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ABSTRACT

Thomassen conjectured that every triangle-free planar graph on n vertices has exponentially
many 3-colorings, and proved that it has at least 2n1/12/20000 distinct 3-colorings. We show

that it has at least 2
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n/362 distinct 3-colorings.
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1 Introduction

All graphs in this paper are finite, and have no loops or multiple edges. Our terminology is

standard, and may be found in [2] or [3]. In particular, cycles and paths have no repeated

vertices. The following is a well-known theorem of Grötzsch [7].

Theorem 1.1 Every triangle-free planar graph is 3-colorable.

Theorem 1.1 has been the subject of extensive research. Thomassen [11] gave several

short proofs [11, 12, 13] of Grötzsch’s theorem and extended it to projective planar and

toroidal graphs. The theorem does not extend verbatim to any non-planar surface, but

Thomassen proved that every graph of girth at least five embedded in the projective plane

or the torus is 3-colorable. Gimbel and Thomassen [6] found an elegant characterization of

3-colorability for triangle-free projective planar graphs. There does not seem to be a corre-

sponding counterpart for other surfaces, but Král’ and Thomas [9] found a characterization

of 3-colorability for toroidal and Klein bottle graphs that are embedded with all faces even.

It was an open question for a while whether a 3-coloring of a triangle-free planar graph can

be found in linear time. First Kowalik [8] designed an almost linear time algorithm, and

then a linear-time algorithm was found by Dvořák, Kawarabayashi and Thomas in [4]. For

a general surface Σ, Dvořák, Král’ and Thomas [5] found a linear-time algorithm to decide

whether a triangle-free graph in Σ is 3-colorable.

In this paper we study how many 3-colorings a triangle-free planar graph must have.

Thomassen conjectured in [15] that exponentially many:

Conjecture 1.2 There exists an absolute constant c > 0, such that if G is a triangle-free

planar graph on n vertices, then G has at least 2cn distinct 3-colorings.

Thomassen gave a short proof of this conjecture under the additional hypothesis that G has

girth at least five. We use that argument in Lemma 2.3 below; Thomassen’s original proof

may be recovered by taking F to be the set of all facial cycles. Thomassen [15] then extended

this result by showing that every planar graph of girth at least five has exponentially many

list-colorings for every list assignment that gives each vertex a list of size at least three. For

triangle-free graphs Thomassen [15] proved a weaker version of Conjecture 1.2, namely that

every triangle-free planar graph on n vertices has at least 2n1/12/20000 distinct 3-colorings.

Our main result is the following improvement.

Theorem 1.3 Every triangle-free planar graph on n vertices has at least 2
√

n/362 distinct

3-colorings.

In closely related work Thomassen [14] proved that every (not necessarily triangle-free)

planar graph has exponentially many list colorings provided every vertex has at least five

available colors.
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Our paper is organized as follows. In the next section we investigate non-crossing families

of 5-cycles, and reduce Theorem 1.3 to Lemma 2.4, which states that if a triangle-free planar

graph has k nested 5-cycles, then it has at least 2k/12 3-colorings. The rest of the paper

is devoted to a proof of Lemma 2.4, which we complete in Section 4. In Section 3 we

prove an auxiliary result stating that some entries in the product of certain matrices grow

exponentially in the number of matrices.

We end this section by stating two useful theorems of Thomassen [11].

Theorem 1.4 Let G be a plane graph of girth at least five and C = v1v2 . . . vk be an induced

facial cycle of G of length k ≤ 9. Then a 3-coloring Φ of C extends to a 3-coloring of G,

unless k = 9 and there exists a vertex v ∈ V (G) − V (C) such that v is adjacent to three

vertices of C that received three different colors under Φ.

Theorem 1.5 Let G be a triangle-free plane graph with facial cycle C of length at most five.

Then every 3-coloring of C extends to a 3-coloring of G.

We would like to acknowledge that an extended abstract of this paper appeared in [1].

2 Laminar Families of 5-Cycles

First we define some terminology. Let A and B be two subsets of R
2. We say that A and B

cross if A ∩ B, A ∩ Bc, Ac ∩ B, Ac ∩ Bc are all non-null. Then we say that a family F of

subsets of R
2 is laminar if for every two sets A, B ∈ F , A and B do not cross. Now let G be

a plane graph and C be a cycle in G. Then we let Int(C) denote the bounded component of

R
2 −C and Ext(C) denote the unbounded component of R

2 −C. Now we say that a family

F of cycles of G is laminar if the corresponding family of sets
⋃

C∈F Int(C) is laminar. We

call a family F of cycles an antichain if Int(C1)∩ Int(C2) = ∅ for every distinct C1, C2 ∈ F ,

and we call it a chain if for every two cycles C1, C2 ∈ F , either Int(C1) ⊆ Int(C2) or

Int(C2) ⊆ Int(C1).

Let G be a triangle-free plane graph, and let v ∈ V (G). We define Gv to be the graph

obtained from G by deleting v, identifying all the neighbors of v to one vertex, and deleting

resulting parallel edges. We also let Dk(G) denote the set of vertices of G with degree at

most k.

Lemma 2.1 If G is a triangle-free plane graph and k ≥ 0 is an integer, then either

(i) there exists v ∈ Dk(G) such that Gv is triangle-free or,

(ii) there exists a laminar family F of 5-cycles such that every v ∈ Dk(G) belongs to some

member of F .
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Proof. We proceed by induction on the number of vertices of G. Suppose condition (i)

does not hold. Notice that if v ∈ V (G) and Gv is not triangle-free, this implies, since G is

triangle-free, that v is in a 5-cycle in G. Hence if condition (i) does not hold, every v ∈ Dk(G)

must be in a 5-cycle in G.

Now suppose there does not exist a separating 5-cycle in G. Then we let F be the set

of all 5-cycles in G. The second condition then holds since the absence of separating cycles

implies that F is laminar.

