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ABSTRACT

Thomassen conjectured that every triangle-free planar graph on n vertices has exponentially
many 3-colorings, and proved that it has at least 27"'*/20000 distinct 3-colorings. We show

that it has at least 2V™/362 distinct 3-colorings.
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1 Introduction

All graphs in this paper are finite, and have no loops or multiple edges. Our terminology is
standard, and may be found in [2] or [3]. In particular, cycles and paths have no repeated

vertices. The following is a well-known theorem of Grotzsch [7].

Theorem 1.1 FEwvery triangle-free planar graph is 3-colorable.

Theorem 1.1 has been the subject of extensive research. Thomassen [11] gave several
short proofs [11, 12, 13] of Grotzsch’s theorem and extended it to projective planar and
toroidal graphs. The theorem does not extend verbatim to any non-planar surface, but
Thomassen proved that every graph of girth at least five embedded in the projective plane
or the torus is 3-colorable. Gimbel and Thomassen [6] found an elegant characterization of
3-colorability for triangle-free projective planar graphs. There does not seem to be a corre-
sponding counterpart for other surfaces, but Kral’ and Thomas [9] found a characterization
of 3-colorability for toroidal and Klein bottle graphs that are embedded with all faces even.
It was an open question for a while whether a 3-coloring of a triangle-free planar graph can
be found in linear time. First Kowalik [8] designed an almost linear time algorithm, and
then a linear-time algorithm was found by Dvotédk, Kawarabayashi and Thomas in [4]. For
a general surface X, Dvordk, Kral” and Thomas [5] found a linear-time algorithm to decide
whether a triangle-free graph in ¥ is 3-colorable.

In this paper we study how many 3-colorings a triangle-free planar graph must have.

Thomassen conjectured in [15] that exponentially many:

Conjecture 1.2 There exists an absolute constant ¢ > 0, such that if G is a triangle-free

planar graph on n vertices, then G has at least 2°" distinct 3-colorings.

Thomassen gave a short proof of this conjecture under the additional hypothesis that G has
girth at least five. We use that argument in Lemma 2.3 below; Thomassen’s original proof
may be recovered by taking F to be the set of all facial cycles. Thomassen [15] then extended
this result by showing that every planar graph of girth at least five has exponentially many
list-colorings for every list assignment that gives each vertex a list of size at least three. For
triangle-free graphs Thomassen [15] proved a weaker version of Conjecture 1.2, namely that
every triangle-free planar graph on n vertices has at least 27"/*/20000 digtinct 3-colorings.

Our main result is the following improvement.

Theorem 1.3 Every triangle-free planar graph on n vertices has at least 2V distinct

3-colorings.

In closely related work Thomassen [14] proved that every (not necessarily triangle-free)
planar graph has exponentially many list colorings provided every vertex has at least five

available colors.



Our paper is organized as follows. In the next section we investigate non-crossing families
of 5-cycles, and reduce Theorem 1.3 to Lemma 2.4, which states that if a triangle-free planar
graph has k nested 5-cycles, then it has at least 2¥/12 3-colorings. The rest of the paper
is devoted to a proof of Lemma 2.4, which we complete in Section 4. In Section 3 we
prove an auxiliary result stating that some entries in the product of certain matrices grow
exponentially in the number of matrices.

We end this section by stating two useful theorems of Thomassen [11].

Theorem 1.4 Let G be a plane graph of girth at least five and C = vivy ... v be an induced
facial cycle of G of length k < 9. Then a 3-coloring ® of C' extends to a 3-coloring of G,
unless k = 9 and there exists a vertex v € V(G) — V(C) such that v is adjacent to three

vertices of C' that received three different colors under ®.

Theorem 1.5 Let G be a triangle-free plane graph with facial cycle C' of length at most five.
Then every 3-coloring of C' extends to a 3-coloring of G.

We would like to acknowledge that an extended abstract of this paper appeared in [1].

2 Laminar Families of 5-Cycles

First we define some terminology. Let A and B be two subsets of R?. We say that A and B
cross it AN B, AN B¢, A°N B, A°N B¢ are all non-null. Then we say that a family F of
subsets of R? is laminar if for every two sets A, B € F, A and B do not cross. Now let G be
a plane graph and C be a cycle in G. Then we let Int(C) denote the bounded component of
R? — C and FEzt(C) denote the unbounded component of R? — C. Now we say that a family
F of cycles of G is laminar if the corresponding family of sets (J.. Int(C) is laminar. We
call a family F of cycles an antichain if Int(C1) N Int(Cy) = () for every distinct Cy, Cy € F,
and we call it a chain if for every two cycles C1,Cy € F, either Int(Cy) C Int(Cy) or
Int(Cy) C Int(Ch).

Let G be a triangle-free plane graph, and let v € V(G). We define G, to be the graph
obtained from G by deleting v, identifying all the neighbors of v to one vertex, and deleting
resulting parallel edges. We also let Dy(G) denote the set of vertices of G with degree at

most k.
Lemma 2.1 If G is a triangle-free plane graph and k > 0 is an integer, then either
(i) there exists v € Di(G) such that G, is triangle-free or,

(ii) there exists a laminar family F of 5-cycles such that every v € Dy(G) belongs to some

member of F.



Proof. We proceed by induction on the number of vertices of G. Suppose condition (i)
does not hold. Notice that if v € V(G) and G, is not triangle-free, this implies, since G is
triangle-free, that v is in a 5-cycle in G. Hence if condition (i) does not hold, every v € Dy (G)
must be in a 5-cycle in G.

Now suppose there does not exist a separating 5-cycle in G. Then we let F be the set
of all 5-cycles in G. The second condition then holds since the absence of separating cycles
implies that F is laminar.

