where ph is some Y -complete vertex with 1 ≤ h < i. But this contradicts 13.7. Consequently P ′ is
odd, as required.

We have shown therefore that a line has odd length if and only if either it has length 1, or one of
its ends is one of p1, pn and is not Y -complete. It follows that the number of odd lines equals y + z,
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where y is the number of Y -complete edges in P , and z is the number of ends of P that are not
Y -complete. But since every edge of P belongs to a unique line and P has even length, it follows
that the number of odd lines is even, and so y, z have the same parity. This proves the final claim of
the theorem, and so proves 18.3.

18.4 Let (X,Y, P ) be a pseudowheel in a graph G ∈ F7, where P is p1- · · · -pn. Then P contains an
odd number, at least 3, of Y -complete edges, and P has length ≥ 6.

Proof. By 18.3, P contains an odd number of Y -complete edges, since an odd number of ends of P
are Y -complete. Suppose it only contains one, say pipi+1. Since p2, pn are not Y -complete it follows
that 3 ≤ i ≤ n − 2. So there is an antipath joining pi, pi+1 with interior in X, and by 15.4 applied
to the path P , this antipath has length 2, that is, there exists x ∈ X nonadjacent to both pi, pi+1.
Let C be a hole containing x, pi, pi+1 and with C \ x ⊆ P . Then (C, Y ) is an odd wheel, since C
contains the Y -complete vertices x, pi, pi+1 and it also contains pi−1, pi+2 which are not Y -complete,
contrary to G ∈ F7. So at least three edges of P are Y -complete, and therefore P has length ≥ 6.
This proves 18.4.

A pseudowheel (X,Y, P ) in G is optimal if

• there is no pseudowheel (X ′, Y ′, P ′) in G such that the number of Y ′-complete vertices in P ′

is less than the number of Y -complete vertices in P , and

• there is no pseudowheel (X,Y ′, P ) in G such that Y ⊂ Y ′.

18.5 Let G ∈ F7, and let (X,Y, P ) be an optimal pseudowheel in G, where P is p1- · · · -pn. Let
v ∈ V (G) \ (X ∪ Y ∪ V (P )), not Y -complete. Then there is a subpath P ′ of P such that

• V (P ′) contains all the neighbours of v in P ,

• there is no Y -complete vertex in the interior of P ′, and

• if v is X-complete, then either V (P ′) = {p1}, or pn ∈ V (P ′).

Proof. Choose h, k with 1 ≤ h ≤ k ≤ n such that v is adjacent to ph, pk, with h minimum and k
maximum. (If this is impossible then the theorem holds.) Choose i, j with 2 ≤ i ≤ j ≤ n such that
pi, pj are Y -complete, with i minimum and j maximum. By 18.3 it follows that i is odd and j is
even, and j − i ≥ 3 by 18.4, since all Y -complete edges in P lie in the path pi- · · · -pj.

(1) If v is both adjacent to p1 and X-complete then the theorem holds.

For from the optimality of (X,Y, P ) it follows that (X,Y ∪ {v}, P ) is not a pseudowheel, and so
p1 is the only Y ∪ {v}-complete vertex in P . By 2.11 (with X,Y replaced by Y ∪ {v}, X) we de-
duce that either there exists y ∈ Y ∪ {v} nonadjacent to all p2, . . . , pn, or there exist nonadjacent
y1, y2 ∈ Y ∪ {v} such that y1-p2- · · · -pn-y2 is a path. But pi is Y -complete and 3 ≤ i ≤ n− 1, so the
second statement does not hold; and the first holds only if y = v. This proves (1).

(2) We may assume that there is a path Q from v to some vertex q, such that q is the only Y -
complete vertex in Q, and V (Q \ v) ⊆ {pi+1, . . . , pj−1}.
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For by 18.3 and the fact that there is a Y -complete edge in P , it follows that there is a Y -complete
vertex in {pi+1, . . . , pj−1}. If v has a neighbour in this set then the claim holds, so suppose it does
not. We may assume v has a neighbour in {p1, . . . , pi}, for otherwise the theorem holds. Suppose it
also has a neighbour in {pj , . . . , pn}. Then there is a hole C containing v, with C \ v ⊆ P , such that
pi- · · · -pj is a path of C. Since all Y -complete edges in P belong to this path, and there are an odd
number of them, it follows that there is an odd number (≥ 3) of Y -complete edges in C, contrary
to 2.3. So v has no neighbours in {pj , . . . , pn}, and hence k ≤ i. We may therefore assume that v is
X-complete, so k > 1 by (1). The path v-pk- · · · -pn has length ≥ 4, and its ends are X-complete,
and its internal vertices are not, so by 13.6 it has even length, and therefore the path v-pk- · · · -pi

is even. But v is the only X-complete vertex in v-pk- · · · -pi, and pi is its only Y -complete vertex
(since k > 1), so by 13.7, this path has length 2, and so k = i − 1. There is no odd antipath joining
v, pk with interior in Y , since the Y -complete vertex pj is nonadjacent to v, pk; and there is no odd
antipath joining pk, pi with interior in X, since the X-complete vertex pn is nonadjacent to pk, pi,
contrary to 13.7. This proves (2).

(3) If v is X-complete then the theorem holds.

For then we may assume that v is nonadjacent to p1 by (1). If h is odd then p1- · · · -ph-v is an
odd path with ends X-complete and its internal vertices not, so it has length 3 by 13.6; but the
X-complete vertex pn has no neighbour in its interior (since n ≥ 5), contrary to 2.2. So h is even.
Suppose that one of p2, . . . , ph is Y -complete. Then h 6= 2 since p2 is not Y -complete, so h ≥ 4,
and h < j by (2). Hence (X,Y, p1- · · · -ph-v) is a pseudowheel, not containing pj, contrary to the
optimality of (P,X, Y ). So there are no Y -complete vertices in {p2, . . . , ph}, and so i > h. Let Q, q be
as in (2). Since the X∪Y -complete vertex p1 has no neighbours in Q, the pairs (V (Q), X), (V (Q), Y )
are balanced by 2.6; so by 2.9, Q has odd length. Hence the path p1- · · · -ph-v-Q-q has odd length,
and its ends are Y -complete, and its internal vertices are not. By 13.6 it has length 3; so h = 2
and v is adjacent to q. Also every Y -complete vertex in P is adjacent to one of v, p2, by 2.2, so
they are all adjacent to v except p1 and possibly p3. Suppose pi is adjacent to v, and is therefore
Y ∪ {v}-complete. The path p1- · · · -pi has even length; the only X-complete vertex in it is p1; and
the only Y ∪ {v}-complete vertex in it is pi. By 13.7 it has length 2. But pn is an X-complete
vertex nonadjacent to both p2, p3, and pj is a Y ∪ {v}-complete vertex nonadjacent to both p1, p2,
since j − i ≥ 3 and therefore pj is is necessarily adjacent to v as we already saw. Hence both pairs
({p1, p2}, Y ∪{v}) and ({p2, p3}, X) are balanced by 2.6, contrary to 13.7. This proves that pi is not
adjacent to v, and therefore i = 3. Choose h′ > i minimum such that v is adjacent to ph′ . From the
hole v-p2- · · · -ph′-v it follows that h′ is even. From 18.2 applied to the even path p3- · · · -ph′-v, and
using the fact that the X∪Y -complete vertex p1 has no neighbour in this path, we deduce that there
is a Y -complete edge in p3- · · · -ph′-v. Since v is adjacent to every Y -complete vertex in P except
p1, p3, it follows that the only such edge is p3p4, and therefore h′ = 4. But then the track p1- · · · -p4-v
violates 18.1. This proves (3).

Henceforth we may therefore assume that v is not X-complete. If k ≤ h + 1 then the theorem
holds, so we assume k ≥ h + 2.

(4) If v is not adjacent to p1 then the theorem holds.
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For let P ′ be the path p1- · · · -ph-v-pk- · · · -pn. Suppose that any of p2, . . . , ph, pk, . . . , pn is Y -complete.
Then P ′ has length ≥ 4, since h > 1 and p2, pn are not Y -complete, and so (X,Y, P ′) is a pseu-
dowheel. By the optimality of (X,Y, P ) it follows that there are no Y -complete vertices among
{ph+1, . . . , pk−1}; but then the claim holds. So we may assume that none of p2, . . . , ph, pk, . . . , pn is
Y -complete, and therefore h < i ≤ j < k, and since j − i ≥ 3 it follows that k − h ≥ 5. Let Q, q
be as in (2). Then q-Q-v-pk- · · · -pn is a path, R say; the only Y -complete vertex in R is q; the only
X-complete vertex in R is pn; and the X ∪ Y -complete vertex p1 has no neighbour in its interior.
By 2.9, R is odd. Therefore the paths p1- · · · -ph-v-Q-q and p1- · · · -ph-v-pk- · · · -pn have lengths of
opposite parity. For the first path, its ends are Y -complete and its internal vertices are not. For the
second, its ends are X-complete and its internal vertices are not. So by 13.6, one of them has length
3, and so h = 2, and there is an odd antipath joining v, p2 with interior in one of X,Y . Since v, p2

are joined by an antipath with interior in X and by another with interior in Y , and all such pairs of
antipaths have the same parity (since their union is an antihole), it follows that v, p2 are joined by
an odd antipath with interior in each of X,Y . Hence every X-complete vertex is adjacent to one of
v, p2, and so is every Y -complete vertex. In particular k = n, and v is adjacent to every Y -complete
vertex in P except p1 and possibly p3. But then R has length 2, contradicting that it has odd length.
This proves (4).

Henceforth then we assume that v is adjacent to p1 and not X-complete.

(5) pn−1 is not Y ∪ {v}-complete.

For suppose it is. Since n ≥ 7, it follows from 13.6 applied to P \ pn and Y ∪ {v} that there is
a Y ∪ {v}-complete vertex in {p2, . . . , pn−2}; choose such a vertex, pj′ say, with j ′ maximum. Now
j = n− 1. If j ′ < j − 1 then j − j ′ is even from 2.2 applied to pj′- · · · -pj , since p1 is Y ∪{v}-complete
and has no neighbours in the interior of pj′- · · · -pj ; but then the odd path pj′- · · · -pn contains no
Y ∪ {v}-complete edges, and p1 is X-complete, Y ∪ {v}-complete and has no neighbours in the path
pj′- · · · -pn, contrary to 17.5. So j ′ = j − 1. Let F = X ∪ Y ∪ {v, pn−1}. Then F is anticonnected,
and each of p1, pn−2, pn has a nonneighbour in F ; the only nonneighbour of p1 in F is pn−1; all
nonneighbours of pn−2 in F belong to X; and all nonneighbours of pn in F belong to Y ∪ {v}. So in
G, the connected set F catches the triangle {p1, pn−2, pn}, and by 17.1 it contains a reflection of the
triangle, which is impossible since pn−1 is complete (in G) to Y ∪ {v}. This proves (5).

(6) v is not adjacent to pn.

For suppose it is. By 18.4 there are at least three Y -complete edges in P , and so there is a Y -
complete vertex pa in P with a ≥ 3, even and different from pn−1. Thus j − a is even, and so by
2.3 there is an even number of Y -complete edges in the even path pa- · · · -pj, and hence in the odd
path pa- · · · -pn. But pa is Y -complete, and pn is the unique X ∪ {v}-complete vertex in this path,
contrary to 17.5. This proves (6).

(7) There is no neighbour pm of v in P with 1 ≤ m ≤ n such that v, pm are joined by an odd
antipath with interior in Y .
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For suppose such a neighbour exists. So 1 < m < n by (6), and there is an antipath joining
v, pm with interior in X, which therefore is also odd, since its union with the antipath through Y is
an antihole. Since it cannot be completed to an odd antihole via pm-pn-v, it follows that m = n− 1,
and in particular m is even. Since j is even, either pj = pm or pj is nonadjacent to pm; and in either
case it follows that pj is adjacent to v, since every Y -complete vertex is adjacent to one of v, pm. By
(5) n − j ≥ 3 and odd, and the path pj- · · · -pn (with anticonnected sets X and Y ∪ {v}) violates
17.5. This proves (7).

Suppose that j ≥ k, and let P ′ be the path p1-v-pk- · · · -pn. Then P ′ has length ≥ 4, since pn−1

is not Y ∪ {v}-complete, and so (X,Y, P ′) is a pseudowheel; and by the optimality of (X,Y, P ) it
follows that there are no Y -complete vertices in p2- · · · -pk−1, contrary to (2). So j < k. Let Q, q
be as in (2), and assume first that Q is even. Then the path p1-v-Q-q has odd length; its ends are
Y -complete, and its internal vertices are not, so by 13.6 it has length 3, and its internal vertices are
joined by an odd antipath with interior in Y , contrary to (7). So Q is odd.

Next assume that k is even. Then the path p1-v-pk- · · · -pn is odd, and its ends are X-complete,
and its internal vertices are not, so by 13.6 it has length 3, and k = n − 1, and its internal vertices
v, pn−1 are joined by an odd antipath with interior in X. Since pn−1 is not Y ∪ {v}-complete, they
are also joined by an odd antipath with interior in Y , contrary to (7). This proves that k is odd.
Hence the path q-Q-v-pk- · · · -pn is even, and by (6) it has length > 2 contrary to 13.7. This proves
18.5.

18.6 Let G ∈ F7, and let (X,Y, P ) be an optimal pseudowheel in G, where P is p1- · · · -pn. Let
F ⊆ V (G) \ (X ∪ Y ∪ V (P )) be connected, such that no vertex in F is Y -complete. Then there is a
subpath P ′ of P such that

• V (P ′) contains all the attachments of F in P ,

• there is no Y -complete vertex in the interior of P ′, and

• if some vertex of F is X-complete then either V (P ′) = {p1} or pn ∈ V (P ′).

Proof. Suppose the theorem is false, and choose a minimal counterexample F . From 18.5 |F | ≥ 2.

(1) Some vertex in F is X-complete.

For suppose not. Since F is a counterexample, it has attachments pa, pc such that there is a
Y -complete vertex pb with a < b < c. From the minimality of F , F is the interior of a path
pa-f1- · · · -fk-pc. Let W1 be the set of attachments of F \{fk} in P , and W2 the set of attachments of
F \ {f1} in P . From the minimality of F , for i = 1, 2 there is a subpath pai

- · · · -pbi
of P ( = Pi say),

such that no internal vertex of Pi is Y -complete, and Wi ⊆ V (Pi). Choose P1, P2 minimal; then pa1
is

a neighbour of some member of F \{fk}, and therefore of f1 from the minimality of F , and similarly
pb2 is a neighbour of fk, and p1- · · · -pa1

-f1- · · · -fk-pb2 - · · · -pn is a path P ′ say. Suppose that there is a
Y -complete vertex in P ′ different from p1. Then P ′ has length ≥ 4, and (X,Y, P ′) is a pseudowheel,
contrary to the optimality of (X,Y, P ). So there are no Y -complete vertices in P ′ different from p1.
But also there are none in {pa1+1, . . . , pb1−1} and none in {pa2+1, . . . , pb2−1}, so all the Y -complete
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vertices of P belong to {pb1 , . . . , pa2
}, except for p1. By 18.4 there are an odd number, at least 3, of

Y -complete edges in this path. From the minimality of F , f1- · · · -fk-pa2
-pa2−1- · · · -pb1-f1 is a hole,

which therefore also contains an odd number ≥ 3 of Y -complete edges. But this contradicts 2.3.
This proves (1).

(2) There do not exist a, b with 1 < a < b ≤ n such that pa is an attachment of F and pb is
Y -complete.

For suppose that such a, b exist. From (1), there is an X-complete vertex in F ; and from the
minimality of F , there is a path pa-f1- · · · -fk such that F = {f1, . . . , fk} and fk is the unique
X-complete vertex in F . Let W1 be the set of attachments of F \ {fk} in P , and W2 the set of
attachments of F \{f1} in P . From the minimality of F , for i = 1, 2 there is a subpath pai

- · · · -pbi
of

P ( = Pi say), such that no internal vertex of Pi is Y -complete, and Wi ⊆ V (Pi), and either b2 = n
or a2 = b2 = 1.