Thus we may assume that there exists a 5-cycle C that separates G into two triangle-free

plane graphs G1 and G2, where both G1 and G2 include C. By induction, the lemma holds

for G1 and G2. Suppose that both G1 and G2 satisfy condition (ii) with laminar families

F1 and F2, respectively. Then let F = F1 ∪ F2. Note that F is laminar. Now G satisfies

condition (ii) since every v ∈ Dk(G) is contained in either Dk(G1) or Dk(G2). Thus we

may assume without loss of generality that G1 satisfies condition (i). That is, there exists

v ∈ Dk(G1) such that (G1)v is triangle-free. This implies that v is not in a 5-cycle in G1. In

particular, v 6∈ V (C), and hence v ∈ Dk(G). Yet since Gv is not triangle-free by assumption,

v must be in a 5-cycle in G, say C ′. It follows that C ′ intersects C. Since G is triangle-free,

C and C ′ intersect in exactly two vertices u1 and u2. Now the path from u1 to u2 along C ′

that includes v must have t edges, where t ∈ {2, 3}. But then there is another path from u1

to u2 along C with 5 − t edges. Hence v is in a 5-cycle in G1, a contradiction. �

Lemma 2.2 If G is a triangle-free plane graph on n vertices, then either

(i) there exists v ∈ Dk(G) such that Gv is triangle-free, or

(ii) G has an antichain F of 5-cycles such that |F| ≥
√

(k−3)n
10(k−1)

, or

(iii) G has a chain F of 5-cycles such that |F| ≥
√

2(k−3)n
5(k−1)

.

Proof. Since G is triangle-free and planar, it satisfies 2|V (G)| ≥ |E(G)|. We may assume

that (i) does not hold and hence every vertex of G has degree at least two. It follows that

4|V (G)| ≥ 2|E(G)| =
∑

v∈V (G)

deg(v) ≥ (k + 1) (|V (G)| − |Dk(G)|) + 2|Dk(G)|,

and hence |Dk(G)| ≥ k−3
k−1

|V (G)|. Since (i) does not hold, we deduce from Lemma 2.1 that

there exists a laminar family of 5-cycles G of size at least |Dk(G)|/5 ≥ k−3
5(k−1)

n. By Dilworth’s

theorem applied to the partial order on G defined by Int(C1) ⊆ Int(C2) we deduce that G
has either an antichain of size at least

√

|G|/2, in which case condition (ii) holds, or a chain

of size at least
√

2|G|, in which case condition (iii) holds. �
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Lemma 2.3 Let G be a triangle-free plane graph. If G has an antichain F of 5-cycles, then

G has at least 2|F|/6 distinct 3-colorings.

Proof. Let G′ be obtained from G by deleting the vertices in
⋃

C∈F Int(C). Now G′ has at

least |F| facial 5-cycles. By Euler’s formula |E(G′)| ≤ 2|V (G′)|−|F|/2. By Theorem 1.1 the

graph G′ has a 3-coloring Φ. For i, j ∈ {1, 2, 3} with i < j let Gij denote the subgraph of G

induced by the vertices colored i or j. Since
∑

i<j(|V (Gij|− |E(Gij|) = 2|V (G′)|− |E(G′)| ≥
|F|/2, there exist i, j ∈ {1, 2, 3} such that i < j and Gij has at least |F|/6 components.

But then there are at least 2|F|/6 distinct 3-colorings of G′ since switching the colors on any

subset of the components of Gij gives rise to a distinct coloring of G′. Furthermore, every

3-coloring of G′ extends to a 3-coloring of G by Theorem 1.5. �

Lemma 2.4 Let G be a triangle-free plane graph. If G has a chain F of 5-cycles, then G

has at least 24 · 2|F|/12 distinct 3-colorings.

We will prove Lemma 2.4 in Section 4, but now we deduce the main theorem from it.

Proof of Theorem 1.3, assuming Lemma 2.4. We proceed by induction on the number

of vertices. If n ≤ 362, then the conclusion clearly holds. We may therefore assume that

n ≥ 363 and that the theorem holds for all graphs on fewer than n vertices. If there

exists v ∈ D363(G) such that the graph Gv (defined prior to Lemma 2.1) is triangle-free,

then by induction Gv has at least 2
√

(n−deg(v))/362 distinct 3-colorings. Hence G has at least

2×2
√

(n−deg(v))/362 distinct 3-colorings, which is greater than 2
√

n/362 since deg(v) ≤ 363. So

we may assume by Lemma 2.2 applied to k = 363 that G has either an antichain of 5-cycles

of size at least
√

36n/362, in which case the theorem holds by Lemma 2.3; or a chain of

5-cycles of size at least
√

720n/1810, in which case the theorem holds by Lemma 2.4. �

3 Two matrix lemmas

Let the matrices A1, A2 be defined by

A1 =













1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













, A2 =













1 1 1 1 1
1 1 1 1 1
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0













.

By a cyclic permutation matrix we mean a permutation matrix such that the corresponding

permutation is cyclic. Let A and B be two 5 × 5 matrices. We say that A majorizes B if

every entry in A is greater than or equal to the corresponding entry of B. We say that A

dominates B if there exist cyclic permutation matrices P, Q such that A majorizes PBQ.
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Lemma 3.1 Let n ≥ 0 be an integer, and let M1, . . . , Mn be 5 × 5 matrices such that each

dominates the matrix A1. Then M1M2 . . .Mn dominates the matrix A
⌈n

5
⌉

1 .

Proof. We may assume that M1M2 . . .Mn = A1P1A1P2 . . . A1Pn, where P1, . . . , Pn are

cyclic permutation matrices. Let m = ⌈n
5
⌉. Since there are only five 5 × 5 cyclic per-

mutation matrices and the product of two cyclic permutation matrices is a cyclic permu-

tation matrix, we deduce that there exist integers 1 ≤ i1 < i2 · · · < im ≤ n such that

the matrices PijPij+1 . . . Pn are equal for all j = 1, . . . , m. It follows that for all j =

1, . . . , m−1 the matrix PijPij+1 . . . Pij+1−1 is the identity matrix, and hence the matrix Bj =

PijA1Pij+1A1 . . . A1Pij+1−1 majorizes the identity matrix. Let B0 = A1P1A1P2 . . . A1Pi1−1

and Bm = PimA1Pim+1 . . . A1Pn. Then M1M2 . . .Mn = B0A1B1A1B2 . . . A1Bm−1A1Bm.