Thus we may assume that there exists a 5-cycle C' that separates GG into two triangle-free
plane graphs G7 and G5, where both G; and G5 include C. By induction, the lemma holds
for G; and G5. Suppose that both G; and Gs satisfy condition (ii) with laminar families
F1 and Fy, respectively. Then let F = F; U F,. Note that F is laminar. Now G satisfies
condition (ii) since every v € Dy(G) is contained in either Dy(G;) or Dy(G2). Thus we
may assume without loss of generality that G satisfies condition (i). That is, there exists
v € Di(G1) such that (Gy), is triangle-free. This implies that v is not in a 5-cycle in G7. In
particular, v € V(C), and hence v € Dy(G). Yet since G, is not triangle-free by assumption,
v must be in a 5-cycle in G, say C’. It follows that C’ intersects C. Since G is triangle-free,
C and C' intersect in exactly two vertices u; and us. Now the path from u; to uy along C’
that includes v must have t edges, where ¢ € {2,3}. But then there is another path from u,

to ug along C' with 5 — t edges. Hence v is in a 5-cycle in Gy, a contradiction. [

Lemma 2.2 If G is a triangle-free plane graph on n vertices, then either
(1) there exists v € Di(G) such that G, is triangle-free, or

(i1) G has an antichain F of 5-cycles such that |F| > 1((1)6(7;:)?)’ or

(iii) G has a chain F of 5-cycles such that |F| > 25(&__31))71-

Proof. Since G is triangle-free and planar, it satisfies 2|V (G)| > |E(G)|. We may assume
that (i) does not hold and hence every vertex of G has degree at least two. It follows that

V(@) 2 21BE(G) = ) deg(v) > (k+1) (IV(G)] = |Du(G)]) + 2| D(G)],
veV(Q)

and hence |Di(G)| > £2|V(G)|. Since (i) does not hold, we deduce from Lemma 2.1 that
there exists a laminar famlly of 5-cycles G of size at least | D(G)|/5 > 5kk 31 n. By Dilworth’s

theorem applied to the partial order on G defined by Int(Cy) C Int(Cy) we deduce that G
has either an antichain of size at least \/|G|/2, in which case condition (ii) holds, or a chain

of size at least y/2|G|, in which case condition (iii) holds. [J



Lemma 2.3 Let G be a triangle-free plane graph. If G has an antichain F of 5-cycles, then

G has at least 27/ distinct 3-colorings.

Proof. Let G’ be obtained from G by deleting the vertices in |, Int(C). Now G’ has at
least | F| facial 5-cycles. By Euler’s formula |E(G’)| < 2|V(G’)|—|F|/2. By Theorem 1.1 the
graph G’ has a 3-coloring ®. For i, j € {1,2,3} with i < j let G;; denote the subgraph of G
i<i IV (Gij| = |E(Gy) = 2]V(G)][ = |E(G)] =
| F|/2, there exist i,j € {1,2,3} such that ¢ < j and G;; has at least |F|/6 components.

But then there are at least 2/1/6 distinct 3-colorings of G’ since switching the colors on any

induced by the vertices colored i or j. Since >

subset of the components of G;; gives rise to a distinct coloring of G'. Furthermore, every

3-coloring of G’ extends to a 3-coloring of G by Theorem 1.5. [J

Lemma 2.4 Let G be a triangle-free plane graph. If G has a chain F of 5-cycles, then G

has at least 24 - 27112 distinct 3-colorings.

We will prove Lemma 2.4 in Section 4, but now we deduce the main theorem from it.

Proof of Theorem 1.3, assuming Lemma 2.4. We proceed by induction on the number
of vertices. If n < 362, then the conclusion clearly holds. We may therefore assume that
n > 363 and that the theorem holds for all graphs on fewer than n vertices. If there
exists v € Dsg3(G) such that the graph G, (defined prior to Lemma 2.1) is triangle-free,
then by induction G, has at least 2V ("=9°8()/362 {istinct 3-colorings. Hence G has at least
2 x 2V (=deg(v))/362 distinct 3-colorings, which is greater than V1362 i ce deg(v) < 363. So
we may assume by Lemma 2.2 applied to £ = 363 that G has either an antichain of 5-cycles
of size at least \/W, in which case the theorem holds by Lemma 2.3; or a chain of
5-cycles of size at least \/W/léil(), in which case the theorem holds by Lemma 2.4. [J

3 Two matrix lemmas

Let the matrices A;, Ay be defined by

11000 11111
11000 11111
Ai;=10 01 0 0, A,=1(1 1000
00010 11000
00001 11000

By a cyclic permutation matriz we mean a permutation matrix such that the corresponding
permutation is cyclic. Let A and B be two 5 x 5 matrices. We say that A majorizes B if
every entry in A is greater than or equal to the corresponding entry of B. We say that A

dominates B if there exist cyclic permutation matrices P, () such that A majorizes PBQ.



Lemma 3.1 Let n > 0 be an integer, and let My, ..., M, be 5 X 5 matrices such that each
dominates the matriz Ay. Then MM, ... M, dominates the matrix AF1.

Proof. We may assume that MM, ... M, = A\PLAP,... A1 P,, where Py,..., P, are

cyclic permutation matrices. Let m = [%]. Since there are only five 5 x 5 cyclic per-
mutation matrices and the product of two cyclic permutation matrices is a cyclic permu-
tation matrix, we deduce that there exist integers 1 < 73 < 49--- < 1, < n such that
the matrices P P 41... P, are equal for all j = 1,...,m. It follows that for all j =
1,...,m—1the matrix P, P, 11... P, , 1
P, AvPi 1Ay . APy, -1 majorizes the identity matrix. Let By = AP AP ... APy,
and B,, = P, A1P,_ +1...A1P,. Then MiM,... M, = ByAi1B1ABy...A1B,,_1A1Bp,.

Now, By majorizes some cyclic permutation, and so does B,,,, and A1B1A1Bs ... A1 B,,_1A;

is the identity matrix, and hence the matrix B; =

majorizes A7", as desired. [J
We denote the vector of all ones by 1.