First assume that b2 = n. Choose P1, P2 minimal; then pa1
is a neighbour of f1, and p1- · · · -pa1

-f1- · · · -fk

is a path P ′ say. Suppose that there is a Y -complete vertex in P ′ different from p1. Then P ′

has length ≥ 4, and (X,Y, P ′) is a pseudowheel, contrary to the optimality of (X,Y, P ). So
there are no Y -complete vertices in P ′. But also there are none in {pa1+1, . . . , pb1−1} and none
in {pa2+1, . . . , pb2−1}, so all the Y -complete vertices of P belong to {pb1 , . . . , pa2

}, except for p1. By
18.4 there are an odd number, at least 3, of Y -complete edges in this path. From the minimality
of F , f1- · · · -fk-pa2

-pa2−1- · · · -pb1 -f1 is a hole, which therefore also contains an odd number ≥ 3 of
Y -complete edges. But this contradicts 2.3.

So we may assume that a2 = b2 = 1, and that p1 ∈ W2, and therefore b1 > 1. From the
minimality of F there are no edges between F \ {f1} and V (P \ p1). Choose P1 minimal. So pb1

is adjacent to f1, and either a1 = 1 or pa1
is adjacent to f1. Suppose first that an odd number

of edges of the path p1- · · · -pa1
are Y -complete. Hence p1 has no neighbours in F \ {fk}, and so

f1- · · · -fk-p1- · · · -pa1
-f1 is a hole. It contains an odd number of Y -complete edges, and at least three

Y -complete vertices, because p1 is Y -complete and p2 is not, a contradiction to 2.3. So there are an
even number of Y -complete edges in the path p1- · · · -pa1

, and therefore an odd number in pb1 - · · · -pn,
since there are an odd number in P , and none in P1. Therefore there are an odd number in the path
fk- · · · -f1-pb1 - · · · -pn (= R say). But an edge of pb1- · · · -pn is Y -complete and pn is not, so b2 ≤ n−2;
and since k ≥ 2, it follows that R has length ≥ 4. Also, at least two vertices of R are Y -complete,
and its ends are not Y -complete, and its ends are its only X-complete vertices. This contradicts
18.3, So there is no such F . This proves (2).

Choose b with 1 ≤ b ≤ n maximum such that pb is Y -complete. By (2), none of p2, . . . , pb−1 are
attachments of F , and since F is a counterexample, it follows that p1 is an attachment of F and also
there exists c with b ≤ c ≤ n such that pc is an attachment of F . Choose c with c minimum, and let
Q be a path between p1, pc with interior in F . Then p1- · · · -pc-Q-p1 is a hole, and the Y -complete
edges in it are precisely the Y -complete edges in P . But there are an odd number of such edges and
at least 3, by 18.4, contrary to 2.3. Thus there is no such F . This proves 18.6.

Now we come to the main result of this section, 1.8.8, which we restate, the following.

18.7 Let G ∈ F7. If it contains a pseudowheel then it admits a balanced skew partition. In partic-
ular, every recalcitrant graph belongs to F8.
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Proof. Suppose G contains a pseudowheel; then it contains an optimal pseudowheel, say (X,Y, P ),
where P is p1- · · · -pn. Let Z be the set of all Y -complete vertices in G. So Y,Z are disjoint, nonempty,
and complete to each other, and |Z| ≥ 2. Let F0 = V (G) \ (Y ∪Z). By 15.2, we may assume that F0

is connected and every vertex in Z has a neighbour in F0, for otherwise the theorem holds. Choose
i > 1 such that pipi+1 is Y -complete, and let A,B be the two components of V (P \pi). Since p1, pi+1

both have neighbours in F0, it follows that F0 contains a minimal connected set F such that there
are vertices in A and in B with neighbours in F . From the minimality of F it is disjoint from V (P );
and disjoint from X ∪ Y since X ⊆ Z, contrary to 18.6. This proves 18.7.

19 Wheel systems

Henceforth, therefore, we can exclude pseudowheels, and so our graph G belongs to F8. Please note
that G might still contain wheels; not every wheel can be converted to a pseudowheel. Our next
goal is to show that if there is a wheel in a member of F8 then the graph admits a balanced skew
partition, and in particular that there is no wheel in a recalcitrant graph. Assuming there is no
balanced skew partition, the strategy is to show that there is no anticonnected set which is maximal
such that there is a wheel of which it is a hub. In other words, we want to show that given any wheel,
there is a second wheel whose hub is a proper superset of the hub of the first wheel. The proof of
this is quite complex, and we begin with an overview before we launch into the details. But before
the overview we need some definitions.

Let G be a graph. A frame in G is a pair (z,A0), where z ∈ V (G), and A0 is a nonnull connected
subset of V (G) \ {z}, containing no neighbours of z. For the moment, fix a frame (z,A0). With
respect to the given frame, a wheel system in G of height t ≥ 1 is a sequence x0, . . . , xt of distinct
vertices of G \ (A0 ∪ {z}), satisfying the following conditions:

1. A0 contains neighbours of x0 and of x1, and no vertex in A0 is {x0, x1}-complete.

2. For 2 ≤ i ≤ t, there is a connected subset of V (G) including A0, containing a neighbour of xi,
containing no neighbour of z, and containing no {x0, . . . , xi−1}-complete vertex.

3. For 1 ≤ i ≤ t, xi is not {x0, . . . , xi−1}-complete.

4. z is adjacent to all of x0, . . . , xt.

Note that this definition is symmetric between x0, x1, so x1, x0, x2, . . . , xt is another wheel system.
A wheel system is defined with respect to a given frame, but it is convenient usually to leave the

dependence on the frame implicit. Until 23.3 we shall always be working with a fixed frame, and all
wheel systems are with respect to that frame.

Let x0, . . . , xt be a wheel system of height t. For 1 ≤ i ≤ t we define Xi = {x0, . . . , xi}, and we
define Ai to be the maximal connected subset of V (G) that includes A0, contains no neighbour of
z, and contains no Xi-complete vertex. So for each i, Ai−1 ⊆ Ai. Note that condition 2 above just
says that xi has a neighbour in Ai−1.

Let x0, . . . , xt be a wheel system, and let Y be a nonempty anticonnected subset of V (G) \ (A0 ∪
{z}). We say Y is a hub for the wheel system if z, x0, . . . , xt−1 are all Y -complete and xt is not.

Now we can begin the overview. Suppose there is a wheel system with hub Y . We would like
to infer that there is a wheel with hub Y . This is not in general true, but our main theorem about
wheel systems, the following, asserts that this is true under some mild extra hypotheses:
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19.1 Let G ∈ F8, let (z,A0) be a frame, and let x0, . . . , xt+1 be a wheel system with hub Y , and
with t ≥ 1. Define Ai, Xi as usual, and assume that at most one member of Y has no neighbour in
A1. Suppose that for all r with 1 ≤ r ≤ t, if x0, x1, . . . , xr, xt+1 is a wheel system, then every member
of Y has a neighbour in Ar ∪ {xt+1}. Then there is a wheel with hub Y .

The proof of this is lengthy, but here is the idea. Choose r with 1 ≤ r ≤ t, minimum such that
xt+1 has a neighbour in Ar and a nonneighbour in Xr. By hypothesis, every member of Y has a
neighbour in Ar ∪ {xt+1}. From the minimality of r, either

• r = 1, or

• r > 1 and xt+1 has a neighbour in Ar−1, and xt+1 is Xr−1-complete, or

• r > 1 and xt+1 has no neighbour in Ar−1.

We handle these three cases separately; they are the results 19.2, 20.1, and 21.2 respectively. In the
second case, we call the wheel system x0, x1, . . . , xr, xt+1 a “Y -diamond”, and prove the claim by
induction on its height; and in this case, it turns out that the hypothesis that every member of Y
has a neighbour in Ar ∪{xt+1} is redundant (and indeed, so is the hypothesis that z is Y -complete),
and there is an advantage to relaxing these hypotheses, to strengthen the inductive hypothesis. The
proof of 19.1 is completed in section 21.

Now let us sketch how 19.1 will be applied. The first application is to prove that no recalcitrant
graph contains a wheel. For suppose that (C, Y ) is a wheel, with Y maximal. Since it is not an odd
wheel, there are three consecutive Y -complete vertices x0, z, x1 of C. Let A0 = V (C) \ {x0, z, x1};
then (z,A0) is a frame, and x0, x1 is a wheel system with respect to it. Since G admits no balanced
skew partition, there is a path T from z to A0 so that no internal vertex of T belongs to Y or is
Y -complete. Let y be the neighbour of z in T . If we choose the rim C carefully, then because G
contains no pseudowheels, it can be shown (in the proof of 23.2) that y is adjacent to x0, x1. Enlarge
x0, x1 to a wheel system x0, . . . , xt such that x0, . . . , xt are all Y ∪ {y}-complete, with t maximum.
Since we may assume that G admits no balanced skew partition, there is a path P from z to A0 so
that no internal vertex of T is in Xt or is Xt-complete. Let xt+1 be the neighbour of z in P ; then
x0, . . . , xt+1 is a wheel system, so from the maximality of t, xt+1 has a nonneighbour in Y ∪ {y}.
Hence Y ∪ {y} is a hub for the wheel system x0, . . . , xt+1. From the maximality of Y , there is no
wheel with hub Y ∪ {y}, and since every member of Y has a neighbour in A0, we deduce from 19.1
that there exists r with 1 ≤ r ≤ t, such that x0, x1, . . . , xr, xt+1 is a wheel system, and y has no
neighbour in Ar ∪{xt+1}. In particular, y has only three neighbours in C. On the other hand, recall
that y was the second vertex of the path T between z and A0. We deduce that the other neighbour
of y in T does not belong to Ar ∪ {xt+1}, and therefore there are vertices of T \ {y, z} that are
Xr-complete. Since G contains no pseudowheels, this turns out to be impossible, as we show in the
proof of 22.4.

There is another application of 19.1, to prove that in a recalcitrant graph, if C is a hole of length
at least 6 then no vertex has three consecutive neighbours in C. But this application (in the proof
of 23.3) is much less convoluted, since at that stage we know there are no wheels, and we do not
sketch it here.

The result of this section is the following. (Incidentally, we will not need the hypothesis that
there is no pseudowheel in G for several more sections. What we are proving here is true also for
graphs in F7, and we formulate it that way, although we only need it for graphs in F8.)
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19.2 Let G ∈ F7, and let (z,A0) be a frame. Let x0, x1, x2 be a wheel system with respect to this
frame, and define A1 as usual. Let Y ⊆ V (G) \ {z, x0, x1, x2} be anticonnected, such that

• x0, x1 are Y -complete and x2 is not, and

• every vertex in Y that is nonadjacent to x2 has a neighbour in A1 and is adjacent to z.

Then z is Y -complete and there is a wheel (C, Y ) in G with x0, x1, z ∈ V (C) ⊆ {x0, x1, z} ∪ A1.

Proof. If possible, choose Y not satisfying the theorem, with |Y | minimum. For fixed Y choose
A ⊆ A1 minimal with the properties that

• A is connected

• x0, x1, x2 all have neighbours in A, and

• every vertex in Y that is nonadjacent to x2 has a neighbour in A.

It follows from the hypotheses that A, Y are both nonempty.

(1) There exists y ∈ Y adjacent to z and with a neighbour in A, such that Y \ {y} is empty or
anticonnected.

For if |Y | = 1, let Y = {y}; then since x2 is not Y -complete it follows that y is nonadjacent to
x2, and therefore is adjacent to z and has a neighbour in A and the claim holds. So assume |Y | > 1,
and choose distinct y1, y2 ∈ Y such that Y \ {yi} is anticonnected (i = 1, 2). Not both y1, y2 is the
unique nonneighbour of x2 in Y ; so we may assume that x2 is not Y \ {y2}-complete. By the mini-
mality of |Y |, z is Y \ {y2}-complete and there is a Y \ {y2}-complete vertex in A; and in particular,
y1 is adjacent to z and has a neighbour in A, so we may set y = y1. This proves (1).

Let y be as in (1), and let Y ′ = Y \ {y}.

(2) Either x2 is Y ′-complete and nonadjacent to y, or z is Y -complete and there is a path x0-p1- · · · -pn-x1

from x0 to x1 with interior in A, containing at least two Y ′-complete edges.

For if x2 is Y ′-complete the first assertion holds, so we assume not; and in particular Y ′ is nonempty.
From the minimality of |Y |, z is Y ′-complete and therefore Y -complete, and there is a path as in the
claim. This proves (2).

(3) There is no connected F ⊆ A containing neighbours of all of x0, x1, x2, y except A itself.

For suppose there is. From the minimality of A, some member of Y has no neighbour in F and
is nonadjacent to x2. In particular, x2 is not Y ′-complete, so Y ′ is nonempty and by (2), at least two
vertices of A are Y ′-complete. Since F 6= A, there exists f ∈ A \ F such that A \ {f} is connected.
But every vertex in Y ∪ {x0, x1, x2} has a neighbour in A \ {f}; for all members of Y ′ have at least
two neighbours in A (since A contains two Y ′-complete vertices), and x0, x1, x2, y have neighbours
in F . This contradicts the minimality of A, and therefore proves (3).
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Let x0-p1- · · · -pn-x1 be a path from x0 to x1 with interior in A, and let C be the hole z-x0-p1- · · · -pn-x1-z.

(4) If any vertex of p1, . . . , pn is Y ∪{x2}-complete then z is Y -complete; and if z is Y -complete then
no edge of x0-p1- · · · -pn-x1 is Y -complete. In particular, neither of p1, pn is Y ∪ {x2}-complete.

For let pi be Y ∪{x2}-complete, say, and suppose z is not Y -complete. By (2), x2 is Y ′-complete and
nonadjacent to y. Let Q be an antipath between z, y with interior in Y ′, and let R be an antipath
between x2, pi with interior in {x0, x1}. Then z-Q-y-x2-R-pi-z is an antihole, meeting the hole C in
at least three vertices, contrary to 15.7. This proves the first assertion. The second is immediate,
for otherwise (C, Y ) satisfies the theorem. For the third, note that if say pn is Y ∪ {x2}-complete,
then pnx1 is a Y -complete edge, a contradiction. This proves (4).

(5) With p1, . . . , pn and C as in (4), if x0 is adjacent to x2, then x2 is nonadjacent to all of p2, . . . , pn.

For suppose x2 is adjacent to one of p2, . . . , pn, and choose i with 2 ≤ i ≤ n maximum such that x2

is adjacent to pi. Suppose first that i = n. Since x0, x1, pn belong to C, there is no antihole of length
≥ 5 containing them by 15.7. By (4), pn is not Y -complete, and hence there is an antipath between
pn, x2 with interior in this set, and it can be completed via x2-x1-x0-pn to an antihole of length ≥ 5
containing x0, x1, pn, a contradiction. So i < n.

Since the hole C is even, it follows that n is odd. From the hole z-x2-pi- · · · -pn-x1-z it follows that
i is odd. Since i > 1, x0-x2-pi- · · · -pn-x1 is an odd path of length ≥ 5. Its ends are Y ∪{z}-complete,
and its internal vertices are not, so by 13.6, Y ∪ {z} is not anticonnected. Hence z is Y -complete.
The ends of the same path are both Y -complete, so by 13.6, some edge of the path is Y -complete.
Since x2 is not Y -complete, this edge belongs to C, contrary to (4). This proves (5).

Let us choose p1, . . . , pn and C such that either x2 is Y ′-complete or (C, Y ′) is a wheel (this is
possible by (2)).

(6) If x0 is adjacent to x2, then not both x2, y have neighbours in {p1, . . . , pn}.

For if they do, then by (5) p1 is the only neighbour of x2 in {p1, . . . , pn}. Suppose first that x2

is adjacent to y. By (2), z is Y -complete, and (C, Y ′) is a wheel, and so every vertex in Y ′ has
a neighbour in {p2, . . . , pn}. By (4) p1 is not Y -complete. Therefore z, x0 are the only Y ∪ {x2}-
complete vertices in C, and by 2.10 there is a hat or a leap. Since all vertices in Y ′ have a neighbour
in {p2, . . . , pn}, and y is adjacent to x1, it follows that there is no hat, and so y, x2 form a leap, a
contradiction since they are adjacent. So x2 is nonadjacent to y. Choose j with 1 ≤ j ≤ n mini-
mum such that y is adjacent to pj. From the hole z-x2-p1- · · · -pj-y-z we deduce that j is odd, and
therefore x0-p1- · · · -pj-y-x0 is not a hole, that is, j = 1, and hence p1 is adjacent to y. By (4) p1 is
not Y ′-complete. If x2 is Y ′-complete, then an antipath between p1 and y with interior in Y ′ can be
extended to an antihole via y-x2-x1-p1, and this antihole shares the vertices p1, x1, x2 with the hole
z-x2-p1- · · · -pn-x1-z, contrary to 15.7. So x2 is not Y ′-complete. By (2), z is Y -complete, and (C, Y ′)
is a wheel. By 16.1 applied to the wheel (C, Y ′) and vertex x2, it follows that p1 is Y ′-complete and
therefore Y ∪ {x2}-complete, contrary to (4). This proves (6).