Now, B0 majorizes some cyclic permutation, and so does Bm, and A1B1A1B2 . . . A1Bm−1A1

majorizes Am
1 , as desired. �

We denote the vector of all ones by 1.

Lemma 3.2 Let n ≥ 2 be an integer, and let M1, M2, . . . , Mn−1 be 5× 5 matrices with non-

negative entries such that each of them dominates A1 or A2. Let M = M1M2 · · ·Mn−1, and

let 1T M = (x0, x1, . . . , x4). Then there exist four distinct indices 0 ≤ i, j, k, l ≤ 4 such that

min{xi, xj} · min{xk, xl} ≥ 2n/6.

Proof. We prove the lemma by induction on n. If n = 2 then we may assume that

M1 = A1 or M1 = A2, and hence x0, x1 ≥ 2, x2, x3, x4 ≥ 1, and hence the lemma holds.

We may therefore assume that n ≥ 3, and that the lemma holds for all smaller values

of n. If Mi dominates A1 for all i = 1, 2, . . . , n − 1, then by Lemma 3.1 the product

M1 . . .Mn−1 dominates A
⌈n/5⌉
1 . Thus there exist distinct indices i, j = 0, 1, . . . , 4 such that

min{xi, xj} ≥ 2⌈n/5⌉. Let k, l ∈ {0, 1, . . . , 4} − {i, j} be distinct. Then xk, xl ≥ 1, and hence

the indices i, j, k, l satisfy the conclusion of the lemma. This completes the case when each

Mi dominates A1.

So we may select the largest integer p ∈ {1, 2, . . . , n − 1} such that Mp dominates A2.

Without loss of generality we may assume that Mp = A2. Let 1T (M1 . . .Mp−1) = (y0, . . . , y4).

Since p < n, the induction hypothesis implies that there exist four distinct indices 0 ≤
i, j, k, l ≤ 4 such that min{yi, yj} · min{yk, yl} ≥ 2p/6. Without loss of generality we may

assume that 0 ≤ i ≤ 1.

We first dispose of the case p = n − 1. Then x = (x0, . . . , x4) = (y0, . . . , y4)Mp. Thus

x0 = x1 ≥ yk + yl ≥ 2 min{yk, yl} and x2 = x3 = x4 ≥ yi. Therefore,

min{x0, x1} · min{x2, x3} ≥ 2 min{yi, yj} · min{yk, yl} ≥ 2 · 2(n−1)/6 ≥ 2n/6,

as desired. This completes the case p = n − 1.
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We may therefore assume that p < n−1. The choice of p implies that Mp+1, Mp+2, . . . , Mn−1

all dominate A1. Let B = Mp+1Mp+2 . . .Mn−1 and let u =
∑4

i=0 yi and let v = y0 + y1. Thus

(x0, . . . , x4) = (y0, . . . , y4)MpB = (u, u, v, v, v)B.

By Lemma 3.1, B dominates A
⌈(n−p−1)/5⌉
1 . Thus there exist distinct indices s, t ∈ {0, 1, . . . , 4}

and distinct indices s′, t′ ∈ {0, 1, . . . , 4} such that b := min{Bss′, Bst′, Bts′ , Btt′} ≥ 2⌈(n−p−1)/5⌉−1.

It follows that xs′ , xt′ ≥ 2bv, and if {s, t} ∩ {0, 1} 6= ∅, then xs′ , xt′ ≥ bu.

Recall that the matrix B dominates A
⌈(n−p−1)/5⌉
1 . If {s, t} ∩ {0, 1} = ∅, then there exist

distinct indices r, r′ ∈ {0, 1, . . . , 4} − {s′, t′} such that B1r, B2r′ ≥ 1, and hence xr, xr′ ≥ u.

If {s, t} ∩ {0, 1} 6= ∅, then we select r, r′ ∈ {0, 1, . . . , 4} − {s′, t′} arbitrarily; in that case

xr, xr′ ≥ v.

The results of the previous two paragraphs imply that min{xs′ , xt′} ·min{xr, xr′} ≥ buv.

But v ≥ yi ≥ min{yi, yj} and u ≥ yk + yl ≥ 2 min{yk, yl}. We conclude that

min{xs′, xt′} · min{xr, xr′} ≥ buv ≥ 2b min{yi, yj} · min{yk, yl} ≥ 2p/6+⌈(n−p−1)/5⌉ ≥ 2n/6,

as desired. �

4 Chains of 5-Cycles

In order to prove Lemma 2.4, we will first characterize how the 3-colorings of an outer 5-cycle

of a plane graph G extend to the 3-colorings of another 5-cycle. If C is a 5-cycle in a graph

G and Φ a 3-coloring of C, then there exists a unique vertex v ∈ V (C) such that v is the

only vertex of C colored Φ(v). We call such a vertex the special vertex of C for Φ. Let G

be a triangle-free plane graph and C1, C2 be 5-cycles in G such that C1 6= C2 and Int(C2) ⊆
Int(C1). Let us choose a fixed orientation of the plane, and let C1 := u1 . . . u5, C2 := v1 . . . v5

be both numbered in clockwise order. Then we define a color transition matrix M of G with

respect to C1 and C2 as follows. Let G′ be the subgraph of G consisting of all the vertices

and edges of G drawn in the closed annulus bounded by C1 ∪C2. We let Mij equal one sixth

the number of 3-colorings Φ of G′ such that ui is the special vertex of C1 for Φ and vj is the

special vertex of C2 for Φ. The following lemma is straightforward.

Lemma 4.1 Let G be a triangle-free graph and F = {C1, . . . , Cn} be a family of 5-cycles

such that Int(Ci) ⊇ Int(Cj) if 1 ≤ i < j ≤ n. Let Mi be a color transition matrix of G with

respect to Ci and Ci+1. Then M1M2 . . .Mn−1 is a color transition matrix of G with respect

to C1 and Cn.