Lemma 3.2 Let n > 2 be an integer, and let My, Ms, ..., M,_1 be 5 X 5 matrices with non-
negative entries such that each of them dominates Ay or Ay. Let M = M{Ms --- M, _1, and
let 1T M = (xg,x1,...,24). Then there exist four distinct indices 0 < i, j, k,1 < 4 such that

min{z;, z;} - min{wg, v} > 27/,

Proof. We prove the lemma by induction on n. If n = 2 then we may assume that
M, = Ay or M; = A,, and hence xy, 11 > 2, T, 23,24 > 1, and hence the lemma holds.
We may therefore assume that n > 3, and that the lemma holds for all smaller values
of n. If M; dominates A; for all ¢« = 1,2,...,n — 1, then by Lemma 3.1 the product
M; ... M,_, dominates A{"/ 51, Thus there exist distinct indices 1,7 = 0,1,...,4 such that
min{x;, r;} > 2"/ Let k,1 € {0,1,...,4} — {i,j} be distinct. Then x4, 7; > 1, and hence
the indices 1, j, k, | satisfy the conclusion of the lemma. This completes the case when each
M, dominates A;.

So we may select the largest integer p € {1,2,...,n — 1} such that M, dominates A,.
Without loss of generality we may assume that M, = Ay. Let 17(M; ... M, 1) = (yo, .-, Ys).
Since p < n, the induction hypothesis implies that there exist four distinct indices 0 <
i,7,k,1 < 4 such that min{y;,y;} - min{y, v} > 2/, Without loss of generality we may
assume that 0 <7 < 1.

We first dispose of the case p = n — 1. Then = = (x¢,...,24) = (Yo,.-.,Ys)M,. Thus
To =121 > Yp + 1y > 2min{yg, y;} and z9 = x3 = x4 > y;. Therefore,

min{zo, z;} - min{xy, x5} > 2min{y;, y,;} - min{y, v} > 2 - 2007H/6 > on/6,

as desired. This completes the case p =n — 1.



We may therefore assume that p < n—1. The choice of p implies that My 1, Mo, ..., M,y
all dominate A;. Let B = M, 1M,1o... M, and let u = Z?:o y; and let v = yo+y;. Thus
(0, xa) = (Yo, - - -, Ya) M B = (u, u,v,v,v)B.

By Lemma 3.1, B dominates A{("""”/‘“. Thus there exist distinct indices s, ¢ € {0,1,...,4}
and distinct indices s, #' € {0,1,...,4} such that b := min{B,y, By, By, By} > 2/(n=p=D/51-1,
It follows that zy, 2y > 2bv, and if {s,t} N {0,1} # 0, then xy, zy > bu.

Recall that the matrix B dominates A" 7™/ If {5t} N {0,1} = 0, then there exist
distinct indices r,r" € {0,1,...,4} — {5, ¥’} such that By,, By > 1, and hence x,., z,» > u.
If {s,t} N {0,1} # 0, then we select r,r" € {0,1,...,4} — {s',t'} arbitrarily; in that case
Ty, Tyt 2> V.

The results of the previous two paragraphs imply that min{zy, xy } - min{z,, z,,»} > buv.

But v > y; > min{y;, y;} and u > yi, + v > 2min{y;, v;}. We conclude that
min{zy, 2y} - min{z,, x.} > buv > 2bmin{y;, y;} - min{yy, y,} > 27/6Fn=p=1/51 > on/6

as desired. [

4  Chains of 5-Cycles

In order to prove Lemma 2.4, we will first characterize how the 3-colorings of an outer 5-cycle
of a plane graph G extend to the 3-colorings of another 5-cycle. If C' is a 5-cycle in a graph
G and ® a 3-coloring of (', then there exists a unique vertex v € V(C') such that v is the
only vertex of C' colored ®(v). We call such a vertex the special vertex of C' for ®. Let G
be a triangle-free plane graph and C, Cy be 5-cycles in G such that Cy # Cy and Int(Cy) C
Int(CY). Let us choose a fixed orientation of the plane, and let C} := uy ... u5,Cy := vy ... 05
be both numbered in clockwise order. Then we define a color transition matriz M of G with
respect to C7 and Cy as follows. Let G’ be the subgraph of G consisting of all the vertices
and edges of G drawn in the closed annulus bounded by C; UC,. We let M;; equal one sixth
the number of 3-colorings ® of G’ such that u;, is the special vertex of C; for ® and v, is the

special vertex of Cy for ®. The following lemma is straightforward.

Lemma 4.1 Let G be a triangle-free graph and F = {C4,...,Cy} be a family of 5-cycles
such that Int(C;) D Int(C;) if 1 <i < j <n. Let M; be a color transition matriz of G with

respect to C; and Ci11. Then MM, ... M, 1 is a color transition matrix of G with respect
to C; and C,,.

Let us recall that the matrices A;, Ay were defined at the beginning of Section 3.

Lemma 4.2 Let G be a graph isomorphic to one of the graphs shown in Fig. 1. If Cy,Cy
are the two cycles of G shown in Fig. 1, and M 1is a color transition matriz of G- with respect
to Cy and Cy, then M dominates either A; or A,.
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Bl BQ B3 B4

Figure 1: Basic Graphs

Proof. Let M; be a color transition matrix of B; with respect to C7, Cy, where 1 < i < 4.
Determining the various valid colorings of the B;’s gives the following matrices up to cyclic

permutations of rows and columns:

11000 11111 11101
11000 11111 01010
My=10 010 0|,My=1{11000|,Ms=10111 1/,
00010 11000 10111
00001 1100 0 00111

[1 1 1 0 0]

11100

My=11 110 0

00011

0001 1

Therefore, My, M3 and M, dominate A; and M, dominates A,. [
In the rest of the paper, we call the graphs shown in Figure 1 basic graphs.