(7) Not both x2, y have neighbours in {p1, . . . , pn}.
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For by (6) we may assume that x2 is nonadjacent to x0, and similarly nonadjacent to x1. Choose i
with 1 ≤ i ≤ n maximum such that x2 is adjacent to pi. From the hole z-x2-pi- · · · -pn-x1-z it follows
that i is odd. Suppose first that x2 is not Y ′-complete. By (2), z is Y -complete and (C, Y ′) is a wheel.
By 16.1, pi, z have the same wheel-parity, and so there are an odd number of Y ′-complete edges in
pi- · · · -pn-x1. By (4) no edge of the path x0-p1- · · · -pn-x1 is Y -complete. Consequently zx1 is the
unique Y -complete edge of the hole z-x2-pi- · · · -pn-x1-z (= C1 say). Suppose that y is nonadjacent
to all x2, pi, . . . , pn. Now y has a neighbour in {p1, . . . , pn} by hypothesis, so {p1, . . . , pn, x2} (= F
say) catches the triangle {z, x1, y}. The only neighbour of z in F is x2; the only neighbour of x1

in F is pn; and y is nonadjacent to both x2, pn by assumption. By 17.1, F includes a reflection of
the triangle; but then i = n and there is an antihole of length 6 using z, x1, pn, contrary to 15.7.
This proves that y is adjacent to one of x2, pi, . . . , pn. Since there is an odd number of Y ′-complete
edges in the path pi- · · · -pn-x1, it follows that every member of Y is adjacent to one of x2, pi, . . . , pn.
Consequently Y contains no hat for C1. Assume that C1 has length ≥ 6. By 2.10, Y contains a
leap, so there are nonadjacent y1, y2 ∈ Y such that y1-x2-pi- · · · -pn-y2 is a path, of odd length ≥ 5.
But the ends of this path are {x0, x1}-complete and its internal vertices are not, contrary to 13.6.
So C1 has length 4, that is, i = n, and pn is Y ′-complete. By (4) it follows that pn is nonadja-
cent to y, and therefore y is adjacent to x2 (since we already showed that y is adjacent to one of
x2, pi, . . . , pn). From the symmetry between x0, x1 we deduce that the same holds for p1, that is, p1

is Y ′ ∪ {x2}-complete and nonadjacent to y. Let Q be an antipath between x2, y with interior in Y ′;
then the three antipaths p1-x1, pn-x0 and y-Q-x2 form a long prism in G with triangles {p1, pn, y}
and {x1, x0, x2}, a contradiction. This proves (7) assuming that x2 is not Y ′-complete.

We therefore assume that x2 is Y ′-complete, and consequently nonadjacent to y. Now {x2, p1, . . . , pn}
is connected and catches the triangle {z, x1, y}. By 15.7, it contains no reflection of the triangle,
since as before that would give an antihole of length 6 with three vertices in C. So by 17.1, there is
a vertex in {x2, p1, . . . , pn} with two neighbours in the triangle. The only neighbour of z in it is x2,
which is nonadjacent to both x1, y. The only neighbour of x1 in it is pn, and therefore y is adjacent
to pn. We recall that i is maximum such that x2 is adjacent to pi. Since y is adjacent to pn, we may
choose j with i ≤ j ≤ n minimum such that y is adjacent to pj . From the hole z-x2-pi- · · · -pj-y-z we
see that j is odd. Suppose j 6= i. Then the path x2-pi- · · · -pj-y is even and has length ≥ 4. By 13.7
with anticonnected sets {x0, x1}, Y

′ ∪ {z} we deduce that Y ′ ∪ {z} is not anticonnected, and hence
z is Y -complete. Consequently, by (4), no edge of x0-p1- · · · -pn-x1 is Y -complete, and in particular
pn is not Y -complete, and therefore not Y ′-complete (since pn is adjacent to y). Since there is no
Y -complete edge in the odd path pj- · · · -pn-x1, and the Y -complete vertex z has no neighbour in its
interior, it follows from 2.2 that pj is not Y -complete and hence not Y ′-complete. By 18.2 with sets
{x0, x1}, Y

′, since the {x0, x1} ∪ Y ′-complete vertex z has no neighbours in A, it follows that there
are an odd number of Y ′-complete edges in the path x2-pi- · · · -pj-y. Since y is not Y ′-complete,
they all belong to the path x2-pi- · · · -pj. Since x2z, zx1 are both Y ′-complete edges and x1pn is
not, it follows that pj, pn have opposite wheel-parity with respect to the wheel (C1, Y

′), where C1 is
z-x2-pi- · · · -pn-x1-z. But pj, pn are both not Y ′-complete, and so (C1, Y

′) is an odd wheel, contrary
to G ∈ F7. This proves that j = i, that is, y is adjacent to pi.

Suppose that i < n. If pi is not Y -complete then an antipath between pi and y with interior
in Y ′ can be extended via y-x2-x1-pi to an antihole sharing the vertices pi, x1, x2 with the hole
z-x2-pi- · · · -pn-x1-z (= C1 say), contrary to 15.7. So pi is Y -complete, and therefore so is z, by (4).

120



But then (C1, Y ) is an odd wheel, since z, x1, pi are Y -complete and x2, pn are not (by (4)), contrary
to G ∈ F7. So i = n, and hence pn is adjacent to both x2, y. From the symmetry between x0, x1 it
follows that p1 is adjacent to both x2, y. By (4), p1, pn are not Y -complete. So in G, the connected
set Y ∪ {p1, pn} catches the triangle {x0, x1, x2}; x0, x1, x2 all have unique neighbours in it, namely
pn, p1, y respectively; and these three vertices do not form a triangle since yp1 is not an edge (of G),
contrary to 17.1. This proves (7).

(8) If x2 is nonadjacent to y then it is nonadjacent to both x0, x1.

For assume x2 is nonadjacent to y and adjacent to x0 say. Now A ∪ {x1} catches the triangle
{z, x0, x2}; it contains no reflection of this triangle, since x0, x1 have no common neighbour in A;
and the unique neighbour of z in this set is nonadjacent to both x0, x2. So by 17.1 it follows that
there is a vertex in A adjacent to both x0, x2. Also, A ∪ x2 catches the triangle {z, x1, y}. Suppose
that A ∪ {x2} contains a reflection of this triangle; then there exists f ∈ A adjacent to x1, x2 and
not to y. Since f ∈ A it follows that f is nonadjacent to x0; but then f -x2-x0-y-x1-f is an odd hole,
a contradiction. Hence by 17.1 there is a vertex in A adjacent to both x1, y. Consequently from (3),
A is the vertex set of a path f1- · · · -fk, where f1 is adjacent to x0, x2, and fk to x1, y. Since f1 ∈ A
it follows that f1 is not adjacent to x1.

Now assume that f1 is not the unique neighbour of x2 in A. From (3), f1 is the unique neighbour
of x0 in A. By (7), fk is not the unique neighbour of x1 in A, and so from (3) it is the unique
neighbour of y in A. In particular y is not adjacent to f1. Both x0, z have unique neighbours in
A∪{x1} = F say, namely f1, x1 respectively. Now x0, z are both {x2, y}-complete, and f1, x1 are not.
Since F \ {x1} is connected, this contradicts 17.3. So f1 is the unique neighbour of x2 in A. Suppose
that fk is the unique neighbour of y in A. Then both z, y have unique neighbours in A∪{x2}, namely
x2, fk respectively; and z, y are {x0, x1}-complete, and x2, fk are not. Once again this contradicts
17.3. So fk is not the unique neighbour of y in A, and therefore it is the unique neighbour of x1 in
F .

Suppose that fk is Y -complete. Since fk = pn, it follows from (4) that z is not Y -complete; and
so x2 is Y ′-complete by (2), and an antipath between z, y with interior in Y ′ can be extended to
an antihole via y-x2-fk-z, which shares the vertices z, x2, fk with the hole z-x2-f1- · · · -fk-x1-z (= C1

say), contrary to 15.7. So fk is not Y -complete and therefore not Y ′-complete (and in particular, Y ′

is nonempty).
Suppose that z is not Y -complete; and therefore Y ′∪{z} is anticonnected, and x2 is Y ′-complete

by (2). Choose h with 1 ≤ h < k minimum such that fh is adjacent to y (this exists since fk is not
the unique neighbour of y in A). The path x2-f1- · · · -fh-y is even, since it can be completed to a
hole via y-z-x2, and therefore the path x2-f1- · · · -fh-y-x1 is odd (this is a path since fk is the unique
neighbour of x1 in A); and the ends of this path are Y ′ ∪ {z}-complete, and its internal vertices are
not. By 13.6 it has length 3. So f1 is adjacent to y and x2. If f1 is not Y ′-complete, then an antipath
between f1, y with interior in Y ′ can be completed to an antihole via y-x2-x1-f1, which shares the
vertices x1, x2, f1 with the hole C1, contrary to 15.7; while if f1 is Y -complete, then an antipath
between z, y with interior in Y ′ can be completed to an antihole via y-x2-x1-f1-z, again contrary to
15.7. This proves that z is Y -complete.

In the hole C1, z, x1 are Y -complete and x2, fk are not; so since G ∈ F7, no other vertex of C1

is Y -complete. By 2.10, Y contains a leap or hat for C1. From a hypothesis of the theorem, every
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vertex in Y has a neighbour in A∪ {x2}, so there is no hat, and hence there exist nonadjacent y1, y2

in Y such that y1-x2-f1- · · · -fk-y2 is a path. Since both ends of this path are {x0, x1}-complete, and
no internal vertex is {x0, x1}-complete, this contradicts 13.6. This proves (8).

(9) There is no connected F ⊆ A containing neighbours of all of x0, x1, x2 except A itself.

For suppose that such a set F exists with F 6= A, and choose f ∈ A \ F such that A \ {f} is
connected. From the minimality of A, there exists y ′ ∈ Y nonadjacent to x2 with no neighbour in
A\{f}, and therefore f is the unique neighbour of y ′ in A. If y′ ∈ Y ′, then x2 is not Y ′-complete, and
therefore by (2) there are two Y ′-complete vertices in A, a contradiction. So y ′ = y, and therefore y
is not adjacent to x2. Suppose that x2 is not adjacent to f . Then both z, y have unique neighbours
in A∪{x2}, namely x2, f ; z, y are {x0, x1}-complete, and x2, f are not; f -y-z-x2 is a path; and x0, x1

both have neighbours in A, contrary to 17.3. So x2 is adjacent to f . By (8) x2 is nonadjacent to both
x0, x1. Since f is not {x0, x1}-complete, we may assume from the symmetry that f is nonadjacent to
x1. Now A ∪ {x2} catches the triangle {z, y, x1}; the only neighbour of z in A ∪ {x2} is x2; the only
neighbour of y in A∪ {x2} is f ; x2, f are both nonadjacent to x1; and so by 17.1, A∪ {x2} contains
a reflection of the triangle. Hence there exists f1 ∈ A \ {f}, adjacent to x1, x2, f and not to y (and
therefore not to x0). Since every path between x0, x1 with interior in A has length ≥ 4 it follows that
x0 is nonadjacent to f, f1, and this restores the symmetry between x0, x1; and consequently by the
same argument there exists f0 ∈ A \ {f} adjacent to x2, f, x0 and not to y, x1. Since z-x0-f0-f1-x1-z
is not an odd hole, f0 is nonadjacent to f1; but then x0-f0-f -f1-x1 violates (7). This proves (9).

From (7) and (9), it follows that there exists f ∈ A such that A \ {f} is connected, f does not
belong to C, and f is the unique neighbour of x2 in A.

(10) x2 is nonadjacent to both of x0, x1.

For suppose that x2 is adjacent to x0 say. Suppose first that x0 is not adjacent to f . Then A∪ {x1}
catches the triangle {z, x2, x0}; the only neighbour of z in A ∪ {x1} is x1; the only neighbour of
x2 in A ∪ {x1} is f ; x1, f are both nonadjacent to x0; and A ∪ {x1} contains no reflection of the
triangle since that would give a 6-antihole with 3 vertices in common with C, contradicting 17.1.
So x0 is adjacent to f , and therefore x1 is nonadjacent to both x2, f . By (8) x2 is adjacent to y,
and therefore not Y ′-complete. By (2) z is Y ′-complete and (C, Y ′) is a wheel. Let x2-q1- · · · -qk-x1

be a path between x1, x2 with interior in A (so f = q1) and let C1 be the hole z-x2-q1- · · · -qk-x1-z.
From (9), A = {q1, . . . , qk}. Since qk = pn and z is Y -complete, it follows from (4) that qk is not
Y -complete. Since (C1, Y ) is not an odd wheel, it follows that (C1, Y ) is not a wheel, and so z, x1

are the only Y -complete vertices in C1, by 2.3. By 2.10, Y contains a leap or hat for C1. But y is
adjacent to x2, and all other vertices of Y have at least two neighbours in {p1, . . . , pn}, which is a
subset of {q1, . . . , qk}, a contradiction. This proves (10).

From (9) one of x0, x1 has a unique neighbour in A, and from the symmetry we may assume it is
x1. Let its neighbour be f1. By (7) and (9), x2 has no neighbour in {p1, . . . , pn}, and in particular
f 6= f1. Let Q be a path in A between f, f1, say f = q1- · · · -qk = f1, so z-x2-q1- · · · -qk-x1-z is a hole
(C1 say).
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(11) z is not Y ′-complete, and x2 is Y ′-complete and nonadjacent to y.

For assume z is Y ′-complete. So z, x1 both have unique neighbours in A ∪ {x2}, namely x2, f1.
By (4), f1 is not Y -complete. So z, x1 are Y -complete, and x2, f1 are not. By 17.3, it follows that
some vertex in Y has no neighbour in A. But y has a neighbour in A by (1), and so some vertex in
Y ′ has no neighbour in A. In particular, there is no Y ′-complete vertex in A, and so by (2), x2 is
Y ′-complete and nonadjacent to y. From 17.3 applied to the path x2-z-x1-f1 and the anticonnected
set {y}, it follows that y is adjacent to f1. Since (C1, Y ) is not an odd wheel, it follows from 2.10 that
Y contains a leap or a hat for C1. Since all members of Y ′ are adjacent to x2 and y is adjacent to f1,
there is no hat, and the leap must use y; so we may assume y, y ′ is a leap for some y′ ∈ Y ′. Hence
y-f1-Q-f -x2-y

′ is a path. Since this path has odd length ≥ 5, and its ends are {x0, x1}-complete and
its internal vertices are not, this contradicts 13.6. So z is not Y ′-complete. The claim follows from
(2). This proves (11).

(12) y is nonadjacent to all of q1, . . . , qk−1.

For suppose not, and choose i with 1 ≤ i < k minimum such that y is adjacent to qi. From
the hole z-x2-q1- · · · -qi-y-z it follows that i is odd. So by (10) x2-q1- · · · -qi-y-x1 is an odd path. Its
ends are Y ′ ∪ {z}-complete, its internal vertices are not, and Y ′ ∪ {z} is anticonnected by (11); so
it has length 3 by 13.6, that is, i = 1 and y is adjacent to f . If f is not Y ′-complete, an antipath
between f, y with interior in Y ′ can be completed to an antihole via y-x2-x1-f , sharing the vertices
x1, x2, f with C1, contrary to 15.7. So f is Y ′-complete. Since z is not, an antipath between z, y
with interior in Y ′ can be completed to an antihole via y-x2-x1-f -z, again contrary to 15.7. This
proves (12).

To conclude, A ∪ {x2} catches {y, z, x1}, and so by 17.1, y is adjacent to f1 = qk. Suppose that
x0 is adjacent to one of q1, . . . , qk. Then {p1, . . . , pn} ⊆ {q1, . . . , qk} from the minimality of A, and
so the neighbours of y in C are precisely x0, z, x1, qk = pn, contrary to 2.3 applied to C and y. So
x0 is nonadjacent to all of q1, . . . , qk; but then x2-q1- · · · -qk-y-x0 is an odd path of length ≥ 5, its
ends are Y ′ ∪{z}-complete, and its internal vertices are not, contrary to 13.6. Thus there is no such
choice of Y . This proves 19.2.