Let us recall that the matrices A1, A2 were defined at the beginning of Section 3.

Lemma 4.2 Let G be a graph isomorphic to one of the graphs shown in Fig. 1. If C1, C2

are the two cycles of G shown in Fig. 1, and M is a color transition matrix of G with respect

to C1 and C2, then M dominates either A1 or A2.
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Figure 1: Basic Graphs

Proof. Let Mi be a color transition matrix of Bi with respect to C1, C2, where 1 ≤ i ≤ 4.

Determining the various valid colorings of the Bi’s gives the following matrices up to cyclic

permutations of rows and columns:

M1 =













1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













, M2 =













1 1 1 1 1
1 1 1 1 1
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0













, M3 =













1 1 1 0 1
0 1 0 1 0
0 1 1 1 1
1 0 1 1 1
0 0 1 1 1













,

M4 =













1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 1 1













.

Therefore, M1, M3 and M4 dominate A1 and M2 dominates A2. �

In the rest of the paper, we call the graphs shown in Figure 1 basic graphs.

Definition 4.3 Let G be a triangle-free plane graph and C1, C2 be two distinct 5-cycles in

G. Let i ∈ {1, 2}, and let Ci = v1w1w2w3w4. Further suppose that there exist two vertices

of degree three w5, w6 ∈ V (G) − V (Ci) and three facial 5-cycles distinct from C1 and C2:

v1v4w6w3w4, v1v3w5w2w1, and v2w5w2w3w6. Finally suppose that either v1 has degree four

and does not belong to C3−i, or that v2 has degree three and does not belong to C3−i. Then

we say that G has an H-structure around Ci, or simply an H-structure. An illustration is

shown in Fig. 2.

We denote the 5 × 5 matrix of all ones by J . If G is a graph and X is a vertex or a set

of vertices of G, then we denote by G\X the graph obtained from G by deleting X.

Lemma 4.4 Let G be a triangle-free plane graph and let C1, C2 be two distinct 5-cycles in

G. If G has an H-structure and every 4-cycle and every 6-cycle in G separates C1 from C2,

then every color transition matrix of G with respect to C1, C2 dominates the matrix J .

Proof. Let G have an H-structure around C2 with its vertices labeled as in Definition 4.3.

Let W := {w1, w2, . . . , w6}. We will need the following claim.
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(1) Every 3-coloring of C1 can be extended to a 3-coloring of G\W such that v1 and v2 are

colored the same.

Let us first deduce the lemma from the claim. It is straightforward to verify that for

every v ∈ V (C2), every 3-coloring of G\W in which v1 and v2 are colored the same color can

be extended to a 3-coloring Φ of G such that v is the special vertex of C for Φ. This and (1)

imply the conclusion of the lemma.

Thus it remains to prove (1). To that end assume first that v1 has degree four and does

not belong to C1. Let G′ be the graph obtained from G\W\v1 by adding the edges v2v3 and

v2v4. We claim that G′ is triangle-free. Indeed, otherwise either v2 and v3 have a common

neighbor, or v2 and v4 have a common neighbor in G\W\v1. From the symmetry we may

assume that v2 and v3 have a common neighbor z 6∈ W ∪ {v1}. But then either zv3w5v2 is

a 4-cycle in G which does not separate C1 from C2 or zv2w6v4v1v3 is a 6-cycle in G which

does not separate C1 from C2, a contradiction in either case. Thus G′ is triangle-free, and

hence every 3-coloring of C1 extends to a 3-coloring Φ of G′ by Theorem 1.5. By letting

Φ(v1) := Φ(v2) we obtain a coloring desired for (1).

We may therefore assume that v2 has degree three and does not belong to C1. Let

v5 6= w5, w6 be the third neighbor of v2. Notice that v5 6= v1 as then there would be a 4-cycle

which does not separate C1 from C2. Moreover, v5 6= v3, v4 as G is triangle-free. Now let

G1 be the graph obtained from G\W\v2 by identifying v3 and v5. Similarly, let G2 be the

graph obtained from G\W\v2 by identifying v4 and v5.

Now we claim that at least one of the graphs G1, G2 is triangle-free. To prove this claim,

suppose that G1 and G2 are not triangle-free. Since G1 is not triangle-free, there exists a

path v5z1z2v3. Moreover, the 6-cycle v5z1z2v3w5v2 must separate C1 and C2. Furthermore,

z1 6= v4 as otherwise v5v2w6v4 is a 4-cycle not separating C1 from C2. Also z1 6= v1 and

z2 6= v4 since G is triangle-free. Similarly z2 6= v1 as otherwise v1v4w6v2v5z1 is a 6-cycle not

separating C1 from C2.

Since G2 is not triangle-free, there exists a path v5z
′
1z

′
2v4. By a similar reasoning as for

G1, we find that z′1, z
′
2 are distinct from v4 and v1 and that the 6-cycle v5z

′
1z

′
2v4w6v2 must

separate C1 and C2. Since G is a plane graph, this implies that {z1, z2}∩{z′1, z′2} 6= ∅. Notice
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that z1 6= z′1 as G is simple and both 6-cycles described above separate C1 from C2. If z′1 = z2

or if z1 = z′2, then G has a triangle, a contradiction. Thus z2 = z′2. But then v4z2v3v1 is a

4-cycle which does not separate C1 from C2, a contradiction. This proves our claim that one

of G1, G2, say G′, is triangle-free.

Since G′ is triangle-free, every 3-coloring of C1 extends to a 3-coloring Φ of G′ by Theo-

rem 1.5. Since one neighbor of v1 has the same color as v5, we may set Φ(v2) := Φ(v1) and

thus obtain a coloring desired for (1). This completes the proof of (1), and hence the proof

of the lemma. �

Definition 4.5 Let G be a triangle-free plane graph, let C1, C2 be two 5-cycles in G, and

let f be a face of G bounded by a 5-cycle C3, where C1, C2, C3 are pairwise distinct. We say

that f is a good face if one of the following conditions hold:

1. At least four vertices of C3 have degree three and E(C3) ∩ (E(C1) ∪ E(C2)) = ∅, or

2. all five vertices of C3 have degree three and either E(C3)∩E(C1) = ∅ or E(C3)∩E(C2) =

∅.