Definition 4.3 Let G be a triangle-free plane graph and C, C5 be two distinct 5-cycles in
G. Let i € {1,2}, and let C; = vjwywowswy. Further suppose that there exist two vertices
of degree three ws, wg € V(G) — V(C;) and three facial 5-cycles distinct from C; and Cs:
VU4 WeW3Wy, V1V3WswWowy, and vowswowswg. Finally suppose that either vy has degree four
and does not belong to C5_;, or that vy has degree three and does not belong to C3_;. Then
we say that G has an H-structure around C;, or simply an H-structure. An illustration is

shown in Fig. 2.

We denote the 5 x 5 matrix of all ones by J. If GG is a graph and X is a vertex or a set
of vertices of G, then we denote by G\ X the graph obtained from G by deleting X.

Lemma 4.4 Let G be a triangle-free plane graph and let Cy, Cy be two distinct 5-cycles in
G. If G has an H-structure and every 4-cycle and every 6-cycle in G separates C from Cs,

then every color transition matrix of G with respect to Cy,Cy dominates the matrixz J.

Proof. Let G have an H-structure around Cy with its vertices labeled as in Definition 4.3.

Let W := {wq,ws, ..., wg}. We will need the following claim.
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U1

(%] U4

V2

Figure 2: An H-structure

(1) Every 3-coloring of C can be extended to a 3-coloring of G\W such that v; and v, are

colored the same.

Let us first deduce the lemma from the claim. It is straightforward to verify that for
every v € V(Cy), every 3-coloring of G\W in which v; and v, are colored the same color can
be extended to a 3-coloring ® of G such that v is the special vertex of C' for ®. This and (1)
imply the conclusion of the lemma.

Thus it remains to prove (1). To that end assume first that v; has degree four and does
not belong to C;. Let G’ be the graph obtained from G\W\v; by adding the edges vsv3 and
vovy. We claim that G’ is triangle-free. Indeed, otherwise either vy and vz have a common
neighbor, or vy and vy have a common neighbor in G\W\v;. From the symmetry we may
assume that vy and v3 have a common neighbor z &€ W U {v;}. But then either zvswsvs is
a 4-cycle in G which does not separate C from Cy or zvswgvsvivs is a 6-cycle in G which
does not separate Cy from Cs, a contradiction in either case. Thus G’ is triangle-free, and
hence every 3-coloring of € extends to a 3-coloring ® of G’ by Theorem 1.5. By letting
®(vq) := ®(vy) we obtain a coloring desired for (1).

We may therefore assume that v, has degree three and does not belong to C. Let
vs # ws, wg be the third neighbor of vy. Notice that vs # vy as then there would be a 4-cycle
which does not separate C; from Cs. Moreover, vs # v3, vy as G is triangle-free. Now let
G1 be the graph obtained from G\W\wv, by identifying v3 and vs. Similarly, let G5 be the
graph obtained from G\W\v, by identifying v4 and vs.

Now we claim that at least one of the graphs G, G5 is triangle-free. To prove this claim,
suppose that G; and G5 are not triangle-free. Since Gy is not triangle-free, there exists a
path vsz129v3. Moreover, the 6-cycle vsz1 29v3w5v9 must separate C; and C5. Furthermore,
21 # vy as otherwise vsvawgvy is a 4-cycle not separating C from Cs. Also z; # v; and
z9 # vy since G is triangle-free. Similarly 2z, # v as otherwise v;v4wgvov527 is a 6-cycle not
separating C' from C\.

Since G, is not triangle-free, there exists a path vs2|z5v4. By a similar reasoning as for
G, we find that 21, 2}, are distinct from vy and v; and that the 6-cycle vs2]25v,weve must

separate C and Cy. Since G is a plane graph, this implies that {21, 20} N{z], 25} # 0. Notice



that z; # 2| as G is simple and both 6-cycles described above separate C} from Cy. If 2] = 25
or if z; = 2}, then G has a triangle, a contradiction. Thus zo = 2. But then vy29v3v; is a
4-cycle which does not separate C from Cy, a contradiction. This proves our claim that one
of G1, Gy, say G, is triangle-free.

Since G’ is triangle-free, every 3-coloring of C; extends to a 3-coloring ® of G’ by Theo-
rem 1.5. Since one neighbor of v; has the same color as vs, we may set ®(vg) := ®(v;) and
thus obtain a coloring desired for (1). This completes the proof of (1), and hence the proof

of the lemma. [

Definition 4.5 Let G be a triangle-free plane graph, let C7, C5 be two 5-cycles in GG, and
let f be a face of G bounded by a 5-cycle C3, where C7, Cy, C5 are pairwise distinct. We say
that f is a good face if one of the following conditions hold:

1. At least four vertices of C3 have degree three and E(C5) N (E(Cy) U E(Cy)) =0, or

2. all five vertices of C3 have degree three and either E(C3)NE(Cy) = or E(C3)NE(Cy) =
0.

If the first condition holds, then we say that f is a good face of the first kind, and if the

second condition holds, then we say that f is a good face of the second kind.

Lemma 4.6 Let G be a triangle-free plane graph and Cy,Cy be two distinct 5-cycles in G.
Assume that all vertices of G of degree two are on Cy and Csy; for every integer k € {4,6,7}
every k-cycle in G separates Cy from Cy; every 5-cycle of G bounds a face; and every face
in G is bounded by a cycle of length five. If G has a good face, then there exists a triangle-
free graph G' and two 5-cycles Cy # C% in G’ such that |V(G")| < |V(G)| and every color
transition matrix of G with respect to C7 and Cy dominates some color transition matriz of
G' with respect to C] and C%,.