20 Diamond and square wheel systems

Now we turn to the second of the three steps of the proof of 19.1. We need two special kinds of wheel
systems. Let x0, . . . , xt be a wheel system, and define Xi, Ai as usual. Let Y ⊆ V (G) be nonempty
and anticonnected, such that Y is disjoint from {z, x0, . . . , xt}, and x0, . . . , xt−1 are all Y -complete
and xt is not. We say x0, . . . , xt is a

• Y -diamond if t ≥ 3, xt is Xt−2-complete, and xt has a neighbour in At−2

• Y -square if t ≥ 3, xt is adjacent to xt−1, xt has no neighbour in At−2, and there is a vertex in
At−1 adjacent to xt with a neighbour in At−2
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A Y -diamond x0, . . . , xt is said to be polished if t ≥ 4, xt−1 is not Xt−3-complete, xt has no neighbour
in At−3, xt−1 has a neighbour in At−3, and there is a vertex in At−2 adjacent to both xt, xt−1 with
a neighbour in At−3.

We need four lemmas to prove the main result of this section, which is the following.

20.1 Let G ∈ F7 and let (z,A0) be a frame. For all Y ⊆ V (G) \ (A0 ∪ {z}), if Y is nonempty and
anticonnected, and there is either a Y -diamond or a Y -square in G, then z is Y -complete and G
contains a wheel with hub Y .

Proof of 20.1, assuming 20.2, 20.3, 20.4, and 20.5.

We shall prove by induction on t that for any nonempty anticonnected Y ⊆ V (G) \ (A0 ∪ {z}),
if there is a Y -diamond or Y -square in G of height t, then z is Y -complete and G contains a wheel
with hub Y . Certainly t ≥ 3, and if t = 3 then the result holds by 20.2, so we may assume that t ≥ 4.
By 20.3 and 20.4, we may assume that there is an anticonnected set Y ′ with Y ′ ⊆ V (G) \ (A0 ∪{z})
such that either Y ⊆ Y ′ or z is not Y ′-complete, and such that either:

• there is a Y ′-diamond in G of height t − 1, or

• there is a Y ′-square in G of height t − 1, or

• there is a polished Y ′-diamond in G of height t.

In the first two cases, it follows from the inductive hypothesis that z is Y ′-complete, and there is
a wheel with hub Y ′. Since z is Y ′-complete, it follows that Y ⊆ Y ′, and so z is Y -complete and
there is a wheel with hub Y , as required. Thus we may assume that the third case holds. By 20.2 it
follows that t ≥ 5; and by 20.5, there is an anticonnected set Y ′′ with Y ′′ ⊆ V (G) \ (A0 ∪ {z}) such
that either Y ′ ⊆ Y ′′ or z is not Y ′′-complete, and either

• there is a Y ′′-diamond in G of height t − 2, or

• there is a Y ′′-square in G of height t − 2, or

• there is a polished Y ′′-diamond in G of height t − 1.

In each case it follows from the inductive hypothesis that z is Y ′′-complete and there is a wheel
with hub Y ′′. Consequently Y ′ ⊆ Y ′′, and so z is Y ′-complete; and therefore Y ⊆ Y ′, and so z is
Y -complete, and there is a wheel with hub Y . This proves 20.1.

Now we turn to the proofs of the lemmas. First we show:

20.2 Let G ∈ F7, let (z,A0) be a frame, and let Y ⊆ V (G) \ (A0 ∪ {z}) be nonempty and anticon-
nected. There is no Y -square of height 3 or polished Y -diamond of height 4 in G; and if x0, . . . , x3

is a Y -diamond of height 3, then z is Y -complete and G contains a wheel (C, Y ∪ {x3}).

Proof. Let x0, . . . , xt be a wheel system in G, and let Xi, Ai be defined as before. Suppose first
that x0, . . . , xt is a Y -square of height 3. So t = 3, x3 is adjacent to x2, x3 has no neighbour in
A1, and there is a vertex q in A2 adjacent to x3 with a neighbour in A1. From the maximality of
A1 it follows that q is X1-complete, and therefore nonadjacent to x2 (since it belongs to A2 and so
is not X2-complete). Let Q be a path from q to x2 with interior in A1; so Q has length ≥ 2. But
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Q is even since it can be completed to a hole via x2-x3-q, and so q-Q-x2-z is an odd path; its ends
are X1-complete, and its internal vertices are not. By 13.6 it has length 3, and there is an antipath
with interior in X1, joining its middle vertices (x2 and r say). This antipath can be completed via
r-z-q-x2 to an antihole of length ≥ 6, containing x0, x1 and z. But let P be a path from x0 to x1 with
interior in A0; then it has length ≥ 3 since A0 contains no vertex adjacent to both x0, x1, and hence
z-x0-P -x1-z is a hole of length ≥ 6 containing x0, x1 and z. But this contradicts 15.7, as required.

Now suppose x0, . . . , xt is a polished Y -diamond of height 4. So t = 4, x4 is X2-complete, x3 is
not X1-complete, x4 has no neighbour in A1, x3 has a neighbour in A1, and there is a vertex q in
A2 adjacent to both x4, x3 with a neighbour in A1. As before q is X1-complete, and therefore not
adjacent to x2; let Q be a path from q to x2 with interior in A1. The proof is completed exactly as
in the previous paragraph.

So now we may assume that x0, . . . , xt is a Y -diamond of height 3. So t = 3, x3 is X1-complete
(and therefore nonadjacent to x2), and x3 has a neighbour in A1. But then from 19.2 with A = A1,
v = x2 and anticonnected set Y ∪ {x3}, the result follows. This proves 20.2.

We remark that the pieces of this jigsaw do not seem to fit well together. There is some annoying
wastage in 20.2; we produce a wheel with hub Y ∪ {x3}, and all we use in proving 20.1 is that there
is a wheel with hub Y . Perhaps there is a better way to organize it, but so far it eludes us.

20.3 Let G ∈ F7, let (z,A0) be a frame, and let Y ⊆ V (G) \ (A0 ∪ {z}) be nonempty and anticon-
nected. Let x0, . . . , xt be a Y -diamond in G of height t ≥ 4. Suppose that there is no anticonnected
set Y ′ with Y ⊆ Y ′ ⊆ V (G) such that either:

• there is a Y ′-diamond in G of height t − 1, or

• there is a Y ′-square in G of height t − 1, or

• there is a polished Y ′-diamond in G of height t.

Then z is Y -complete and G contains a wheel (C, Y ).

Proof. Assume that either z is not Y -complete or G contains no wheel (C, Y ). Define Xi, Ai as
usual. So xt is Xt−2-complete, and xt has a neighbour in At−2, and Y is complete to Xt−1 and not
to xt.

(1) Not both xt and xt−1 have neighbours in At−3.

For suppose they do. If xt−1 is Xt−3-complete, then

x0, . . . , xt−1

is a Y ∪ {xt}-diamond of height t − 1, while if xt−1 is not Xt−3-complete, then

x0, . . . , xt−3, xt−1, xt

is a Y -diamond of height t − 1, in both cases a contradiction. This proves (1).

(2) There is a vertex q in At−2 adjacent to both xt and xt−1, and a path R in At−2 from q to
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At−3 such that not both xt and xt−1 have neighbours in At−3 ∪ V (R \ q).

For let F be a minimal connected subgraph of At−2 including At−3 and containing neighbours
of both xt and xt−1. If xt, xt−1 have a common neighbour in F , then the claim is satisfied (from
the minimality of F ), so we assume not. Let P be a path between xt and xt−1 with interior in
F , say xt-p1- · · · -pn-xt−1. Hence P has length > 2, and the hole z-x1-P -x2-z (= C say) it follows
that P is even. The only Xt−2-complete vertices in C are z and xt, so by 2.10, Xt−2 contains a
leap or a hat for C. Suppose it contains a leap; then there are nonadjacent xi, xj ∈ Xt−2 such that
xi-p1- · · · -pn-xt−1-xj is an odd path. Since xi, xj are Y ∪ {xt}-complete, it follows from 13.6 that
this path contains another Y ∪ {xt}-complete vertex, which must be p1 since no others are adjacent
to xt. Its ends are also Y ∪ {xt, z}-complete, and no internal vertex is Y ∪ {xt, z}-complete, so
by 13.6, Y ∪ {xt, z} is not anticonnected, that is, z is Y -complete. But then let C1 be the hole
z-xi-p1- · · · -pn-xt−1-z; then (C1, Y ) is a wheel, a contradiction.

So Xt−2 contains a hat for C; that is, there exists xi ∈ Xt−2 with no neighbours in C except xt, z.
Hence the path xi-xt-p1- · · · -pn-xt−1 is odd and has length ≥ 5, and its ends are Y ∪ {z}-complete,
and no internal vertex is Y ∪ {z}-complete, so by 13.6, z is Y -complete. Let S be a path between
xi and xt−1 with interior in F . Then V (S ∪ P ) \ {xi, xt} ( = F ′ say) is connected and catches the
triangle {z, xi, xt}. The only neighbour of z in F ′ is xt−1, which is nonadjacent to both xi, xt. If F ′

contains a reflection of the triangle, there is an antihole of length 6 containing z, xt−1, xt, which is
impossible by 15.7 since these three vertices belong to C. So by 17.1, there is a vertex in F ′ adjacent
to both xi, xt. Since xi has no neighbour in P \ xt, it follows that both xt, xt−1 have neighbours
in the interior of S, and so there is a path P ′ between xt, xt−1 with P ′ \ xt a subpath of S \ xi.
As before P ′ has length ≥ 4, and so S has length ≥ 4, and P ′, S both have even length since they
can be completed to holes through z. Since the Xt−2-complete vertex z has no neighbours in the
interior of P ′, from 18.2 (applied to P ′ with anticonnected sets Y and Xt−2) it follows that there is
a Y -complete edge in P ′, and since xt is not Y -complete, there is therefore one in S. But since the
edges zxt−1, zxi are also Y -complete, we deduce that there are at least three Y -complete edges in
the hole z-xi-S-xt−1-z, and such that hole is the rim of a wheel with hub Y , a contradiction. This
proves (2).

Choose q,R as in (2) with R minimal, and let R be r1- · · · -rn, where r1 = q and rn is the only
vertex of R in At−3 .

(3) xt−1 has neighbours in At−3.

For assume not. Since xt−1 has no neighbours in At−3 it follows that q /∈ At−3, and so R has
length > 0. Suppose first that every antipath between xt−1 and q with interior in Xt−2 is odd, and
let Q be such an antipath. Since all internal vertices of Q have neighbours in At−3, and z is complete
to its interior and anticomplete to At−3, it follows from 2.2 applied in G that one end of Q has a
neighbour in At−3. By hypothesis, xt−1 does not, so q does. From the maximality of At−3 it follows
that q is Xt−3-complete; and since q ∈ At−2 and is therefore not Xt−2-complete, q is nonadjacent
to xt−2. Now by assumption, every every antipath between xt−1 and q with interior in Xt−2 is odd,
and so xt−2 is adjacent to xt−1. But then

x0, . . . , xt−1
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is a Y ∪ {xt}-square of height t − 1, a contradiction. So we may assume some antipath Q between
between xt−1 and q with interior in Xt−2 is even.

From (2), not both xt, xt−1 have neighbours in At−3 ∪ V (R \ q). Suppose that xt−1 has such a
neighbour, and so xt does not. Since by assumption xt−1 has no neighbours in At−3, it follows that all
neighbours of xt−1 in At−3∪V (R\q) lie in the interior of R, and in particular R has length ≥ 2. The
antipath xt-xt−1-Q-q is odd, and its ends have no neighbours in the connected set At−3∪{r3, . . . , rn}.
Since z is complete to its interior and anticomplete to At−3 ∪{r3, . . . , rn}, it follows from 2.2 applied
in G that some internal vertex of this antipath has no neighbours in At−3 ∪ {r3, . . . , rn}. But all
internal vertices of Q lie in Xt−2 and therefore have neighbours in At−3; so xt−1 has no neighbour in
At−3 ∪ {r3, . . . , rn}. Hence r2 is its only neighbour in At−3 ∪ V (R \ q). Suppose that every antipath
between xt−1 and r2 with interior in Xt−2 is odd, and let Q′ be such an antipath. All internal
vertices of Q′ have neighbours in the connected set At−3, and z is complete to the interior of Q′ and
anticomplete to At−3; so by 2.2 applied in G, it follows that r2 has neighbours in At−3. From the
maximality of At−3, r2 is Xt−3-complete, and therefore not adjacent to xt−2. Since by assumption
every antipath between xt−1 and r2 with interior in Xt−2 is odd, it follows that xt−1 is adjacent to
xt−2. But then

x0, . . . , xt−1

is a Y ∪ {xt}-square of height t − 1, a contradiction. So some antipath Q′ between xt−1 and r2

with interior in Xt−2 is even. Hence the antipath xt−1-Q
′-r2-z is odd. All its internal vertices have

neighbours in the connected set At−3 ∪{r3, . . . , rn} and its ends do not, so by 13.6 this antipath has
length 3, that is, Q′ has length 2. Let xi be its middle vertex. Then the connected set At−3 ∪ V (R \
{r1, r2})∪{xi, xt, z} ( = F say) catches the triangle {r1, r2, xt−1}; the only neighbours of r1 in F are
xt and possibly xi; the neighbours of r2 in F lie in At−3 ∪ {r3}; and the only neighbour of xt−1 in F
is z. This contradicts 17.1, since z has no neighbour in At−3 ∪ {r3}.

So xt−1 has no neighbours in At−3 ∪ V (R \ q). Now the antipath z-q-Q-xt−1 is odd, and all its
internal vertices have neighbours in At−3 ∪ V (R \ q), and its ends do not, so by 13.6 it has length 3,
that is, Q has length 2 (let its middle vertex be xi); and there is an odd path P between q, xi with
interior in At−3 ∪V (R \ q). Let C be the hole z-xt−1-q-P -xi-z; then C has length ≥ 6. By 15.7 there
is no antihole of length ≥ 6 containing q, xi, xt−1. If q is not Y -complete then an antipath between
q, xt with interior in Y can be completed to such an antihole via xt-xt−1-xi-q, so q is Y -complete;
and if z is not Y -complete, an antipath between z and xt with interior in Y can be extended to such
an antihole, via xt-xt−1-xi-q-z. So z is also Y -complete. Hence the hole C contains at least three
Y -complete edges, namely xiz, zxt−1 and xt−1q, a contradiction. This proves (3).

From (3) and the choice of R it follows that xt has no neighbours in At−3 ∪ V (R \ q). Let Q be
an antipath between q and xt−1 with interior in Xt−2. Then z-q-Q-xt−1-xt is an antipath of length
≥ 4, and its ends have no neighbours in the connected set At−3 ∪ V (R \ q), and its internal vertices
do, so by 13.6 it has even length, that is, Q is even. The antipath xt-xt−1-Q-q is therefore odd, and
its internal vertices have neighbours in At−3, and z is complete to its interior and anticomplete to
At−3, so by 2.2 applied in G, it follows that one of its ends, and hence q has a neighbour in At−3.
From the maximality of At−3 it follows that q is Xt−3-complete and therefore nonadjacent to xt−2.
If xt−1 is not Xt−3-complete, then

x0, . . . , xt
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is a polished Y -diamond of height t; while if xt−1 is Xt−3-complete, then

x0, . . . , xt−1

is a Y ∪ {xt}-diamond of height t − 1, in both cases a contradiction. This proves 20.3.

20.4 Let G ∈ F7, let (z,A0) be a frame, and let Y ⊆ V (G) \ (A0 ∪ {z}) be nonempty and anticon-
nected. Let x0, . . . , xt be a Y -square in G of height t ≥ 4. Then there is a nonempty anticonnected
set Y ′ with Y ′ ⊆ V (G) \ (A0 ∪ {z}) such that either Y = Y ′ or z is not Y ′-complete, and such that
either:

• there is a Y ′-diamond in G of height t − 1, or

• there is a Y ′-square in G of height t − 1, or

• there is a polished Y ′-diamond in G of height t.

Proof. Assume that no such Y ′ exists. Define Xi, Ai as usual. So xt is adjacent to xt−1, xt has
no neighbour in At−2, there is a vertex q in At−1 adjacent to xt with a neighbour in At−2, and Y is
complete to Xt−1 and not to xt. From the maximality of At−2 it follows that q is Xt−2-complete.
Since q ∈ At−1, it is not Xt−1-complete, and so q is nonadjacent to xt−1.

(1) xt−1 has neighbours in At−3.