If the first condition holds, then we say that f is a good face of the first kind, and if the

second condition holds, then we say that f is a good face of the second kind.

Lemma 4.6 Let G be a triangle-free plane graph and C1, C2 be two distinct 5-cycles in G.

Assume that all vertices of G of degree two are on C1 and C2; for every integer k ∈ {4, 6, 7}
every k-cycle in G separates C1 from C2; every 5-cycle of G bounds a face; and every face

in G is bounded by a cycle of length five. If G has a good face, then there exists a triangle-

free graph G′ and two 5-cycles C ′
1 6= C ′

2 in G′ such that |V (G′)| < |V (G)| and every color

transition matrix of G with respect to C1 and C2 dominates some color transition matrix of

G′ with respect to C ′
1 and C ′

2.

Proof. We say that a cycle C in G is an important cycle if C = C1; or C = C2; or C has

length four, six or seven; or C has length nine and no vertex of G has three or more neighbors

on C. Let us assume for a moment that some important cycle C does not separate C1 from

C2. Then C has length nine by hypothesis, and hence no vertex of G has three or more

neighbors on C. Let G′ be the subgraph of G obtained by deleting all vertices and edges

drawn in the face of C that is disjoint from C1 and C2. Then |V (G′)| < |V (G)|, because

every face of G is bounded by a 5-cycle. By Theorem 1.4 every 3-coloring of G′ extends to

a 3-coloring of G, and hence G′ satisfies the conclusion of the lemma. Thus we may assume

that every important cycle in G separates C1 from C2. It follows that

(∗) for every subgraph H of G, at most two facial cycles of H are important.
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Good face of the first kind. Let f be a good face of the first kind bounded by the cycle

C3 := v1, . . . , v5 where v1, . . . , v4 are vertices of degree three on C3. For i = 1, 2, 3, 4 let wi be

the neighbor of vi which is not on C3. Let S = {v1, v2, . . . , v5, w1, w2, w3, w4}. These vertices

are pairwise distinct, because G is triangle-free and has no separating 5-cycles. Similarly,

no vi is adjacent to wj for i 6= j. Finally, we claim that wi is not adjacent to wj for

i, j ∈ {1, 2, 3, 4} with i 6= j. Indeed, this follows similarly if j = i + 2, or i = 1 and j = 4,

and so we may assume that i ∈ {1, 2, 3} and j = i + 1. But wi and wi+1 have a common

neighbor, because the path wivivi+1wi+1 is a subpath of a facial cycle (of length five), and

hence wi and wj are not adjacent, because G is triangle-free. Thus we have shown that

(0) the vertices of S are pairwise distinct, and the only edges of G with both ends in S are

the edges of C3 and the edges viwi for i = 1, 2, 3, 4.

Let G1 be the graph obtained from G by deleting the vertices v1, . . . , v4, identifying w2

with w3, and adding the edge w1w4. Let G2 be the graph obtained from G by deleting the

vertices v1, . . . , v4, identifying w3 with v5, and identifying w1 with w2. Let G3 be the graph

obtained from G by deleting the vertices v1, . . . , v4, identifying w2 with v5, and identifying

w3 with w4.

We will prove that at least one of the graphs G1, G2 or G3 is triangle-free. The lemma

then follows, for if G′ is one of the above three graphs that is triangle-free, then we may

assume that C1 and C2 are 5-cycles in G′. It is well-known [7] that every 3-coloring of G′

can be converted to a 3-coloring of G, and hence every color transition matrix of G′ with

respect to C1 and C2 dominates some color transition matrix of G with respect to C1 and

C2, as desired.

Thus it remains to prove the claim that one of G1, G2, G3 is triangle-free. To that end we

may assume the contrary. From the fact that G1 is not triangle-free, we deduce that there

exist vertices z1, z2 ∈ V (G) − {v1, v2, v3, v4} such that either

(1a) w1z1w4v4v5v1 is a cycle in G

or

(1b) w2z1z2w3v3v2 is a cycle in G.

In either case, let C4 denote the corresponding cycle. Similarly, the fact that G2 is not

triangle-free implies that there exist vertices x1, x2 ∈ V (G)− {v1, v2, v3, v4} such that either

(2a) w1x1x2w2v2v1 is a cycle in G

or

(2b) v5x1x2w3v3v4 is a cycle in G.

In either case, let C5 denote the corresponding cycle. Finally, the fact that G3 is not triangle-

free implies that there exist vertices x3, x4 ∈ V (G) − {v1, v2, v3, v4} such that either

11



(3a) w3x3x4w4v4v3 is a cycle in G

or

(3b) v5x3x4w2v2v1 is a cycle in G.

In either case, let C6 denote the corresponding cycle. From (0) we deduce that

(4) x1, x2, x3, x4, z, z1, z2 6∈ S.

If (2a) and (3a) hold, then in both cases (1a) and (1b) the subgraph C3 ∪C4 ∪C5 has at

least three important faces, contrary to (∗). (This requires some checking. For instance, in

case (1b) it is possible that z1 = x4 or z2 = x1.) Thus from the symmetry we may assume

that (2b) holds.

Assume now that (1a) holds. Then by planarity and (4) either z1 = x1 or z1 = x2. In the

former case the subgraph of G induced by {v1, v4, v5, w1, w4, x1} has three important faces,

contrary to (∗), and in the latter case the 5-cycles v5x1x2w4v4 and v4w4x2w3v3 are facial and

not equal to C1 or C2 (because each shares an edge with C3), and hence w4 has degree two,

contrary to hypothesis. We conclude that (1a) does not hold.