Proof. We say that a cycle C in G is an important cycle if C' = Cy; or C' = Cy; or C' has
length four, six or seven; or C' has length nine and no vertex of G has three or more neighbors
on C'. Let us assume for a moment that some important cycle C' does not separate C from
C5. Then C has length nine by hypothesis, and hence no vertex of G has three or more
neighbors on C. Let G’ be the subgraph of G obtained by deleting all vertices and edges
drawn in the face of C' that is disjoint from C; and Cy. Then |V(G')| < |V(G)|, because
every face of GG is bounded by a 5-cycle. By Theorem 1.4 every 3-coloring of G’ extends to
a 3-coloring of GG, and hence G’ satisfies the conclusion of the lemma. Thus we may assume

that every important cycle in G separates C from Cs. It follows that

(x) for every subgraph H of G, at most two facial cycles of H are important.
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Good face of the first kind. Let f be a good face of the first kind bounded by the cycle
Cs5 :=wq,...,v5 where vy, ..., vs are vertices of degree three on C5. For i = 1,2, 3,4 let w; be
the neighbor of v; which is not on C3. Let S = {v, v, ..., v5, w1, wq, w3, ws}. These vertices
are pairwise distinct, because G is triangle-free and has no separating 5-cycles. Similarly,
no v; is adjacent to w; for ¢ # j. Finally, we claim that w; is not adjacent to w, for
i,7 € {1,2,3,4} with ¢ # j. Indeed, this follows similarly if j =i+ 2, or ¢ = 1 and j = 4,
and so we may assume that ¢ € {1,2,3} and j = i + 1. But w; and w;y; have a common
neighbor, because the path w;v;v;11w;41 is a subpath of a facial cycle (of length five), and

hence w; and w; are not adjacent, because G is triangle-free. Thus we have shown that

(0) the vertices of S are pairwise distinct, and the only edges of G with both ends in S are
the edges of C5 and the edges v;w; fori=1,2,3,4.

Let G1 be the graph obtained from G by deleting the vertices vy, ..., v4, identifying wy
with w3, and adding the edge wiwys. Let G5 be the graph obtained from G by deleting the

vertices vy, ..., vy, identifying ws with vs, and identifying w;, with wsy. Let G3 be the graph
obtained from G by deleting the vertices vy, ..., vy, identifying wy with vs, and identifying
w3 with wy.

We will prove that at least one of the graphs Gy, G5 or G is triangle-free. The lemma
then follows, for if G’ is one of the above three graphs that is triangle-free, then we may
assume that C; and Cy are 5-cycles in G'. It is well-known [7] that every 3-coloring of G’
can be converted to a 3-coloring of GG, and hence every color transition matrix of G’ with
respect to C and Cy dominates some color transition matrix of G with respect to C; and
Cs, as desired.

Thus it remains to prove the claim that one of G, G, G5 is triangle-free. To that end we
may assume the contrary. From the fact that GGy is not triangle-free, we deduce that there

exist vertices z1, 29 € V(G) — {v1, v2,v3,v4} such that either
(la) wyzqywavgvsvy is a cycle in G

or

(1b) wozy 20wsv3vy Is a cycle in G.

In either case, let C4y denote the corresponding cycle. Similarly, the fact that G5 is not

triangle-free implies that there exist vertices z1,xy € V(G) — {v1, v9, v3,v4} such that either
(2a) wyx1TWav9vy is a cycle in G

or

(2b) vszz2w3V3V, IS a cycle in G.

In either case, let C5 denote the corresponding cycle. Finally, the fact that G3 is not triangle-

free implies that there exist vertices z3, x4 € V(G) — {v1,v9,v3,v4} such that either

11



(3a) wyrsriwyvgvs is a cycle in G

or

(3b) vsx3T4Wavevy Is a cycle in G.

In either case, let Cg denote the corresponding cycle. From (0) we deduce that

(4) 1,29, 23, 14,2,21,22 & S.

If (2a) and (3a) hold, then in both cases (1a) and (1b) the subgraph C3 U C, U C}5 has at
least three important faces, contrary to (). (This requires some checking. For instance, in
case (1b) it is possible that z; = x4 or z5 = x;.) Thus from the symmetry we may assume
that (2b) holds.

Assume now that (1a) holds. Then by planarity and (4) either z; = x; or z; = x5. In the
former case the subgraph of G induced by {v, vy, vs, w1y, wy, 1} has three important faces,
contrary to (*), and in the latter case the 5-cycles vsxixow,vy and viwyrewsvs are facial and
not equal to C or Cy (because each shares an edge with Cj3), and hence w, has degree two,
contrary to hypothesis. We conclude that (1a) does not hold.

Thus (1b) and (2b) hold. By considering the subgraph C5 U Cy, U C5 of G we deduce
from (%) that vsvvewa21 290wsxexy is a cycle of length nine, and some vertex of G has at least
three neighbors on it. That vertex is w;, and hence w; has degree three and is adjacent
to vy, 21, x2. Since every face of G is bounded by a 5-cycle, there is a vertex w such that
wyvovswsy is a facial H-cycle. Then wsyzyzowsu is also a 5-cycle, and hence also bounds a
face. It follows that u has degree two, and so one of the incident faces is C; or Cy; but Cs
shares no edges with C; or (s, and hence we may assume that Cy = wyz12z0wsu. It follows
that G has an H-structure around Cy, where the degree three vertex v; plays the role of the
vertex vy from the definition of H-structure. Thus the subgraph C; U Cy of G satisfies the
conclusion of the lemma by Lemma 4.4.

Good face of the second kind. Let f now be a good face of the second kind bounded by
the cycle C3 := vivs ... v5, where each v; has degree three. For ¢ = 1,2,...,5 let w; be the
neighbor of v; which is not on C3, and let W := {vy, v9, ..., v5, w1, W, ..., ws}. We have the

following analogue of (0):

(5) the vertices of W are pairwise distinct, and the only edges of G with both ends in W
are the edges of C3 and the edges v;w; for i =1,2,3,4,5.