For suppose not. Let R be a path between q and xt−1 with interior in At−2. Then R has length ≥ 2,
and from the hole q-R-xt−1-xt-q it follows that R has even length. So the path q-R-xt−1-z is odd,
and its ends are Xt−2-complete, and its interior vertices are not, so by 13.6 it has length 3, that is,
R has length 2. Let its middle vertex be r. Since xt−1 has no neighbour in At−3, it follows that
r ∈ At−2\At−3. Let Q be an antipath between r and xt−1 with interior in Xt−2. Since r-Q-xt−1-q-z-r
is an antihole, it follows that Q is odd. All its internal vertices have neighbours in At−3, and one
end xt−1 does not, and z is complete to its interior and anticomplete to At−3. By 2.2 applied in G,
it follows that r has neighbours in At−3. Hence r is Xt−3-complete, and nonadjacent to xt−2. Since
z-xt−1-r-q-xt−2-z is not an odd hole it follows that xt−2 is adjacent to xt−1. But then

x0, . . . , xt−1

is a {q}-square of height t − 1, and yet z is not {q}-complete, a contradiction. This proves (1).

(2) q has neighbours in At−3.

For suppose not. Let S be an antipath between xt and xt−1 with V (S) ⊆ Xt, that is, with in-
terior in Xt−2. Then xt-S-xt−1-q is an antipath with length ≥ 3; by (1), all its internal vertices have
neighbours in At−3, and its ends do not, and z is complete to its interior and anticomplete to At−3;
so by 2.2 applied in G it follows that S has odd length. But then xt-S-xt−1-q-z has odd length ≥ 5,
and its internal vertices have neighbours in At−2 and its ends do not, contrary to 13.6 applied in G.
This proves (2).
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If xt−1 is Xt−3-complete, then
x0, . . . , xt−1

is a {q}-diamond of height t − 1, and yet z is not {q}-complete, a contradiction. So xt−1 is not
Xt−3-complete. It follows from (2) that if xt is Xt−3-complete then

x0, . . . , xt−3, xt−1, xt−2, xt

is a polished Y -diamond of height t, while if xt is not Xt−3-complete then

x0, . . . , xt−3, xt−1, xt

is a Y -square of height t − 1, in either case a contradiction. This proves 20.4.

20.5 Let G ∈ F7, let (z,A0) be a frame, and let Y ⊆ V (G) \ (A0 ∪ {z}) be nonempty and anticon-
nected. Let x0, . . . , xt+1 be a polished Y -diamond in G of height t+1 ≥ 5. Then there is a nonempty
anticonnected set Y ′ with Y ′ ⊆ V (G) \ (A0 ∪ {z}) such that either Y ⊆ Y ′ or z is not Y ′-complete,
and such that either:

• there is a Y ′-diamond in G of height t − 1, or

• there is a Y ′-square in G of height t − 1, or

• there is a polished Y ′-diamond in G of height t.

Proof. Suppose that no such Y ′ exists. Let x0, . . . , xt+1 be a polished Y -diamond in G, and define
Xi, Ai as usual. So xt+1 is Xt−1-complete, xt is not Xt−2-complete, xt+1 has no neighbour in At−2,
xt has a neighbour in At−2, there is a vertex q in At−1 adjacent to both xt+1, xt with a neighbour
in At−2, and Y is complete to Xt and not to xt+1. From the maximality of At−2 it follows that q is
Xt−2-complete, and therefore nonadjacent to xt−1.

Choose a path v1- · · · -vs with s minimum such that v1, . . . , vs ∈ At−2, and v1 is adjacent to q,
and vs ∈ At−3. (If q has a neighbour in At−3 then s = 1.) Let R be a path between q and xt−1 with
interior in At−2, and if possible with interior in At−3 ∪ {v1, . . . , vs}. Then R has length ≥ 2, and
from the hole q-R-xt−1-xt+1-q it follows that R has even length. So the path q-R-xt−1-z is odd, and
its ends are Xt−2-complete, and its internal vertices are not, so by 13.6 it has length 3, that is, R
has length 2. Let its middle vertex be r.

(1) xt−1 has neighbours in At−3.

For suppose not. It follows that r ∈ At−2 \ At−3. Let Q be an antipath between r and xt−1

with interior in Xt−2. Since r-Q-xt−1-q-z-r is an antihole, it follows that Q is odd. All its internal
vertices have neighbours in At−3, and one end xt−1 does not, and z is complete to its interior and
anticomplete to At−3. By 2.2 applied in G, it follows that r has neighbours in At−3. Hence r is
Xt−3-complete, and nonadjacent to xt−2. Since z-xt−1-r-q-xt−2-z is not an odd hole it follows that
xt−2 is adjacent to xt−1. But then

x0, . . . , xt−1

is a {q}-square of height t − 1, and yet z is not {q}-complete, a contradiction. This proves (1).
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From (1) it follows that it is possible to choose R with interior in At−3∪{v1, . . . , vs}, and therefore
we have done so.

(2) q has neighbours in At−3, and therefore r ∈ At−3.

For suppose it does not. Then s ≥ 2 and r = v1. Let Q be an antipath between xt−1 and r with
interior in Xt−2. From the antihole xt−1-Q-r-z-q-xt−1 it follows that Q is odd. Hence the antipath
q-xt−1-Q-r-xt+1 is odd with length ≥ 5; and its internal vertices have neighbours in At−3∪{v2, . . . , vs},
and its ends do not, contrary to 13.6 applied in G. This proves (2).

(3) xt−1 is not Xt−3-complete.

For if it is, then
x0, . . . , xt−1

is a {q}-diamond of height t − 1, and yet z is not {q}-complete, a contradiction. This proves (3).

(4) xt has no neighbour in At−3.

For suppose xt has a neighbour in At−3. If xt is Xt−3-complete then since it is not Xt−2-complete,
it is nonadjacent to xt−2, and therefore

x0, . . . , xt−2, xt

is a Y ∪ {xt+1}-diamond of height t − 1; while if xt is not Xt−3-complete then

x0, . . . , xt−3, xt−1, xt, xt+1

is a polished Y -diamond of height t, in either case a contradiction. This proves (4).

In particular, xt is not adjacent to r. Since z-xt-q-r-xt−1-z is not an odd hole it follows that xt

is adjacent to xt−1. If xt is Xt−3-complete, then

x0, . . . , xt−3, xt−1, xt−2, xt

is a polished Y ∪ {xt+1}-diamond of height t; while if xt is not Xt−3-complete, then

x0, . . . , xt−3, xt−1, xt

is a Y ∪ {xt+1}-square of height t − 1, in either case a contradiction. This proves 20.5.

21 From wheel systems to wheels

Now we complete the proof of 19.1. First we need a lemma.

21.1 Let G ∈ F7, and let X,Y be disjoint nonempty anticonnected subsets of V (G), complete to
each other. Let p1, . . . , pn be a path in G \ (X ∪ Y ) of length ≥ 4, such that p1, pn are X-complete
and p2, . . . , pn−1 are not. Suppose that either:
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1. p1, p2, p3 are Y -complete, or

2. there exists i with 1 ≤ i ≤ n − 3 such that pi, pi+1, pi+2, pi+3 are all Y -complete, or

3. there exists i with 1 ≤ i ≤ n − 3 such that pi+1, pi+2 are Y -complete and pi, pi+3 are not.

Then there is a wheel in G with hub Y .

Proof. In the second and third case let i be as given, and in the first case let i = 1. Let Q be an
antipath joining pi+1, pi+2 with interior in X. Since 1 < i + 1, i + 2 < n, and n ≥ 5, and p1, pn are
both complete to the interior of Q, it follows from 15.4 that Q has length 2, that is, there exists
x ∈ X nonadjacent to both pi+1, pi+2. Choose h with 1 ≤ h ≤ i maximum such that x is adjacent
to ph, and choose j with i + 3 ≤ j ≤ n minimum such that x is adjacent to pj. Then x-ph- · · · -pj-x
is a hole of length ≥ 6, say C, and x, pi, pi+1, pi+2, pi+3 are all vertices of it, and x, pi+1, pi+2 are
Y -complete. In the first case xp1, p1p2, p2p3 are all Y -complete edges of the hole, so (C, Y ) is a wheel.
In the second case, the three edges of pi-pi+1-pi+2-pi+3 are all Y -complete edges of C, so again (C, Y )
is a wheel. In the third case, 2.3 implies that (C, Y ) is a wheel (and in this case it is in fact an odd
wheel, a contradiction). This proves 21.1.

The final step of the proof of 19.1 is given by the following. (In this paper we only apply it
to graphs in containing no pseudowheels, that is, graphs in F8, so the first hypothesis could be
simplified; but it is convenient to present it this way for a future application.)

21.2 Let G ∈ F7, and let Y ⊆ V (G), such that there do not exist X,P so that (X,Y, P ) is a
pseudowheel. Let (z,A0) be a frame, and let x0, . . . , xt+1 be a wheel system with hub Y , and with
t ≥ 2. Define Xi, Ai as usual. Suppose that xt+1 has no neighbour in At−1; and moreover that at
most one member of Y has no neighbour in At−1 ∪ {xt+1}, and any such vertex has a neighbour in
At. Then there is a wheel in G with hub Y .

Proof.

(1) There do not exist xi, xj ∈ Xt joined by an odd path xi-xt+1-P -xj of length ≥ 5 such that
xi, xj ∈ Xt and P has interior in At.

For assume such a path exists, and let P have vertices xt+1-p1- · · · -pn-xj . Thus n ≥ 4. There
is an even path S between xi and xj with interior in At−1. Since xi-xt+1-P -xj-S-xi is not an odd
hole, and xt+1 has no neighbours in At−1, it follows that {p1, . . . , pn} ∪ At−1 is connected. Since
p1 /∈ At−1, there exists k such that pk /∈ At−1 and pk has a neighbour in At−1; and since pk is not
adjacent to z, it follows from the maximality of At−1 that pk is Xt−1-complete. Since at least one of
xi, xj is in Xt−1, it follows that k = n and i = t. But {p1, . . . , pn, xj} ∪ At−1 (= F say) catches the
triangle {z, xt+1, xt}; the only neighbour of z in F is xj; the only neighbour of xt+1 in F is p1; and
xj, p1 are nonadjacent (since n ≥ 4), and are both nonadjacent to xt, contrary to 17.1. This proves
(1).

Since xt+1 has a neighbour in At and none in At−1, there is a path from xt+1 to At−1 with
interior in At \ At−1. Hence there is a path xt+1-p1- · · · -pm such that p1, . . . , pm ∈ At \ At−1

and pm is the unique vertex of this path with a neighbour in At−1. (Hence m ≥ 1, and pm is
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Xt−1-complete.) Choose such a path such that if possible, every member of Y has a neighbour in
At−1 ∪ {xt+1, p1, . . . , pm}.

(2) We may assume that one of x0, . . . , xt is nonadjacent to both xt+1, p1.

For certainly there is an antipath Q joining xt+1, p1 with interior in Xt, since xt+1, p1 are not Xt-
complete. Suppose that Q is odd. Every vertex of the interior of Q has neighbours in the connected
set At−1, and xt+1 does not, and z is complete to the interior of Q and anticomplete to At−1; so by
2.2 applied in G it follows that p1 has a neighbour in At−1. Hence m = 1, and p1 is Xt−1-complete,
and therefore not adjacent to xt. If xt is also nonadjacent to xt+1 then the claim holds, and if xt is
adjacent to xt+1, then

x0, . . . , xt+1

is a Y -square, and the theorem holds by 20.1. Now assume that Q is even. The antipath z-p1-Q-xt+1

is therefore odd and has length ≥ 3; all its internal vertices have neighbours in the connected set
At−1 ∪ {p2, . . . , pm}, and its ends do not. So it has length 3, by 13.6 applied in G, and hence Q has
length 2. This proves (2).

(3) Every vertex in Y has a neighbour in At−1 ∪ {xt+1, p1, . . . , pm}.

For suppose some y ∈ Y has no such neighbour. By hypothesis y has a neighbour in At. Consequently
there is a connected subset F of At including At−1∪{p1, . . . , pm} which contains a neighbour of y, and
we may choose F minimal with this property. Since y has no neighbour in At−1∪{p1, . . . , pm}, it fol-
lows from the minimality of F that y has a unique neighbour in F , say f , and therefore f ∈ At\At−1.
There is a path R between y and xt+1 with interior in F , and therefore z-xt+1-R-y-z is a hole (C
say), and so R has even length. Suppose it has length ≥ 4. The only Xt-complete vertices in C are
z, y, so by 2.10, Xt contains a hat or leap. By (1) there is no leap, so there exists x ∈ Xt with no
neighbours in C except y, z. But F ∪ {xt+1} catches the triangle {x, y, z}; the only neighbour of z
in F ∪ {xt+1} is xt+1; the only neighbour of y in F ∪ {xt+1} is f ; and xt+1, f are nonadjacent, and
both nonadjacent to x, contrary to 17.1. So R has length 2, and therefore xt+1 is adjacent to f .

Since y has no neighbour in {xt+1} ∪At−1, it follows from the hypothesis that all other members
of Y have neighbours in {xt+1}∪At−1. We recall that initially we chose the path xt+1-p1- · · · -pm such
that pm is the unique vertex of it with a neighbour in At−1, and if possible every member of Y has
a neighbour in At−1 ∪ {xt+1, p1, . . . , pm}. Since f is adjacent to both of y, xt+1, it follows that f has
no neighbours in At−1, and f is nonadjacent to p2, . . . , pm, since otherwise there would be a better
choice of path using f . Let Q be an antipath between f, xt+1 with interior in Xt. Every internal
vertex of Q has a neighbour in At−1, and its ends do not, and z is complete to the interior of Q and
anticomplete to At−1; so by 2.2 applied in G, it follows that Q is even. So the antipath y-xt+1-Q-f
is odd, and all its internal vertices have neighbours in At−1 ∪ {p1, . . . , pm}, and y does not; and z is
complete to the interior of the antipath and anticomplete to At−1 ∪ {p1, . . . , pm}. By 2.2 applied in
G, it follows that f has a neighbour in At−1 ∪ {p1, . . . , pm}, and therefore f is adjacent to p1. By
(2) there exists x ∈ Xt nonadjacent to xt+1, p1. Consequently, {z, y, x, p2, . . . , pm} ∪At−1 (= F ′ say)
catches the triangle {xt+1, f, p1}. The only neighbour of xt+1 in F ′ is z; the only neighbours of f in
F ′ are y and possibly x; and x, y, z are all nonadjacent to p1. By 17.1, F ′ contains a reflection of the
triangle, and hence there is a vertex in F ′ adjacent to both of z, p1. But the only neighbours of z in

132



F ′ are x, y, and they are both nonadjacent to p1, a contradiction. This proves (3).

Since pm is Xt−1-complete it follows that x0, . . . , xt−1 all have neighbours in p1, . . . , pm. Since
xt, pm have neighbours in At−1 and none of xt+1, p1, . . . , pm−1 have neighbours in At−1, we can ex-
tend the path xt+1-p1- · · · -pm to a path xt+1-p1- · · · -pm-pm+1- · · · -pn containing neighbours of all
members of Xt. By (2), we can choose i with 2 ≤ i ≤ n maximum such that some vertex of Xt is
nonadjacent to all of xt+1, p1, . . . , pi−1; and choose s with 0 ≤ s ≤ t such that xs is nonadjacent to all
of xt+1, p1, . . . , pi−1. Since every vertex in Xt has a neighbour in {xt+1, p1, . . . , pn}, it follows from
the maximality of i that every vertex in Xt is adjacent to one of xt+1, p1, . . . , pi, and in particular,
xs is adjacent to pi. Note that if i > m then s = t, since pm is Xt−1-complete.

(4) i is odd, and pi is Y -complete.

For z-xt+1-p1- · · · -pi-xs-z is a hole C say, and so i is odd. Suppose pi is not Y -complete. Now
C has length ≥ 6, and z, xs are Y -complete (since Y is a hub), and xt+1, pi are not. Since (C, Y ) is
not an odd wheel, 2.10 implies that Y contains a leap or hat for C. Suppose it contains a leap; then
there are nonadjacent y1, y2 ∈ Y such that y1-xt+1-p1- · · · -pi-y2 is a path. This path is odd and has
length ≥ 5, and its ends are Xt-complete and its internal vertices are not, contrary to 13.6. So Y
contains a hat, that is, there exists y ∈ Y nonadjacent to xt+1, p1, . . . , pi. By (3), y has a neighbour
in At−1 ∪ {pj : i + 1 ≤ j ≤ m}.