Thus (1b) and (2b) hold. By considering the subgraph C3 ∪ C4 ∪ C5 of G we deduce

from (∗) that v5v1v2w2z1z2w3x2x1 is a cycle of length nine, and some vertex of G has at least

three neighbors on it. That vertex is w1, and hence w1 has degree three and is adjacent

to v1, z1, x2. Since every face of G is bounded by a 5-cycle, there is a vertex u such that

w2v2v3w3u is a facial 5-cycle. Then w2z1z2w3u is also a 5-cycle, and hence also bounds a

face. It follows that u has degree two, and so one of the incident faces is C1 or C2; but C3

shares no edges with C1 or C2, and hence we may assume that C2 = w2z1z2w3u. It follows

that G has an H-structure around C2, where the degree three vertex v1 plays the role of the

vertex v2 from the definition of H-structure. Thus the subgraph C1 ∪ C2 of G satisfies the

conclusion of the lemma by Lemma 4.4.

Good face of the second kind. Let f now be a good face of the second kind bounded by

the cycle C3 := v1v2 . . . v5, where each vi has degree three. For i = 1, 2, . . . , 5 let wi be the

neighbor of vi which is not on C3, and let W := {v1, v2, . . . , v5, w1, w2, . . . , w5}. We have the

following analogue of (0):

(5) the vertices of W are pairwise distinct, and the only edges of G with both ends in W

are the edges of C3 and the edges viwi for i = 1, 2, 3, 4, 5.

We may assume that G does not have a good face of the first kind, and hence we may

assume from the symmetry that C2 shares an edge with C3. Thus we may assume without

loss of generality that C2 := v4v5w5zw4 for some vertex z ∈ V (G). Let G1 be the graph

obtained from G\{v1, v2, v3, v4} by identifying w3 and v5, and identifying w1 with w2. Let

G2 be the graph obtained from G\{v5, v1, v2, v3} by identifying w1 with v4, and identifying

w2 with w3.
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We will prove below that one of G1, G2 is triangle-free, but let us first deduce the lemma

from this assertion. From the symmetry we may assume that G1 is triangle-free. Let x be

the fifth vertex in the facial cycle w4v4v3w3x of G, and let y be the vertex of G1 obtained by

identifying w3 and v5. Then C1 is a cycle of G1, and let C ′
2 = w5zw4yx.

Now every 3-coloring of G1 extends to a 3-coloring of G by coloring v4 the same as x and

then coloring v3. The vertices w1 and w2 are colored the same, and v5 and v3 are colored

differently. It follows that this coloring can be extended to v1 and v2, as desired. Thus every

color transition matrix of G with respect to C1 and C2 dominates some color transition

matrix of G1 respect to C1 and C ′
2 and Lemma 4.6 holds.

It remains to prove the claim that at least one of G1 or G2 is triangle-free. To that

end we may assume the contrary. Since G1 is not triangle free, there exist vertices x1, x2 ∈
V (G) − {v1, v2, v3, v4} such that either

(6a) w1x1x2w2v2v1 is a cycle in G

or

(6b) w3x1x2v5v4v3 is a cycle in G.

In either case, let D1 denote the corresponding cycle. Since G2 is not triangle free, there

exist vertices y1, y2 ∈ V (G) − {v1, v2, v3, v5} such that either

(7a) w3y1y2w2v2v3 is a cycle in G

or

(7b) w1y1y2v4v5v1 is a cycle in G.

In either case, let D2 denote the corresponding cycle. It follows from (5) that

(8) z, x1, x2, y1, y2 6∈ W .

If (6a) and (7a) hold, then the graph H := C2∪C3∪D1∪D2 has at least three important

faces, contrary to (∗). Next we show that if (7b) holds, then w1 is adjacent to z. To that

end assume that (7b) holds. Since v4 has degree three it follows that y2 = w4. If y1 6= z,

then H has at least three important faces, contrary to (∗). Thus y1 = z and hence w1 is

adjacent to z if (7b) holds. Similarly, if (6b) holds, then w3 is adjacent to z. We conclude

that if (6b) and (7b) hold, then z is adjacent to w1 and w3, and it follows that G has an

H-structure around C2, where the degree three vertex v2 plays the role of the vertex v2 from

the definition of H-structure. Therefore, the subgraph C1 ∪ C2 of G satisfies the conclusion

of the lemma by Lemma 4.4.

Finally, by symmetry we may assume that (6a) and (7b) hold, and that (6b) does not.

In particular, w3 is not adjacent to z. Then, as we have shown above, w1 is adjacent to z.

It follows that z 6∈ {x1, x2}, and hence D := w1zw4v4v3v2w2x2x1 is a cycle of length nine.

We deduce from (∗) that some vertex of G has three neighbors on D. This vertex must be

w3, and its three neighbors are v3, z, x2, contrary to the fact that w3 is not adjacent to z.
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This completes the proof of the fact that one of the graphs G1, G2 is triangle-free, and hence

completes the proof of the lemma. �

Let us recall that the matrices A1, A2 were defined at the beginning of Section 3.

Lemma 4.7 Let G be a triangle-free plane graph and C1, C2 be two distinct 5-cycles in G.

Then every color transition matrix of G with respect to C1 and C2 dominates either A1 or

A2.

Proof. We use an argument similar to the proof of Grötzsch’s Theorem given in [13]. Let

us assume for a contradiction that the lemma is false, and choose a counterexample G with

cycles C1 and C2 with |V (G)| minimum. Let M be a color transition matrix of G with

respect to C1 and C2.

(1) If a cycle C in G of length at most seven does not bound a face, then it separates C1

and C2.

To prove (1) suppose for a contradiction that a cycle C of length at most seven is not facial

and does not separate C1 from C2. Then some component J of G\V (C) is disjoint from

C1 ∪ C2, and hence every 3-coloring of G\V (J) extends to G by Theorem 1.5. Thus M is a

color transition matrix of G\V (J) with respect to C1 and C2, and hence M dominates A1

or A2 by the minimality of G, a contradiction. This proves (1).