We may assume that G' does not have a good face of the first kind, and hence we may
assume from the symmetry that Cy shares an edge with C3. Thus we may assume without
loss of generality that Cy := vjvswszw, for some vertex z € V(G). Let G be the graph
obtained from G\{vy, v, vs,v4} by identifying w3 and vs, and identifying w; with ws. Let
G4 be the graph obtained from G\{vs, v, vs, v3} by identifying w; with vy, and identifying

wq With ws.
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We will prove below that one of G, G5 is triangle-free, but let us first deduce the lemma
from this assertion. From the symmetry we may assume that G is triangle-free. Let x be
the fifth vertex in the facial cycle wyvsvswsx of G, and let y be the vertex of GG obtained by
identifying w3 and vs. Then C is a cycle of Gy, and let C} = wszw,yx.

Now every 3-coloring of G; extends to a 3-coloring of G' by coloring v, the same as  and
then coloring vs. The vertices w; and wy are colored the same, and vs and wvs are colored
differently. It follows that this coloring can be extended to v; and vs, as desired. Thus every
color transition matrix of G with respect to C'; and Cy; dominates some color transition
matrix of G; respect to C and C) and Lemma 4.6 holds.

It remains to prove the claim that at least one of Gy or Gy is triangle-free. To that
end we may assume the contrary. Since GG; is not triangle free, there exist vertices x1, 2, €
V(G) — {v1, v9,v3,v4} such that either

(6a) wyx1TWaov9vy is a cycle in G

or

(6b) wax1wousv4v3 is a cycle in G.
In either case, let D; denote the corresponding cycle. Since G5 is not triangle free, there

exist vertices y1,y2 € V(G) — {v1, v2, v3,v5} such that either

(Ta) wsy1y2wovavs is a cycle in G

or

(7b) wyy1y2v4v5v; IS a cycle in G.

In either case, let Dy denote the corresponding cycle. It follows from (5) that

(8) z,m1,m2,y1,92 & W.

If (6a) and (7a) hold, then the graph H := CoUC3U D, U Dy has at least three important
faces, contrary to (x). Next we show that if (7b) holds, then w; is adjacent to z. To that
end assume that (7b) holds. Since v, has degree three it follows that yo = wy. If y; # 2,
then H has at least three important faces, contrary to (x). Thus y; = z and hence w; is
adjacent to z if (7b) holds. Similarly, if (6b) holds, then wj; is adjacent to z. We conclude
that if (6b) and (7b) hold, then z is adjacent to w; and ws, and it follows that G has an
H-structure around C5, where the degree three vertex v, plays the role of the vertex v, from
the definition of H-structure. Therefore, the subgraph C U C5 of G satisfies the conclusion
of the lemma by Lemma 4.4.

Finally, by symmetry we may assume that (6a) and (7b) hold, and that (6b) does not.
In particular, ws is not adjacent to z. Then, as we have shown above, w; is adjacent to z.
It follows that z ¢ {x1, 22}, and hence D := w;zw,v4v3vwexqxy is a cycle of length nine.
We deduce from () that some vertex of G' has three neighbors on D. This vertex must be

ws, and its three neighbors are v3, z, x9, contrary to the fact that ws is not adjacent to z.
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This completes the proof of the fact that one of the graphs G, G» is triangle-free, and hence

completes the proof of the lemma. [
Let us recall that the matrices A;, Ay were defined at the beginning of Section 3.

Lemma 4.7 Let G be a triangle-free plane graph and Cy,Cy be two distinct 5-cycles in G.
Then every color transition matrixz of G with respect to C; and Cy dominates either Ay or
As.

Proof. We use an argument similar to the proof of Grétzsch’s Theorem given in [13]. Let
us assume for a contradiction that the lemma is false, and choose a counterexample G' with
cycles Cy and Cy with |V(G)| minimum. Let M be a color transition matrix of G with

respect to C1 and Cs.

(1) If a cycle C' in G of length at most seven does not bound a face, then it separates C
and Cs.

To prove (1) suppose for a contradiction that a cycle C' of length at most seven is not facial
and does not separate C) from Cy. Then some component J of G\V(C) is disjoint from
C1 U Cy, and hence every 3-coloring of G\V'(J) extends to G by Theorem 1.5. Thus M is a
color transition matrix of G\V(J) with respect to C; and C5, and hence M dominates A;
or Ay by the minimality of G, a contradiction. This proves (1).

(2) G is 2-connected.

To prove (2) we may assume that G is not 2-connected. If C; and Cy belong to the same
block B of GG, then M is a color transition matrix of B and we obtain contradiction as above.
If C7 and C5 are in different blocks, then M dominates the matrix of all ones, as is easily

seen, a contradiction. This proves (2).

(3) Every vertex of G of degree two belongs to Cy U Cs.
Claim (3) follows similarly by deleting a vertex of degree two not in C; U Cs.

(4) Every 5-cycle in G bounds a face.

To prove (4) let C' be a 5-cycle in G that does not bound a face. By (1) it separates C4
from C5. Let M; be a color transition matrix of G with respect to C; and C', and let M, be
a color transition matrix of G with respect to C' and C5. By Lemma 4.1 the matrix M; M,
is a color transition matrix of G with respect to C; and Cs. By the minimality of G the
matrices M, and M, dominate A; and A;, respectively, where i, j € {1,2}. It follows that M
dominates A;A;. Notice that A2 A1 Ay and Ay A, dominate A; and A3 dominates As, and

so M dominates A; or Ay, a contradiction. This proves (4).

(5) G has no facial 4-cycle.
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To prove (5) suppose for a contradiction that C' := vjvyv3vy is a facial 4-cycle in G. Let
G be the graph obtained from G identifying v; and v3 and let Gy be the graph obtained
from G by identifying vy and vy. At least one of the graphs G, G5 is a triangle-free plane
graph. From the symmetry we may assume that G is triangle-free. Let C7, C} be the cycles
in (G; that correspond to C; and (5, respectively. As every 3-coloring of (G; extends to
a 3-coloring of GG, a color transition matrix of G with respect to C;,Cs dominates a color
transition matrix of G with respect to C1, Ch. If C7 # CY, then G, satisfies the hypotheses
of lemma 4.7, and so we obtain contradiction to the minimality of G. Thus C] = C}. Now
G must be isomorphic to the basic graph B;. Then by Lemma 4.2 a color transition matrix

of G with respect to C, Cy dominates A;, a contradiction. This proves (5).