Suppose first that i ≤ m, and let pi-r1- · · · -rk-y be a path from pi to y with interior in At−1 ∪
{pi+1, . . . , pm}. Then z-xt+1-p1- · · · -pi-r1- · · · -rk-y-z is a hole of length ≥ 6, and the only Xt-complete
vertices in this hole are z, y. Since this hole is not the rim of an odd wheel, 2.10 implies that X
contains a hat or leap, and so some x ∈ Xt has no neighbour in {xt+1, p1, . . . , pi}, contrary to the
choice of i.

Now suppose that i > m, and so s = t. Let pm-r1- · · · -rk-y be a path from pm to y with interior
in At−1. Again, z-xt+1-p1- · · · -pm-r1- · · · -rk-y-z is a hole of length ≥ 6, and its only Xt-complete
vertices are z, y. By 2.10 Xt contains a hat or leap. By (1) it contains no leap, so there exists
x ∈ Xt nonadjacent to all xt+1, p1, . . . , pm, r1, . . . , rk. Since pm is Xt−1-complete, it follows that
x = xt. Now {xt+1, p1, . . . , pi, r1, . . . , rk} (= F say) is connected, and catches the triangle {y, z, xt};
the only neighbour of z in F is xt+1; the only neighbour of y in F is rk (because y is nonadjacent
to xt+1, p1, . . . , pi); and the only neighbour of xt in F is pi (because xt is a hat). Since xt+1 is not
adjacent to pi, this contradicts 17.1. This proves (4).

(5) Let R be a path from xt to some vertex r, such that r is the unique Xt−1-complete vertex in
R, and V (R \ xt) ⊆ At−1 ∪ {p1, . . . , pm}. Then R is odd, and has length ≥ 3. In particular, xt is
nonadjacent to pm, pm−1.

For assume that R is even. Then the path z-xt-R-r is odd, and its ends are Xt−1-complete, and its
internal vertices are not, so by 13.6, it has length 3, that is, R has length 2. Let q be the middle vertex
of R. By 13.6 there is an odd antipath Q joining q, xt with interior in Xt−1. Now pm is Xt−1-complete
and nonadjacent to xt, and since Q cannot be completed to an antihole via xt-pm-q, it follows that pm

is adjacent to q. Suppose first that q ∈ {p1, . . . , pm}; then it follows that q = pm−1. Hence q-Q-xt-pm

is an even antipath of length ≥ 4; q is its only vertex that is anticomplete to At−1, and pm is its only
vertex that is anticomplete to {z, xt+1, p1, . . . , pm−2}. Since the sets At−1, {z, xt+1, p1, . . . , pm−2} are
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each connected and anticomplete to each other, this contradicts 13.7 applied in G. So q ∈ At−1,
and in particular xt is nonadjacent to pm, pm−1. Let R′ be a path between xt, pm with interior in
{z, xt+1, p1, . . . , pm}; then xt-R-pm-R′-xt is a hole of length ≥ 6 sharing the vertices xt, q, pm with
the antihole q-Q-xt-pm-z-q, contrary to 15.7. So R is odd. Since r is not Xt-complete, it follows that
R has length ≥ 3. The last assertion of the claim is immediate. This proves (5).

(6) We may assume that none of xt+1, p1, . . . , pi−1 is Xt−1-complete, and in particular i ≤ m.

For suppose first that one of p1, . . . , pi−1 is Xt−1-complete, and choose h with 1 ≤ h < i maximum
such that ph is Xt−1-complete. Since ph is not adjacent to xs it follows that s = t, and therefore pi

is not Xt−1-complete (because pi is not Xt-complete and is adjacent to xs). By (5), i − h is even,
and so the path ph- · · · -pi-xt-z is even and has length ≥ 4. Since its only Xt−1-complete vertices are
its ends, and since z, xt, pi are Y -complete by (4), it follows from 21.1 that there is a wheel with hub
Y , and the theorem holds. So we may assume that none of p1, . . . , pi−1 is Xt−1-complete, and in
particular i ≤ m, since pm is Xt−1-complete. Now assume that xt+1 is Xt−1-complete. Since xt+1 is
nonadjacent to xs it follows that s = t. Let R be a path between xt, pm with interior in At−1. By (5),
R is odd, and so the path xt+1-p1- · · · -pi-xt-R-pm is odd, of length ≥ 5, its ends are Xt−1-complete,
and its internal vertices are not, contrary to 13.6. This proves (6).

Choose k with i ≤ k ≤ m minimum such that pk is Xt−1-complete.

(7) None of xt+1, p1, . . . , pk−1 is Xt−1-complete, and k is odd.

The first assertion follows from (6) and the choice of k. Hence the path z-xt+1-p1- · · · -pk has length
≥ 4, and its ends are Xt−1-complete, and its internal vertices are not; so by 13.6, it has even length.
This proves (7).

(8) xt is adjacent to one of p1, . . . , pk.

For suppose xt is nonadjacent to all of p1, . . . , pk. From the definition of i it follows that xt is
adjacent to xt+1. Let S be a path between xt, pk with interior in At−1 ∪ {pk+1, . . . , pm}, and let
C be the hole xt-xt+1-p1- · · · -pk-S-xt. Since C is even and k is odd, it follows that S is even, and
so by (5), some internal vertex of S is Xt−1-complete. The path z-xt-S-pk is odd, and its ends
are Xt−1-complete, so by 2.3 it contains an odd number of Xt−1-complete edges. Since xt is not
Xt−1-complete, all these Xt−1-complete edges belong to S and hence to C, and there are no further
Xt−1-complete edges in C. Thus an odd number of edges of C are Xt−1-complete, and so by 2.3
there is exactly one, and exactly two Xt−1-complete vertices. Since pk is Xt−1-complete, the second
such vertex is the neighbour of pk in S. This therefore does not belong to At−1, and so k < m, and
pk+1 is the second Xt−1-complete vertex of C. By 2.10 applied to C, Xt−1 contains a leap or hat,
and in either case some x ∈ Xt−1 is nonadjacent to all of xt, xt+1, p1, and adjacent to pk. Hence
(V (C) \ {xt, xt+1}) ∪ {x} (= F say) catches the triangle {z, xt, xt+1}; the only neighbour of z in F
is x; the only neighbour of xt+1 in F is p1; and x, p1 are nonadjacent, and are both nonadjacent to
xt, contrary to 17.1. This proves (8).

(9) pk is Y -complete.
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For suppose not. Then i < k, by (4). But then z,Xt−1 are Y -complete and xt+1, pk are not, and
some vertex of the path xt+1-p1- · · · -pk is Y -complete (namely pi); and so (Xt−1, Y, z-xt+1-p1- · · · -pk)
is a pseudowheel, contrary to G ∈ F8. This proves (9).

By (8), we may choose j with 1 ≤ j ≤ k maximum such that xt is adjacent to pj . By (5), k− j is
even and ≥ 2. Suppose that pj is Y -complete. The path z-xt-pj- · · · -pk has even length ≥ 4, and its
only Xt−1-complete vertices are its ends, and z, xt, pj, Xt−1 are all Y -complete, so by 21.1, there is a
wheel with hub Y and the theorem holds. So we may assume that pj is not Y -complete. Now the path
xt-pj- · · · -pk has odd length ≥ 3, and both its ends are Y -complete, and the Y -complete vertex z has
no neighbour in its interior, so by 2.2 and 2.3, an odd number of its edges are Y -complete. Since pj

is not Y -complete, an odd number of edges of pj- · · · -pk are Y -complete. The path z-xt+1-p1- · · · -pk

(= P say) is even, by (7), and since its ends are Y -complete, it follows that an even number of
its edges are Y -complete, by 2.3. We deduce that an odd number of edges of z-xt+1-p1- · · · -pj are
Y -complete. There is therefore a Y -segment P ′ of this path that has odd length. Since pj is not
Y -complete, it follows that P ′ is also a Y -segment of P . If P ′ has length > 1 then 21.1 applied to
P implies that there is a wheel with hub Y , and the theorem holds. So we may assume that P ′ has
length 1. But both vertices of P ′ are internal vertices of P , since xt+1, pj are not Y -complete, and
again 21.1 applied to P implies there is a wheel with hub Y . This proves 21.2.

Now we can deduce our main theorem about wheel systems, 19.1, which we restate:

21.3 Let G ∈ F8, let (z,A0) be a frame, and let x0, . . . , xt+1 be a wheel system with hub Y , and
with t ≥ 1. Define Ai, Xi as usual, and assume that at most one member of Y has no neighbour in
A1. Suppose that for all r with 1 ≤ r ≤ t, if x0, x1, . . . , xr, xt+1 is a wheel system, then every member
of Y has a neighbour in Ar ∪ {xt+1}. Then there is a wheel with hub Y .

Proof. Suppose there is no such wheel. Choose r with 1 ≤ r ≤ t, minimum such that xt+1 has a
neighbour in Ar and a nonneighbour in Xr. By hypothesis, every member of Y has a neighbour in
Ar ∪ {xt+1}. By 19.2, r > 1. Since at most one member of Y has no neighbour in Ar−1 (because at
most one has no neighbour in A1), it follows from 21.2 that xt+1 has a neighbour in Ar−1. Since no
wheel has hub Y , 20.1 implies that

x0, . . . , xr, xt+1

is not a Y -diamond, and so xt+1 is not Xr−1-complete. But that contradicts the minimality of r.
Thus there is a wheel with hub Y . This proves 19.1.

22 Wheels and tails

We continue with the proof that recalcitrant graphs do not contain wheels. Now we come to apply
19.1, as explained at the start of section 19. We use the following lemma.

22.1 Let G ∈ F8, not admitting a balanced skew partition, let (z,A0) be a frame, and let x0, . . . , xs

be a wheel system. Let Y ⊆ V (G) \ (A0 ∪ {z, x0, . . . , xs}) be nonempty and anticonnected, such that
z, x0, . . . , xs are Y -complete. Then there is a sequence xs+1, . . . , xt+1 with t ≥ s such that x0, . . . , xt+1

is a wheel system with respect to the frame (z,A0), with hub Y .
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Proof. Choose a sequence xs+1, . . . , xt, all Y -complete and such that x0, . . . , xt is a wheel system
with respect to (z,A0), with t maximum. So t ≥ s ≥ 1. Define Xi and Ai as usual. From 15.2, there
is a path P from z to At, disjoint from Xt and containing no Xt-complete vertex except z. Let v be
the neighbour of z in this path. From the maximality of At, it follows that P has length 2. So v has
a neighbour in At, and therefore x0, . . . , xt, v is a wheel system. From the maximality of t it follows
that v is not Y -complete, and therefore Y is a hub for this wheel system. This proves 22.1.

We combine 19.1 and 22.1 to prove the following.

22.2 Let G ∈ F8, not admitting a balanced skew partition, let (z,A0) be a frame, and let x0, . . . , xs

be a wheel system. Let Y ⊆ V (G) \ (A0 ∪ {z, x0, . . . , xs}) be nonempty and anticonnected, such
that z, x0, . . . , xs are Y -complete. Define Ai, Xi as usual, and assume that every member of Y has a
neighbour in As, and at most one member of Y has no neighbour in A1. Suppose there is no wheel with
hub Y . Then there exists r with 1 ≤ r < s, and a member y ∈ Y , and a vertex v /∈ Y ∪{z, x0, . . . , xs}
with the following properties:

• y has no neighbour in Ar ∪ {v}

• v is adjacent to z, and has a neighbour in Ar, and a non-neighbour in Xr.

Proof. By 22.1, there is a sequence xs+1, . . . , xt+1 with t ≥ s such that x0, . . . , xt+1 is a wheel
system with respect to the frame (z,A0), with hub Y . By 19.1, there exists r with 1 ≤ r ≤ t, and a
member y ∈ Y , such that y has no neighbour in Ar ∪ {xt+1}, and xt+1 has a neighbour in Ar, and
a non-neighbour in Xr. Since every member of Y has a neighbour in As, it follows that r < s, and
the result holds (taking v = xt+1). This proves 22.2.

If (C, Y ) is a wheel in G, and there is no wheel (C ′, Y ′) with Y ⊂ Y ′, we say (C, Y ) is an optimal
wheel. Let (C, Y ) be a wheel in G. A kite for (C, Y ) is a vertex y ∈ V (G) \ (Y ∪ V (C)), not
Y -complete, that has at least four neighbours in C, three of which are consecutive and Y -complete.

22.3 Let G ∈ F8, not admitting a balanced skew partition, and let (C, Y ) be an optimal wheel in G.
Then there is no kite for (C, Y ).

Proof. Assume y is a kite for (C, Y ). Let x0-z-x1 be a subpath of C, all Y -complete and adjacent
to y. Let A0 = V (C) \ {z, x0, x1}, so x0, x1 is a wheel system with respect to (z,A0), and x0, x1 are
Y ∪ {y}-complete. Thus every member of Y ∪ {y} has a neighbour in A0, and yet there is no wheel
with hub Y ∪ {y}, contrary to 22.2 with s = 1. This proves 22.3.

Let (C, Y ) be a wheel in G, let z ∈ V (C), and let x0, x1 be the neighbours of z in C. A path T
of G \ {x0, x1} from z to V (C) \ {z, x0, x1} is called a tail for z (with respect to the wheel (C, Y )) if

• x0, z, x1 are all Y -complete, and there is a Y -complete edge in C \ {x0, z, x1}

• the neighbour of z in T is adjacent to x0, x1, and

• no internal vertex of T is in Y or is Y -complete.

22.4 Let G ∈ F8, and let (C, Y ) be an optimal wheel, such that no vertex is a kite for (C, Y ). Let
z ∈ V (C), and let x0, x1 be the neighbours of z in C. Let T be a tail for z, and let y be the neighbour
of z in T . Let A0 = V (C)\{z, x0, x1}, and let x0, . . . , xt+1 be a wheel system with respect to the frame
(z,A0), with hub Y ∪ {y}. Define A1, . . . , At+1 as usual. Then y has a neighbour in At ∪ {xt+1}.
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Proof. We assume for a contradiction that y has no neighbour in At ∪ {xt+1}. Let y-u1- · · · -un be
a minimal subpath of T \ z such that un has a neighbour in At; so n > 0. From the maximality of
At it follows that un is Xt-complete and therefore X1-complete since t ≥ 1; and since T is a tail it
follows that none of u1, . . . , un are Y -complete. Let P be a path with vertex set in At ∪ {un}, from
un to some Y -complete vertex p say, such that no vertex of P \ p is Y -complete.

(1) P is odd.

For P has length ≥ 1 since no vertex of T \ z is Y -complete; and the only Xt-complete vertex
of P is un, and the only Y -complete vertex of P is p. Since z is complete to Xt and to Y , and
anticomplete to V (P ), it follows from 2.9 that P has odd length. This proves (1).

Since y, u1, . . . , un−1 have no neighbours in At it follows that z-y-u1- · · · -un-P -p is a path, Q say.

(2) We may assume that Q has even length ≥ 4, and so n is even.

For the ends of Q are Y -complete, and since none of y, u1, . . . , un are Y -complete, it follows that no
internal vertex of Q is Y -complete. Suppose that Q has length 3. So n = 1, and there is an odd
antipath joining y, u1 with interior in Y . Hence every Y -complete vertex in G is adjacent to one of
y, u1. In particular, since y has no neighbour in At, it follows that u1 is adjacent to all the Y -complete
vertices in C except z (for we already showed that it is Xt-complete and therefore adjacent to x0, x1).
Since (C, Y ) is not an odd wheel, it follows that u1 is a kite for (C, Y ), a contradiction. So we may
assume that Q does not have length 3. Hence by 13.6, Q has even length. From (1), it follows that
n is even. This proves (2).

(3) xt+1 is adjacent to one of u1, . . . , un−1.

For suppose not. Choose a path N from xt+1 to un with interior in At (possibly of length 1). Then
z-y-u1- · · · -un-N -xt+1-z is a hole, and since n is even it follows that N is even. Hence z-xt+1-N -un

is an odd path; its ends are Xt-complete, its internal vertices are not, and the Xt-complete vertex y
has no neighbour in its interior, contrary to 2.2. This proves (3).

(4) xt+1 is not Y -complete.