(2) G is 2-connected.

To prove (2) we may assume that G is not 2-connected. If C1 and C2 belong to the same

block B of G, then M is a color transition matrix of B and we obtain contradiction as above.

If C1 and C2 are in different blocks, then M dominates the matrix of all ones, as is easily

seen, a contradiction. This proves (2).

(3) Every vertex of G of degree two belongs to C1 ∪ C2.

Claim (3) follows similarly by deleting a vertex of degree two not in C1 ∪ C2.

(4) Every 5-cycle in G bounds a face.

To prove (4) let C be a 5-cycle in G that does not bound a face. By (1) it separates C1

from C2. Let M1 be a color transition matrix of G with respect to C1 and C, and let M2 be

a color transition matrix of G with respect to C and C2. By Lemma 4.1 the matrix M1M2

is a color transition matrix of G with respect to C1 and C2. By the minimality of G the

matrices M1 and M2 dominate Ai and Aj, respectively, where i, j ∈ {1, 2}. It follows that M

dominates AiAj . Notice that A2
1, A1A2 and A2A1 dominate A1 and A2

2 dominates A2, and

so M dominates A1 or A2, a contradiction. This proves (4).

(5) G has no facial 4-cycle.
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To prove (5) suppose for a contradiction that C := v1v2v3v4 is a facial 4-cycle in G. Let

G1 be the graph obtained from G identifying v1 and v3 and let G2 be the graph obtained

from G by identifying v2 and v4. At least one of the graphs G1, G2 is a triangle-free plane

graph. From the symmetry we may assume that G1 is triangle-free. Let C ′
1, C

′
2 be the cycles

in G1 that correspond to C1 and C2, respectively. As every 3-coloring of G1 extends to

a 3-coloring of G, a color transition matrix of G with respect to C1, C2 dominates a color

transition matrix of G1 with respect to C ′
1, C

′
2. If C ′

1 6= C ′
2, then G1 satisfies the hypotheses

of lemma 4.7, and so we obtain contradiction to the minimality of G. Thus C ′
1 = C ′

2. Now

G must be isomorphic to the basic graph B1. Then by Lemma 4.2 a color transition matrix

of G with respect to C1, C2 dominates A1, a contradiction. This proves (5).

(6) G has no facial cycle of length six or more.

To prove (6) suppose for a contradiction that C := v1v2 . . . vk is a facial cycle in G of length

k ≥ 6. Let G1 be the graph obtained from G identifying v1 and v3 and let G2 be the graph

obtained from G by identifying v2 and v4. If G1 is triangle-free, let G′ = G1. If G1 is not

triangle-free, then there exists a path v1u1u2v3 in G. Since v1v2v3u2u1 is not a separating

5-cycle, it must be facial. Hence v2 is degree two in G. This implies that G2 is a triangle-free

plane graph, for otherwise there exists a path v2v1w1v4 in G, in which case v1v2v3v4w1 is a

separating 5-cycle, a contradiction. In this case let G′ = G2.

Let C ′
1, C

′
2 be the cycles in G′ that correspond to C1 and C2, respectively. Moreover,

the cycles cannot be equal as there are at least three faces in G′. As every 3-coloring of G′

extends to a 3-coloring of G, a color transition matrix of G with respect to C1, C2 dominates

a color transition matrix of G′ with respect to C ′
1, C

′
2, contrary to the minimality of G. This

proves (6).

(7) Every cycle in G of length four, six or seven separates C1 from C2.

Claim (7) follows immediately from (1), (5) and (6).

It follows from (3), (4) and (7) that G satisfies the hypotheses of Lemma 4.6. In particular,

every facial cycle in G has length exactly five. Let us recall that good faces were defined in

Definition 4.5. Let f1 and f2 be the faces bounded by C1 and C2, respectively. Thus f1, f2

are never good. We may assume that

(8) G has no good face,

because otherwise the lemma follows from Lemma 4.6.

Now we use a standard discharging argument. Let the charge of a vertex v be ch(v) =

4−deg(v) and the charge of a face f be ch(f) = 4−|f |. Then by Euler’s formula the sum of

the charges of all vertices and faces is 8. Now we discharge the vertices as follows. Suppose

v is a vertex of G. If the degree of v is at least three, distribute the charge of it uniformly

over the faces incident with it. Thus if v has degree d ≥ 5, it will receive 1/d from each
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adjacent face. If the degree of v is two, v must be on C1 or C2. If v is incident with both f1

and f2 then distribute the charge of v uniformly over f1 and f2. Otherwise, let f3 6∈ {f1, f2}
be the other face incident with v. In this case let v send +5/3 to fi and +1/3 to f3. We

denote the new charge of a face f by ch′(f). The new charge of every vertex is zero. Let

us recall that every face of G is bounded by a 5-cycle. The discharging rules imply that for

every face f 6∈ {f1, f2} of G:

(9) if f is incident with five vertices of degree at most three, then ch′(f) = 2/3; otherwise

ch′(f) ≤ 1/3,

(10) ch′(f) > 0 if and only if f is incident with at least four vertices of degree at most three.

Let F1,F2 be the set of faces other than f1 and f2 which are adjacent to f1 and f2,

respectively. Since the sum of the new charges of all faces is 8, we have either

• N1 = ch′(f1) +
∑

f∈F1−F2
ch′(f) + 1

2

∑

f∈F1∩F2
ch′(f) ≥ +4, or

• N2 = ch′(f2) +
∑

f∈F2−F1
ch′(f) + 1

2

∑

f∈F1∩F2
ch′(f) ≥ +4, or

• there exists a face f3 6= f1, f2 which is not adjacent to f1 or f2, such that ch′(f3) > 0.

The last case does not happen, because the face f3 would be good by (9), contrary to (8). By

the symmetry between f1 and f2 we may therefore assume that N2 ≥ 4. Let C2 := v1v2 . . . v5.

(11) At least two vertices of C2 have degree two.