(6) G has no facial cycle of length six or more.

To prove (6) suppose for a contradiction that C' := vyvy ... vy is a facial cycle in G of length
k > 6. Let GGy be the graph obtained from G identifying v; and v3 and let G be the graph
obtained from G by identifying vy and vy. If G; is triangle-free, let G’ = G;. If G is not
triangle-free, then there exists a path viujusvs in G. Since vyvov3uLu; 1S NOt a separating
5-cycle, it must be facial. Hence v, is degree two in G. This implies that Gy is a triangle-free
plane graph, for otherwise there exists a path vyv;w v in G, in which case vyvovzv4w, is a
separating 5-cycle, a contradiction. In this case let G' = Gs.

Let C1,CY be the cycles in G’ that correspond to C7 and Cj, respectively. Moreover,
the cycles cannot be equal as there are at least three faces in G'. As every 3-coloring of G’
extends to a 3-coloring of GG, a color transition matrix of G with respect to C7, Cs dominates
a color transition matrix of G’ with respect to C1, C4, contrary to the minimality of G. This
proves (6).

(7) Every cycle in G of length four, six or seven separates C; from Cs.
Claim (7) follows immediately from (1), (5) and (6).

It follows from (3), (4) and (7) that G satisfies the hypotheses of Lemma 4.6. In particular,

every facial cycle in G has length exactly five. Let us recall that good faces were defined in

Definition 4.5. Let f; and f5 be the faces bounded by C; and Cs, respectively. Thus fi, fo

are never good. We may assume that

(8) G has no good face,

because otherwise the lemma follows from Lemma 4.6.

Now we use a standard discharging argument. Let the charge of a vertex v be ch(v) =
4 —deg(v) and the charge of a face f be ch(f) =4 —|f|. Then by Euler’s formula the sum of
the charges of all vertices and faces is 8. Now we discharge the vertices as follows. Suppose
v is a vertex of G. If the degree of v is at least three, distribute the charge of it uniformly

over the faces incident with it. Thus if v has degree d > 5, it will receive 1/d from each
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adjacent face. If the degree of v is two, v must be on C; or Cy. If v is incident with both f;
and f; then distribute the charge of v uniformly over f; and f,. Otherwise, let f3 & {f1, f2}
be the other face incident with v. In this case let v send +5/3 to f; and +1/3 to f3. We
denote the new charge of a face f by ch/(f). The new charge of every vertex is zero. Let

us recall that every face of G is bounded by a 5-cycle. The discharging rules imply that for
every face f & {f1, fo} of G:

(9) if f is incident with five vertices of degree at most three, then ch/(f) = 2/3; otherwise
ch'(f) < 1/3,

(10) ck/(f) > 0 if and only if f is incident with at least four vertices of degree at most three.
Let Fi,F5 be the set of faces other than f; and f, which are adjacent to f; and fs,

respectively. Since the sum of the new charges of all faces is 8, we have either
o Ni=ch'(fi)+ 2 jer 5l (f)+ : > rernm W (f) > +4, or
o No=cl(f2) + Xer,—m W () + 5 X pemnm ' (f) = +4, or
e there exists a face f3 # fi, fo which is not adjacent to f; or fs, such that ch/(f3) > 0.

The last case does not happen, because the face f3 would be good by (9), contrary to (8). By

the symmetry between f; and f; we may therefore assume that Ny > 4. Let Cy := vivy. .. vs.

(11) At least two vertices of Cy have degree two.

To prove (11) we may assume for a contradiction that Cy has at most one vertex of degree
two. Thus ch/(f2) < 2. If for every face f € F; either f € Fy or ¢h/(f) < +1/3, then Ny > 4
implies |F,| = 5. But then C5 has no vertex of degree two, implying ch/(f2) < 2/3, and hence
N, < 8/3, a contradiction. Thus there exists a face f € Fy — F; such that ch/(f;) > 1/3.
But then f is good by (9), contrary to (8). This proves (11).

(12) If Cy has exactly two vertices of degree two, then they are not consecutive on Cs.

To prove (12) we may assume for a contradiction that v; and vy are the only vertices of
degree two on C5. Since all of the faces of G are bounded by 5-cycles, there exists a vertex
w such that w is adjacent to vz and vs. Since the 4-cycle wvsvyvs separates C; from Cy, we
deduce that C5 := vivswvzvs is facial 5-cycle.

Suppose that the degree of v3 or of vs is three. Since there must be a facial 5-cycle
incident with this vertex, v, and w, there must exist a path vyxyw. However, the 5-cycles
vgrywvs and vyrywvs must be facial. Hence G is isomorphic to By and Lemma 4.7 follows
from Lemma 4.2.

Now we may assume that vz and vs have degree at least four. Thus, ch/(fy) < +8/3.
Moreover, |Fs| = 3. Notice that every face f in F» has a vertex of degree at least four so
that ch/(f) < 1/3. Hence, Ny < 11/3, a contradiction. This proves (12).
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(13) Cy has at least three vertices of degree two.

To prove (13) we may assume by (11) and (12) that Cs has exactly two vertices of degree
two, and that they are not consecutive. Thus we may assume that v; and v3 are the vertices
of degree two on (. First suppose that vy has degree three and let z # vy, v3 be a neighbor
of v9. Since v; and v3 have degree two, there exist facial 5-cycles vsviv9zw, and v V3V 2Ws3.
Moreover, wy # wsy since G is triangle-free. But then zwjvsvsws is a 5-cycle, and so it is C4
by (4). Thus G is isomorphic to the basic graph Bs and Lemma 4.7 follows from Lemma 4.2.