For suppose it is. Since G ∈ F8, the triple (Y,Xt+1, Q) is not a pseudowheel. Since y, p are not
Xt+1-complete, it follows that no internal vertex of Q is Xt+1-complete. By 2.11 applied to Q, Y
and Xt+1, it follows that there exists x ∈ Xt+1 with no neighbour in Q \ z except possibly p. But
xt+1 is adjacent to one of u1, . . . , un−1 by (3), and all other members of Xt+1 are adjacent to y, a
contradiction. This proves (4).

Since xt+1 has a neighbour in At, there is a path R from xt+1 to some Y -complete vertex r in At

with V (R \ xt+1) ⊆ At such that no vertex of R \ r is Y -complete.

(5) R has odd length.
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For certainly R has length ≥ 1; suppose it has length 2, and let its middle vertex be a say. There is an
antipath joining xt+1, a with interior in Y , and it is odd since it can be completed to an antihole via
a-z-r-xt+1. Now xt+1, a are not Xt-complete (since a ∈ At) and so there is an antipath joining xt+1, a
with interior in Xt, which is therefore also odd, since its union with the antipath with interior in Y
is an antihole. But y is Xt-complete and nonadjacent to both xt+1 and a (since it has no neighbour
in At), and so this antipath can be completed to an odd antihole via a-y-xt+1, a contradiction. This
proves that R does not have length 2. Hence the path z-xt+1-R-r does not have length 3; its ends
are Y -complete and its internal vertices are not, and it has length > 1, so by 13.6 it has even length,
that is, R has odd length. This proves (5).

(6) If xt+1 is adjacent to u1 then u1 is Xt-complete.

For suppose not; then there is an antipath L say joining xt+1, u1 with interior in Xt. So z-u1-L-xt+1-y
is an antipath of length ≥ 4; all its internal vertices have neighbours in At ∪ {u2, . . . , un}, and its
ends do not. By 13.6 applied in G, it has even length, and so u1-L-xt+1-y is an odd antipath. But
all its internal vertices have neighbours in At, and its ends do not (for n ≥ 2 since n is even), and
z is complete to its interior and has no neighbours in At, contrary to 2.2 applied in G. This proves (6).

(7) None of u1, . . . , un−1 is Xt-complete.

For suppose that one of u1, . . . , un−1 is Xt-complete, and let S be a path from xt+1 to some Xt-
complete vertex s say, with V (S \xt+1) ⊆ {u1, . . . , un−1}, such that s is the only Xt-complete vertex
in S. Certainly S has length ≥ 1. Suppose it has even length. Then the path z-xt+1-S-s is odd, and
its ends are Xt-complete, and its internal vertices are not; so by 2.2, the Xt-complete vertex y has
a neighbour in its interior, contrary to (6). So S has odd length. The path s-S-xt+1-R-r therefore
has even length; its only Xt-complete vertex is s, and its only Y -complete vertex is r, so by 13.7, the
path has length 2, that is, both R,S have length 1. Moreover, either xt+1, r are joined by an odd
antipath with interior in Xt, or xt+1, s are joined by an odd antipath with interior in Y . The first
is impossible since the antipath could be completed to an odd antihole via r-y-xt+1, so the second
holds. In particular, every Y -complete vertex is adjacent to one of xt+1, s, and therefore all such
vertices in At are adjacent to xt+1. In particular, xt+1 is adjacent to all the Y -complete vertices in
C except possible x0, x1. Since there is a Y -complete edge in C \ {x0, z, x1} from the definition of a
tail, it follows that xt+1 has two adjacent neighbours in C of opposite wheel-parity, and at least one
other neighbour in C; but it is not a kite, and the wheel is optimal, contrary to 16.1. This proves
(7).

By (3) we may choose i with 1 ≤ i ≤ n−1 minimum such that xt+1 is adjacent to ui. By (7), the
only Xt-complete vertices in the hole z-y-u1- · · · -ui-xt+1-z are z,y, and therefore by (6) this hole has
length ≥ 6. By 2.10 Xt contains a leap or a hat. If it contains a leap, there are nonadjacent vertices in
Xt, joined by an odd path of length ≥ 5 with interior in {u1, . . . , ui, xt+1}, and consequently with no
internal vertex Y -complete. Since both its ends are Y -complete, this contradicts 13.6. So there is a
hat, that is, there exists x ∈ Xt with no neighbours in {u1, . . . , ui, xt+1}. Then At∪{u1, . . . , un, xt+1}
(= F say) catches the triangle {z, y, x}; the only neighbour of z in F is xt+1; the only neighbour of
y in F is u1; and both xt+1, u1 are nonadjacent to x. Moreover xt+1 is nonadjacent to u1, and so F
contains no reflection of the triangle. This contradicts 17.1, and therefore proves 22.4.
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We combine the previous result with 19.1 to prove the following.

22.5 Let G ∈ F8, not admitting a balanced skew partition, and let (C, Y ) be an optimal wheel in G.
Then no vertex of C has a tail.

Proof. Suppose z ∈ V (C) has a tail T ; let y be the neighbour of z in T , and let x0, x1 be the
neighbours of z in C. Let A0 = V (C)\{z, x0, x1}, so x0, x1 is a wheel system with respect to (z,A0),
and x0, x1 are Y ∪ {y}-complete. By 22.1 there exist x2, . . . , xt+1 with t ≥ 1 such that x0, . . . , xt+1

is a wheel system with respect to (z,A0), with hub Y ∪ {y}. Define Ai, Xi as usual. From the
construction, all members of Y have a neighbour in A0. By 19.1, there exists r with 1 ≤ r ≤ t, such
that x0, . . . , xr, xt+1 is a wheel system and y has no neighbour in Ar ∪ {xt+1}. But Y ∪ {y} is a
hub for this wheel system, and T is a tail for z. By 22.3, there is no kite for (C, Y ); and so by 22.4
applied to this wheel system, y has a neighbour in Ar ∪ {xt+1}, a contradiction. This proves 22.5.

23 The end of wheels

In this section we complete the proof that there is no wheel in a recalcitrant graph. We need the
following:

23.1 Let G ∈ F8, not admitting a balanced skew partition, and let (C, Y ) be an optimal wheel in G.
Then there is a subpath c1-c2-c3 of C such that c1, c2, c3 are all Y -complete, and a path c1-p1- · · · -pk-c3

such that none of p1, . . . , pk are in V (C) ∪ Y , none of them is Y -complete, and none of them has a
neighbour in V (C) \ {c1, c2, c3}.

Proof. There are two nonadjacent Y -complete vertices in C with opposite wheel-parity, say a, b,
and by 15.2, there is a path P in G joining them such that none of its interior vertices is in Y or is
Y -complete. There may be internal vertices of P that belong to C, but we may choose a subpath P ′

of P , with ends a′, b′ say, such that a′, b′ ∈ V (C) have opposite wheel-parity and P ′ has minimum
length. It follows that no vertex of the interior of P ′ is in C. Suppose a′, b′ are adjacent; then since
they are in C and have opposite wheel-parity, they are both Y -complete, and therefore neither is
in the interior of P , and so a, b are adjacent, a contradiction. So a′, b′ are nonadjacent. Let F be
the interior of P ′; then no vertex of F is in Y ∪ V (C), no vertex of F is Y -complete, and there are
attachments of F in C which are nonadjacent and have opposite wheel-parity. The result follows
from 22.3 and 16.2 applied to F . This proves 23.1.

Now we can prove 1.8.9, which we restate.

23.2 Let G ∈ F8, not admitting a balanced skew partition; then there is no wheel in G. In particular,
every recalcitrant graph belongs to F9.

Proof. Suppose there is a wheel in G, and choose an optimal wheel (C, Y ) such that C contains as
few Y -complete edges as possible.

(1) Exactly 4 edges of C are Y -complete.
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For by 23.1 there is a subpath c1-c2-c3 of C such that c1, c2, c3 are all Y -complete, and a path
c1-p1- · · · -pk-c3 such that none of p1, . . . , pk are in V (C) ∪ Y , none of them is Y -complete, and none
of them has a neighbour in V (C) \ {c1, c2, c3}. Let C ′ be the hole formed by the union of the paths
C \c2, c1-p1- · · · -pk-c3. Then it has length ≥ 6, and it contains fewer Y -complete edges than C. From
the choice of (C, Y ) it follows that (C ′, Y ) is not a wheel, and since C has at least 4 Y -complete
edges, and C ′ has only two fewer, it follows that exactly 4 edges of C are Y -complete. This proves
(1).

Since (C, Y ) is not an odd wheel, there are vertices x0, z, x1, c1, c2, c3 of C, in order, and all dis-
tinct except possibly x1 = c1 or c3 = x0, such that the Y -complete edges in C are x0z, zx1, c1c2, c2c3.
Let A0 = V (C)\{z, x0, x1}. Since G does not admit a skew partition, there is a path T of G\{x0, x1}
from z to A0, such that no vertex in its interior is in Y or Y -complete. Let y be the neighbour of z in T .

(2) y is not adjacent to both x0, x1.

For assume it is. By 22.3 there is no kite for (C, Y ), and with respect to the wheel (C, Y ), T is
a tail for z (because at least one of the Y -complete edges c1c2, c2c3 belongs to C \ {x0, z, x1}). This
contradicts 22.5, and therefore proves (2).

(3) y has no neighbour in A0.

For suppose first that it has a neighbour in A0 \ {c2}, say c. Then c, z are nonadjacent and have
opposite wheel-parity in the wheel (C, Y ); it is not the case that c and both its neighbours in C are
Y -complete, by (1) and the fact that c ∈ A0; not both neighbours of z in C are adjacent to y, by
(2); so 16.1 implies that (C, Y ∪{y}) is a wheel, a contradiction. So y has no neighbour in A0 \ {c2}.
Next suppose that y is adjacent to c2. From the symmetry we may assume that x0 6= c3. Let Q be
the path of C \ z between x0, c3; so Q has length > 0, and even length by 2.3. Since x0-Q-c3-c2-y-x0

is not an odd hole, it follows that y is not adjacent to x0. But then the hole x0-Q-c3-c2-y-z-x0 is the
rim of an odd wheel with hub Y , contrary to G ∈ F8. So y is not adjacent to c2. This proves (3).

Let T have vertices z-y-v1- · · · -vn+1, where vn+1 ∈ A0. From (3), n ≥ 1. By choosing T of
minimum length we may assume that none of y, v1, . . . , vn−1 have neighbours in A0.

(4) If n = 1 then no neighbour of v1 in A0 is Y -complete.

For otherwise we may assume v2 is Y -complete. From the symmetry we may assume that x0 6= c3.
Let Q be the path of C \ z between x0, c3; so Q has length > 0, and even length by 2.3. Since
y, v1 are not Y -complete, there is an antipath joining them with interior in Y , and it is odd since it
can be completed to an antihole via v1-z-v2-y. Hence every Y -complete vertex is adjacent to one of
y, v1, and since c2, c3 are Y -complete and not adjacent to y by (3), it follows that v1 is adjacent to
c2, c3. By (2), v1 is adjacent to one of x0, x1, and so it has two nonadjacent neighbours in C, and
two neighbours in C of opposite wheel-parity. By 16.1, there are three consecutive vertices in C, all
Y -complete and adjacent to v1. By 22.3, v1 has no other neighbours in C. Hence x1 = c1 and the
neighbours of v1 in C are c1, c2, c3. Consequently x0 is adjacent to y; but then x0-Q-c3-v1-y-x0 is an
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odd hole, a contradiction. This proves (4).

(5) One of x0, x1 has no neighbours in {y, v1, . . . , vn}.

For let P be a path y-p1- · · · -pk from y to some Y -complete vertex pk ∈ A0, with interior in
A0 ∪ {v1, . . . , vn}, such that pk is the only Y -complete vertex in P . Since none of y, v1, . . . , vn−1

have neighbours in A0 it follows that {y, v1, . . . , vn} ⊆ {y, p1, . . . , pk−1}. From (4), k ≥ 3. Since
G ∈ F8, (Y, {x0, x1}, z-y-p1- · · · -pk) is not a pseudowheel. But the ends of the path z-y-p1- · · · -pk

are Y -complete and its internal vertices are not; the path has length ≥ 4 (and therefore has even
length by 13.6); Y, z are {x0, x1}-complete, and y, pk are not. So no other vertices of the path are
{x0, x1}-complete. By 2.11, applied to the same path and the same anticonnected sets, it follows
that one of x0, x1 is nonadjacent to all of y, p1, . . . , pk−1. Since {y, v1, . . . , vn} ⊆ {y, p1, . . . , pk−1},
this proves (5).

Let F = {y, v1, . . . , vn}. From the symmetry we may assume that x0 has no neighbours in F .
Let S be a path from y to x0 with interior in F ∪ A0. It follows that S has length ≥ 3. Let C ′ be
the hole z-y-S-x0-z; so C ′ has length ≥ 6. Suppose that x0 is different from c3. Since (C ′, Y ) is not
an odd wheel, it follows that (C ′, Y ) is not a wheel, and so x0, z are the only Y -complete vertices
in C ′. By 2.10, Y contains a leap or a hat. A leap would imply there are two vertices in Y , joined
by an odd path of length ≥ 5 with interior in F ∪ A0. Hence its ends are {x0, x1}-complete, and its
internal vertices are not, contrary to 13.6. So Y contains a hat, that is, there exists y ′ ∈ Y with no
neighbour in C ′ except z, x0. But F ∪A0 catches the triangle {x0, y

′, z}; the only neighbour of x0 in
F ∪A0 is its neighbour in S, say s; the only neighbour of z in F ∪A0 is y; and s, y are nonadjacent,
and both nonadjacent to y′, contrary to 17.1. This proves that x0 = c3, and therefore x1 6= c1. By
exchanging x0, x1, we deduce that x1 has a neighbour in F . There are therefore two attachments
of F in C with opposite wheel-parity, and two that are nonadjacent. By (1), 16.2, 22.3 and the
optimality of the wheel, and since x0 = c3 has no neighbour in F , it follows that there is a path R
between z, c2 with interior in F , and no vertex of C has neighbours in the interior of R except z, c2.
But then the hole formed by the union of R and the path C \x0 is the rim of an odd wheel with hub
Y , a contradiction. This proves 23.2.

23.3 Let G ∈ F9, admitting no balanced skew partition, let (z,A0) be a frame and x0, . . . , xs a wheel
system with respect to it, and define Xi, Ai as usual. Then there is no vertex y ∈ V (G)\{z, x0 , . . . , xs}
that is {z, x0, . . . , xs}-complete and has a neighbour in As.

Proof. Suppose there is such a frame, wheel system, and y, and choose them with s minimum
(it is important here that we minimize over all choices of the frame, not just of the wheel system);
say (z,A0), x0, . . . , xs and y respectively. By 22.2, there exists r with 1 ≤ r < s, and a vertex v
such that y has no neighbour in Ar ∪ {v}, and v is adjacent to z, and has a neighbour in Ar, and a
non-neighbour in Xr. Then (y,A0) is a frame, and x0, . . . , xr is a wheel system with respect to it,
and z is {y, x0, . . . , xr}-complete, and has a neighbour in A′

r (namely v), where A′

r is the maximal
connected subset of V (G) including A0 and containing no neighbour of y and no Xr-complete vertex.
But this contradicts the minimality of s. This proves 23.3.

Now we can prove 1.8.10, the following.
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23.4 Let G ∈ F9, admitting no balanced skew partition, and let C be a hole in G of length ≥ 6.
Then there is no vertex of G \ V (C) with three consecutive neighbours in C. In particular, every
recalcitrant graph belongs to F10.

Proof. Suppose that there is such a vertex, say y, and let it be adjacent to x0, z, x1 ∈ V (C), where
x0-z-x1 is a path. Let A0 = V (C) \ {z, x0, x1}. By 23.3 applied to (z,A0) and x0, x1, it follows that
y has no other neighbour in C. Choose t maximum such that there is a sequence x2, . . . , xt with the
following properties:

• for 2 ≤ i ≤ t, there is a connected subset Ai−1 of V (G) including Ai−2, containing a neighbour
of xi, containing no neighbour of z or y, and containing no {x0, . . . , xi−1}-complete vertex,

• for 1 ≤ i ≤ t, xi is not {x0, . . . , xi−1}-complete, and

• x0, . . . , xt are {y, z}-complete.