To prove (11) we may assume for a contradiction that C2 has at most one vertex of degree

two. Thus ch′(f2) ≤ 2. If for every face f ∈ F2 either f ∈ F1 or ch′(f) ≤ +1/3, then N2 ≥ 4

implies |F2| = 5. But then C2 has no vertex of degree two, implying ch′(f2) ≤ 2/3, and hence

N2 ≤ 8/3, a contradiction. Thus there exists a face f ∈ F2 − F1 such that ch′(f3) > 1/3.

But then f is good by (9), contrary to (8). This proves (11).

(12) If C2 has exactly two vertices of degree two, then they are not consecutive on C2.

To prove (12) we may assume for a contradiction that v1 and v2 are the only vertices of

degree two on C2. Since all of the faces of G are bounded by 5-cycles, there exists a vertex

w such that w is adjacent to v3 and v5. Since the 4-cycle wv3v4v5 separates C1 from C2, we

deduce that C3 := v1v5wv3v2 is facial 5-cycle.

Suppose that the degree of v3 or of v5 is three. Since there must be a facial 5-cycle

incident with this vertex, v4 and w, there must exist a path v4xyw. However, the 5-cycles

v4xywv3 and v4xywv5 must be facial. Hence G is isomorphic to B2 and Lemma 4.7 follows

from Lemma 4.2.

Now we may assume that v3 and v5 have degree at least four. Thus, ch′(f2) ≤ +8/3.

Moreover, |F2| = 3. Notice that every face f in F2 has a vertex of degree at least four so

that ch′(f) ≤ 1/3. Hence, N2 ≤ 11/3, a contradiction. This proves (12).
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(13) C2 has at least three vertices of degree two.

To prove (13) we may assume by (11) and (12) that C2 has exactly two vertices of degree

two, and that they are not consecutive. Thus we may assume that v1 and v3 are the vertices

of degree two on C2. First suppose that v2 has degree three and let z 6= v1, v3 be a neighbor

of v2. Since v1 and v3 have degree two, there exist facial 5-cycles v5v1v2zw1 and v4v3v2zw2.

Moreover, w1 6= w2 since G is triangle-free. But then zw1v5v4w2 is a 5-cycle, and so it is C1

by (4). Thus G is isomorphic to the basic graph B3 and Lemma 4.7 follows from Lemma 4.2.

So we may assume that v2 has degree at least four. Thus, ch′(f2) ≤ +3. Let f3 6= f2 be

the face incident with v1, f4 6= f2 be the face incident with v2, and let f5 6= f2 be the face

incident with the edge v4v5. Since the degree of v2 is at least four, ch′(f3), ch
′(f4) ≤ +1/3.

If deg(v2) ≥ 5, then ch′(f2) ≤ +3 − 1/5 and ch′(f3), ch
′(f4) ≤ +1/3 − 1/5. Thus N2 ≤

13/3 − 3/5 < 4, a contradiction.

So we may assume that deg(v2) = 4. Now if v5 has degree at least four, then ch′(f2) ≤ 8/3

and ch′(f3) ≤ 0. In that case, N2 ≤ +11/3, a contradiction. Thus v5 has degree three.

Similarly we find that v4 has degree three. Let y1 be the neighbor of v5 not on C2 and let

y2 be the neighbor of v4 not on C2. Note that y1 6= y2. Now f5 must be incident with y1

and y2. If y1 has degree at least four, then ch′(f3) ≤ 0 and ch′(f5) ≤ +1/3. In that case,

N2 ≤ +11/3, a contradiction. Thus y1 has degree three. Similarly we find that y2 also has

degree three. Let z1 be the neighbor of y1 incident with f3 = v5v1v2z1y1 and let z2 be the

neighbor of y2 incident with f4 = v4v3v2z2y2. Finally, let z3 be the common neighbor of y1

and y2 incident with f5 = v4v5y1z3y2. Thus G has an H-structure and Lemma 4.7 follows

from Lemma 4.4. This proves (13).

(14) If C2 has exactly three vertices of degree two, then they are not consecutive on C2.

To prove (14) we may assume for a contradiction that v1, v2 and v3 have degree two, and

v4, v5 have degree at least three. Let G′ = G \ {v1, v2, v3}. Notice that v1, v2 and v3 do not

belong to C1 (because C1 6= C2), so V (C1) ⊆ V (G′). Obviously for every 1 ≤ i ≤ 5 and any

3-coloring Φ of G′, we can extend Φ to a 3-coloring of G such that vi is the special vertex

on C2 for that coloring. Since by Theorem 1.4 any 3-coloring of C1 can be extended to a

3-coloring of G′, a color transition matrix of G with respect to C1 and C2 dominates the

matrix J . This proves (14).

We are now ready to complete the proof of the lemma. By (2) and (13) there are exactly

three vertices of degree two on C2, and by (14) we may assume that they are v1, v2 and

v4. Let f3 = v1v2v3z1v5 be the face distinct from f2 that is incident with v1 and v2 and let

f4 = v3v4v5z2z3 be the face distinct from f2 incident with v4. Note that z1 6= z2, z3 as G

is triangle-free. Since the 5-cycle v3z1v5z2z3 does not separate C1 from C2, it must be C1.

Hence G is isomorphic to the basic graph B4 and Lemma 4.7 follows from Lemma 4.2. �
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Proof of Lemma 2.4. Suppose n = |F| ≥ 2 and let C1, C2, . . . , Cn be the elements of

F such that Int(Ci) ⊇ Int(Cj) if and only if 1 ≤ i < j ≤ n. For i = 1, 2, . . . , n − 1 let

Mi be a color transition matrix of G with respect to Ci, Ci+1. Lemma 4.1 implies that

M = M1M2 . . .Mn−1 is a color transition matrix of G with respect to C1, Cn. Hence the

number of 3-colorings of G is at least six times 1T M1. For all 1 ≤ i ≤ n − 1, Lemma 4.2

implies that Mi dominates either A1 or A2, the matrices defined in Section 3. It follows from

Lemma 3.2 that the number of 3-colorings of G is at least 24 · 2n/12, as desired. �
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