So we may assume that ve has degree at least four. Thus, ch/(f2) < +3. Let f3 # f5 be
the face incident with vy, fy # fo be the face incident with vy, and let f5 # f5 be the face
incident with the edge vqvs. Since the degree of vy is at least four, ch/(f3),ch/(f4) < +1/3.
If deg(va) > 5, then ch/(fs) < 43 — 1/5 and ch'(f3),ch/(fs) < +1/3 —1/5. Thus Ny <
13/3 — 3/5 < 4, a contradiction.

So we may assume that deg(vy) = 4. Now if v has degree at least four, then ch/(fy) < 8/3
and ch/(f3) < 0. In that case, Ny < +11/3, a contradiction. Thus vs has degree three.
Similarly we find that v, has degree three. Let y; be the neighbor of vs not on Cy and let
Y2 be the neighbor of vs not on Cy. Note that y; # y2. Now f; must be incident with 1,
and y,. If y; has degree at least four, then ch/(f3) < 0 and ch/(f5) < +1/3. In that case,
Ny < +11/3, a contradiction. Thus y; has degree three. Similarly we find that y, also has
degree three. Let z; be the neighbor of y; incident with f3 = vsviv221y; and let 25 be the
neighbor of ¥, incident with f; = v4u3v920y,. Finally, let z3 be the common neighbor of
and yo incident with f5 = v4v5y123y2. Thus G has an H-structure and Lemma 4.7 follows

from Lemma 4.4. This proves (13).

(14) If Cy has exactly three vertices of degree two, then they are not consecutive on Cs.

To prove (14) we may assume for a contradiction that vy, v, and vs have degree two, and
vy4, vs have degree at least three. Let G' = G\ {vy, v9,v3}. Notice that vy, ve and v3 do not
belong to C; (because C; # Cy), so V(C1) C V(G"). Obviously for every 1 <i <5 and any
3-coloring ® of G’, we can extend ® to a 3-coloring of G such that v; is the special vertex
on Cs for that coloring. Since by Theorem 1.4 any 3-coloring of C} can be extended to a
3-coloring of G’, a color transition matrix of G with respect to € and Cy dominates the

matrix J. This proves (14).

We are now ready to complete the proof of the lemma. By (2) and (13) there are exactly
three vertices of degree two on Cy, and by (14) we may assume that they are vy, vy and
vg. Let f3 = vivov3z1v5 be the face distinct from fy that is incident with v; and vy and let
fa = v3v4U52023 be the face distinct from fy incident with vy. Note that z; # 2,23 as G
is triangle-free. Since the 5-cycle v3z1v52023 does not separate C; from Cjy, it must be C}.

Hence G is isomorphic to the basic graph B4 and Lemma 4.7 follows from Lemma 4.2. [J
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Proof of Lemma 2.4. Suppose n = |F| > 2 and let C,Cy, ..., C, be the elements of
F such that Int(C;) 2 Int(C;) if and only if 1 < i < j <mn. Fori =1,2,...,n—1 let
M; be a color transition matrix of G with respect to C;,C;; 1. Lemma 4.1 implies that
M = MiM,...M,_q is a color transition matrix of G with respect to C,C,,. Hence the
number of 3-colorings of G is at least six times 17”M1. For all 1 < i < n — 1, Lemma 4.2
implies that M; dominates either A; or A,, the matrices defined in Section 3. It follows from
Lemma 3.2 that the number of 3-colorings of G is at least 24 - 2"/12, as desired. O

References

[1] A. Asadi, L. Postle and R. Thomas, Sub-exponentially many 3-colorings of triangle-free
planar graphs, Electronic Notes in Discrete Mathematics 34 (2009), 81-87.

[2] B. Bollobds, Modern Graph Theory. Springer-Verlag Heidelberg, New York, 1998.
[3] R. Diestel, Graph Theory. Springer-Verlag Heidelberg, New York, 2005.

[4] Z. Dvorak, K. Kawarabayashi and R. Thomas, Three-coloring triangle-free planar graphs
in linear time, Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), New York, NY (2009), 1176-1182.

[5] Z. Dvordk, D. Kral’ and R. Thomas, Three-coloring triangle-free graphs on surfaces,
Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), New York, NY (2009), 120-129.

[6] J. Gimbel and C. Thomassen, Coloring graphs with fixed genus and girth, Trans. Amer.
Math. Soc. 349 (1997), 4555-4564.

[7] H. Grotzsch, Ein Dreifarbensatz fiir dreikreisfreie Netze auf der Kugel, Wiss. Z. Martin-
Luther-Univ. Halle- Wittenberg Math.-Natur. Reihe 8 (1959), 109-120.

[8] L. Kowalik, Fast 3-colorings triangle-free planar graphs, ESA 2004, Lecture Notes in
Comput. Sci., 3221:436-447, 2004.

[9] D. Kral’ and R. Thomas, Coloring even-faced graphs in the torus and the Klein bottle,
Combinatorica 28 (2008), 325-341.

[10] C. Thomassen, Every planar graph is 5-choosable, J. Combin. Theory Ser. B 62 (1994),
180-181.

[11] C. Thomassen, Grétzsch’s 3-color theorem and its counterparts for the torus and the
projective plane, J. Combin. Theory Ser. B 62 (1994), 268-279.

18



[12] C. Thomassen, 3-list coloring planar graphs of girth 5, J. Combin. Theory Ser. B 64
(1995), 101-107.

[13] C. Thomassen, A short list color proof of Grotzsch’s theorem, J. Combin. Theory Ser.
B 88 (2003), 189-192.

[14] C. Thomassen, Exponentially many 5-list-colorings of planar graphs, J. Combin. Theory
Ser. B 97 (2007), 571-583.

[15] C. Thomassen, Many 3-colorings of triangle-free planar graphs, J. Combin. Theory Ser.
B 97 (2007), 334-349.

This material is based upon work supported by the National Science Foundation. Any
opinions, findings, and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the National Science Foundation.

19