Since G admits no skew partition by 15.1, there is a path P from {z, y} to A0, disjoint from
{x0, . . . , xt} and containing no {x0, . . . , xt}-complete vertex in its interior. Choose such a path
of minimum length. From the symmetry between z, y we may assume its first vertex is y; say the
path is y-p1- · · · -pk+1, where pk+1 ∈ A0. From the minimality of the length of P it follows that
z is not adjacent to any of p2, . . . , pk. If z is adjacent to p1 then we may set xt+1 = p1, contrary
to the maximality of t. So p1, . . . , pk+1 are all nonadjacent to z. Hence (z,A0) is a frame, and
x0, . . . , xt is a wheel system with respect to it, and y is adjacent to all of z, x0, . . . , xt, and there is a
connected subset of V (G) including A0, containing a neighbour of y, containing no neighbour of z,
and containing no {x0, . . . , xt}-complete vertex. But this contradicts 23.3. This proves 23.4.

This has the following useful corollary, which is 1.8.11.

23.5 Let G ∈ F10; then G does not contain both a hole of length ≥ 6 and an antihole of length ≥ 6.
In particular, for every recalcitrant graph G, one of G,G belongs to F11.

Proof. Let C be a hole and D an antihole, both of length ≥ 6. Let W = V (C)∩V (D), A = V (C)\W ,
and B = V (D) \ W . Let W,A,B have cardinality w, a, b respectively. Let there be p edges between
A and W , q edges between B and W , r edges between A and B, and s edges with both ends in W .
Let there be p′ nonedges between A and W , q′ nonedges between B and W , r′ nonedges between
A and B, and s′ nonedges with both ends in W . By 2.3, and since G ∈ F10, every vertex in B has
at most 1

2
(a + w) neighbours in C, so q + r ≤ 1

2
(a + w)b. Also, every vertex in W has at most two

neighbours in A ∪ W , so p + 2s ≤ 2w. Summing, we obtain

p + q + r + 2s ≤
1

2
ab +

1

2
bw + 2w.

By the same argument in the complement we deduce that

p′ + q′ + r′ + 2s′ ≤
1

2
ab +

1

2
aw + 2w.

But
p + p′ + q + q′ + r + r′ + 2s + 2s′ = ab + aw + bw + w(w − 1),
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so

4w ≥
1

2
aw +

1

2
bw + w(w − 1),

that is,
w(a + b + 2w − 10) ≤ 0.

Since a + w, b + w ≥ 6, it follows that w = 0, and so C,D are disjoint. Moreover, equality holds
throughout this calculation, so every vertex in D is adjacent to exactly half the vertices of C and
vice versa. By 2.3, and since G ∈ F10, it follows that for each v ∈ D, its neighbours in C are pairwise
nonadjacent. Let C have vertices c1, . . . , cm in order, and let D have vertices d1, . . . , dn. So for every
vertex of D, its set of neighbours in V (C) is either the set of all ci with i even, or the set with i
odd, and the same with C,D exchanged. We may assume that c1 is adjacent to d1. Hence the edges
between {c1, c2, c4, c5} and {d1, d2, d4, d5} are c1d1, c1d5, c2d2, c2d4, c4d2, c4d4, c5d1, c5d5; and so the
subgraph induced on these eight vertices is a double diamond, contrary to G ∈ F10. This proves
23.5.

Let us mention a theorem of [12], which could be applied at this stage as an alternative to the
next section, the following (and see also [8] for some related material):

23.6 Let G ∈ F5. Suppose that for every hole C in G of length ≥ 6, and every vertex v ∈ V (G) \
V (C), either:

• v has ≤ 3 neighbours in C, or

• v has exactly 4 neighbours in C, say a, b, c, d, where ab and cd are edges, or

• v is V (C)-complete, or

• no two neighbours of v in C are adjacent.

Suppose also that the same holds in G. Then either one of G,G is bipartite or a line graph of a
bipartite graph, or G admits a loose skew partition.

The method we give below is somewhat shorter than the proof of 23.6 in [12], however.

24 The end

We recall that we are trying to prove 13.5. In view of 23.5, it suffices to show the following, which
is 1.8.12, and the objective of the remainder of the paper:

24.1 Let G ∈ F11; then either G is complete, or G is bipartite, or G admits a balanced skew
partition.

We begin with a further strengthening of 13.6, as follows.

24.2 Let G ∈ F11, and let P be a path in G with odd length. Let X ⊆ V (G) be anticonnected, such
that both ends of P are X-complete. Then some edge of P is X-complete.

Proof. Suppose not; then from 13.6, P has length 3 (let its vertices be p1, p2, p3, p4 in order) and
p2, p3 are joined by an antipath Q with interior in X. But then p2-Q-p3-p1-p4-p2 is an antihole of
length > 4, a contradiction. This proves 24.2.
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24.3 Let G ∈ F11. Let X ⊆ V (G) be nonempty and anticonnected, and let p1- · · · -pn be a path
of G \ X with n ≥ 4, such that p1, pn are X-complete and p2, . . . , pn−1 are not. There is no vertex
y ∈ V (G) \ (X ∪ {p1, . . . , pn}) such that y is X-complete and adjacent to p1, p2.

Proof. Suppose such a vertex y exists. By 24.2, n is odd, and therefore n ≥ 5. Let Q be an antipath
joining p2, p3 with interior in X. Since Q can be completed to an antihole via p3-pn-p2, it follows
that Q has length 2, and so there exists x ∈ X nonadjacent to p2, p3. Since x is adjacent to pn, we
may choose i with 2 ≤ i ≤ n minimum such that x is adjacent to pi. Hence x-p1- · · · -pi-x is a hole of
length ≥ 6, and y has three consecutive neighbours in it, contrary to G ∈ F11. This proves 24.3.

The next is a strengthening of 17.1.

24.4 Let G ∈ F11. Let X1, X2, X3 be disjoint nonempty anticonnected sets, complete to each other.
Let F ⊆ V (G) \ (X1 ∪X2 ∪X3) be connected, such that for i = 1, 2, 3 there is an Xi-complete vertex
in F . Then there is a vertex in F complete to two of X1, X2, X3.

Proof. Suppose not; then we may assume F is minimal with this property.

(1) If p1, . . . , pn is a path in F , and p1 is its unique X1-complete vertex and pn is its unique X2-
complete vertex then n is even.

For n > 1, since no vertex is both X1-complete and X2-complete. Assume n is odd; then by 13.7,
n = 3. But there is an antipath Q1 between p2, p3 with interior in X1, and an antipath Q2 between
p1, p2 with interior in X2; and then p2-Q1-p3-p1-Q2-p2 is an antihole of length > 4, a contradiction.
This proves (1).

From the minimality of F , there are (up to symmetry) three cases:

1. For i = 1, 2, 3 there is a unique Xi-complete vertex vi ∈ F ; there is a vertex u ∈ F different
from v1, v2, v3, and three paths P1, P2, P3 in F , all of length ≥ 1, such that each Pi is from vi

to u, and for 1 ≤ i < j ≤ 3, V (Pi \ u) is disjoint from V (Pj \ u) and there is no edge between
them.

2. For i = 1, 2, 3 there is a unique Xi-complete vertex vi ∈ F ; there are three paths P1, P2, P3 in
F , where each Pi is from vi to some ui say, possibly of length 0; and for 1 ≤ i < j ≤ 3, V (Pi)
is disjoint from V (Pj) and the only edge between V (Pi), V (Pj) is uiuj .

3. For i = 1, 2 there is a unique Xi-complete vertex vi ∈ F , and there is a path P in F between
v1, v2 containing at least one X3-complete vertex.

Suppose that the first holds, and let P1, P2, P3 be as in the first case. Then some two of P1, P2, P3

have lengths of the same parity, and their union violates (1).
Now suppose the second holds, and for i = 1, 2, 3 let ui, vi, Pi be as in the second case. Let Q1

be an antipath joining u2, u3 with interior in X1, and define Q2, Q3 similarly. If P1, P2, P3 all have
length 0, then the union of Q1, Q2, Q3 is an antihole of length > 4, a contradiction. So we may
assume that P1 has length > 0, and hence u1 6= v1. Since v1-u2-Q1-u3-v1 is an antihole, Q1 has
length 1. Since u1, u3 are not X1-complete, they are joined by an antipath with interior in X1, and
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its union with Q2 is an antihole; so Q2 has length 2, and similarly so does Q3. For i = 1, 2, 3 let xi

be the middle vertex of Qi. So

V (P1 \ u1) ∪ V (P2 \ u2) ∪ V (P3 \ u3) ∪ {x1, x2, x3}

is connected, and catches the triangle {u1, u2, u3}; and none of its vertices have two neighbours in
the triangle, and it contains no reflection of the triangle since there is no antihole of length 6. This
is contrary to 17.1.

Now suppose the third holds, and let v1, v2, P be as in the third case. Let P have vertices
p1, . . . , pn where v1 = p1 and v2 = pn. Since one of its vertices is X3-complete and p1, pn are not,
it follows that n ≥ 3; and by (1), n is odd, so n ≥ 4. Choose i minimum and j maximum with
1 ≤ i, j ≤ n such that pi, pj are X3-complete. So i > 1, and i is even by (1), and similarly j < n
and j is odd. So the path pi- · · · -pj has odd length, and so by 24.2 one of its edges is X3-complete,
say pkpk+1 where 2 ≤ k ≤ n − 2. Now pk, pk+1 are joined by an antipath with interior in X1, and
by another with interior in X2, and the union of these is an antihole; so they both have length
2. Hence for i = 1, 2 there exist xi ∈ Xi nonadjacent to both pk, pk+1. Let R be a path between
pk+2, pk−1 with interior in (V (P ) \ {pk, pk+1}) ∪ {x1, x2}. Then R can be completed to a hole C
via pk−1-pk-pk+1-pk+2, and C has length ≥ 6, and at least one edge of C is X3-complete, namely
pkpk+1, and at least one more vertex of it is X3-complete, since R uses at least one of x1, x2. But
this contradicts 2.3, and the hypothesis that G ∈ F11.

This proves 24.4.

24.5 Let G ∈ F11, admitting no balanced skew partition. Let X,Y be disjoint anticonnected subsets
of V (G), complete to each other, and let p1- · · · -pn be a path of G \ (X ∪ Y ), with n ≥ 2, such that
p1 is the unique X-complete vertex in the path, and pn is the unique Y -complete vertex. Then there
is no z ∈ V (G) \ (X ∪ Y ∪ {p1, . . . , pn}), complete to X ∪ Y and nonadjacent to p1, pn.

Proof. Suppose that z exists, and choose X maximal. By 15.2, there is a path Q in G from z to p1,
such that none of its internal vertices is in X or is X-complete. Since no vertex of {p2, . . . , pn} is X-
complete, we may choose Q such that if z has a neighbour in {p2, . . . , pn} then V (Q) ⊆ {z, p1, . . . , pn}.
The connected subset V (Q\z)∪{p1, . . . , pn} (= F say) contains an X-complete vertex, a Y -complete
vertex, and a {z}-complete vertex. The only X-complete vertex in F is p1, and that is not Y -complete
or {z}-complete; so by 24.4 some vertex in F is Y -complete and adjacent to z. If z has a neighbour
in {p1, . . . , pn}, then V (Q) ⊆ {z, p1, . . . , pn}, and so pn is the only vertex of F that is Y -complete;
and it is not adjacent to z, a contradiction. So z has no neighbour in {p1, . . . , pn}, and therefore only
one vertex in F is adjacent to z, the neighbour of z in Q, say q. Hence q is nonadjacent to p1, for
otherwise we could add q to X, contrary to the maximality of X. Consequently Q has length > 2.
This contradicts 24.3 applied to Q,X and any vertex y ∈ Y . This proves 24.5.

We deduce

24.6 Let G ∈ F11, admitting no balanced skew partition, and let C be a hole. If z ∈ V (G) \ V (C)
has two neighbours in C that are adjacent, then C has length 4 and z has a third neighbour in C. In
particular, G has no antipath of length 4.

Proof. Let C be the hole with vertices p1, . . . , pn+2 in order, and assume some z ∈ V (G) \ V (C) is
adjacent to pn+1, pn+2. By 24.5, taking X = {pn+1} and Y = {pn+2} we deduce that z is adjacent
to at least one of p1, pn. Since G ∈ F11 it follows that C has length 4. This proves 24.6.
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24.7 Let G ∈ F11, admitting no balanced skew partition. Let X1, X2, X3 be pairwise disjoint,
nonempty, anticonnected subsets of V (G), complete to each other. Let F ⊆ V (G) \ (X1 ∪ X2 ∪ X3)
be connected, such that for at least two values of i ∈ {1, 2, 3}, every member of Xi has a neighbour
in F . Then some vertex of F is complete to two of X1, X2, X3.

Proof. Assume not, and choose a counterexample with X1 ∪ X2 ∪ X3 ∪ F minimal. Suppose F
contains an Xi-complete vertex for two values of i ∈ {1, 2, 3}, say i = 1, 2; and choose a path
p1- · · · -pn of F such that p1 is X1-complete and pn is X2-complete, with n minimum. So n ≥ 2.
From the minimality of F , F = V (P ), and there is a vertex x1 ∈ X1 such that p1 is its only neighbour
in F , and there exists x2 ∈ X2 such that pn is its only neighbour in F . By 24.6 applied to the hole
x2-x1-p1- · · · -pn-x2 and any x3 ∈ X3, it follows that n = 2. Let Q be an antipath between p1, p2 with
interior in X3; since p1 has a nonneighbour x2 ∈ X2, and p2 has a nonneighbour x1 ∈ X1, it follows
that x1-p2-Q-p1-x2 is an antipath of length ≥ 5, contrary to 24.5.

So there is at most one i such that F contains Xi-complete vertices, and from the symmetry
we may assume that F contains no X1- or X2-complete vertices. We may also assume that all
members of X1 have neighbours in F , and therefore |X1| ≥ 2; choose distinct x1, x

′

1 ∈ X1 such that
X1 \ {x1}, X1 \ {x′

1} are both anticonnected. From the minimality of X1, there is a vertex f of F
complete to two of X1 \ {x1}, X2, X3, and therefore complete to X1 \ {x1} and X3, and similarly a
vertex f ′ of F complete to X1 \ {x

′

1} and X3. Let P be a path in F between f, f ′. Since all vertices
of X1 ∪ X3 have neighbours in V (P ), the minimality of F implies that F = V (P ); and moreover,
since all vertices of (X1 \ {x1}) ∪ X3 are adjacent to f , the minimality of F implies that f ′ is the
unique neighbour of x1 in F . Similarly f is the unique neighbour of x′

1 in F . Let Q be an antipath
in X1 joining x1, x

′

1. Since f has a nonneighbour x ∈ X2, x-f -x1-Q-x′

1 is an antipath, and so Q has
length 1, and hence x1, x

′

1 are nonadjacent. From the minimality of F , there exists x2 ∈ X2 with no
neighbour in F \ {f}. If x2 is also nonadjacent to f , then x2-x1-f

′-P -f -x′

1-x2 is a hole of length ≥ 6,
and any member of X3 has three consecutive neighbours on it, contrary to G ∈ F11. But then x1 has
two consecutive neighbours on the hole x′

1-f -P -f ′-x1-x2-x
′

1, and this hole has length > 4, contrary
to 24.6. This proves 24.7.

Now we can complete the proof of 24.1, and hence of 13.5 and therefore of 1.3 and 1.2, as follows.
Proof of 24.1. Let G ∈ F11, admitting no balanced skew partition. We may assume that G is not
bipartite, and therefore has a triangle. Consequently we may choose disjoint nonempty anticonnected
sets X1, . . . , Xk, complete to each other, with k ≥ 3, with maximal union. Suppose first that
X1∪· · ·∪Xk 6= V (G), and let F = V (G)\(X1∪· · ·∪Xk). By 15.2 (applied to Xk and X1∪· · ·∪Xk−1),
F is connected and every vertex of X1 ∪ X2 has a neighbour in it. By 24.7, some vertex v ∈ F is
complete to two of X1, X2, X3. We may assume that for some i with 2 ≤ i ≤ k, v is Xj-complete for
1 ≤ j ≤ i and not Xj-complete for i < j ≤ k. Define

X ′

i+1 = Xi+1 ∪ · · · ∪ Xk ∪ {v};

then the sets X1, . . . , Xi, X
′

i+1 violate the optimality of the choice of X1, . . . , Xk.
Hence X1∪· · ·∪Xk = V (G), and therefore G has at least three components. From 15.2 it follows

that G is complete. This proves 24.1.

146



25 Acknowledgements

We worked on pieces of this with several other people, and we would particularly like to thank Jim
Geelen, Bruce Reed, Chunwei Song and Carsten Thomassen for their help.

We would also like to acknowledge our debt to Michele Conforti, Gérard Cornuéjols and Kristina
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