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WELL-QUASI-ORDERING INFINITE GRAPHS WITH
FORBIDDEN FINITE PLANAR MINOR

ROBIN THOMAS

ABSTRACT. We prove that given any sequence Gy, G,,... of graphs, where G,
is finite planar and all other G; are possibly infinite, there are indices 7, j such
that i < j and G; is isomorphic to a minor of G;. This generalizes results
of Robertson and Seymour to infinite graphs. The restriction on G; cannot
be omitted by our earlier result. The proof is complex and makes use of an
excluded minor theorem of Robertson and Seymour, its extension to infinite
graphs, Nash-Williams® theory of better-quasi-ordering, especially his infinite
tree theorem, and its extension to something we call tree-structures over QO-
categories, which includes infinitary version of a well-quasi-ordering theorem of
Friedman.

1. INTRODUCTION

By a graph we shall mean in this paper a possibly infinite, undirected graph
which may have loops and multiple edges. A graph is a minor of another if
the first can be obtained from a subgraph of the second by edge contraction.
A set Q, on which a quasi-ordering (i.e., reflexive and transitive relation) <
is defined, is said to be well-quasi-ordered (wqo) if for every infinite sequence
4,,4,, ... of elements of Q there are indices i, j such that / < j and
q,<4,.

The well-quasi-ordered sets have been studied for a while, but we mention
the history and development very briefly, as this is well covered in [7]. The
early years of wqo theory are closely tied with the following two conjectures of
Vazsonyi.

(1.1) Conjecture. All trees, finite or not, are wqo by the homeomorphic embedding
(i.e., by the quasi-ordering < such that T < S if there is a homeomorphic
embedding V(T) — V(S)).

The finite version of this conjecture was established by Kruskal [6], the proof
was then simplified by Nash-Williams [12]. The general case was proved by
Nash-Williams in [13] using his theory of better-quasi-ordering (bqo). This
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theorem and theory are of fundamental importance for this paper, but as both
are discussed later on, we pass to the second Vazsonyi conjecture.

(1.2) Conjecture. The set of finite graphs will all degrees < 3 is wqo by the
homeomorphic embedding.

The restriction to graphs with degrees < 3 in (1.2) is necessary, for otherwise
it is easy to construct counterexamples. Namely, for n > 3 let G, be the graph
with n vertices v,,...,v, = v, and with two edges joining v, and v,
(0<i<n-1). Then forno 3 < i < j is there a homeomorphic embedding
of G, into G .

Since for graphs G, H with degrees < 3, G is homeomorphically embed-
dable into H if and only if G is isomorphic to a minor of H , the following
conjecture, named after K. Wagner, is a strengthening of (1.2).

(1.3) Wagner’s Conjecture. The set of all finite graphs is wgo by minors, i.e., by
the quasi-ordering < such that G < H if G is isomorphic to a minor of H .

There was only a little progress [11] on (1.3) in the past decades until its
recent solution by Robertson and Seymour, which is being published in a series
of lengthy papers under the collective title Graph minors.

There are some features of (1.3) and to a lesser extent of wqo theory itself
which are worth mentioning.

(i) The truth of (1.3) implies the truth of a Kuratowski-type theorem for
general classes of graphs. Recall that Kuratowski’s theorem can be reformulated
as “a finite graph is planar if and only if it has no K or K, minor.” Now
let & be any class of graphs for which such a statement is in principle possible;
that is, any minor of a member of & again belongs to & . Then it follows easily
from (1.3) that there is a finite list L of graphs such that a graph belongs to
Z if and only if it has no minor isomorphic to a member of L.

(ii) (1.3) also has interesting algorithmic aspects. For example, if & is as
above then there is a polynomially bounded algorithm to test the membership
of % . As this is not a paper about algorithms we refer to [16] or [17] for more
on this story.

(iii) Finally, (1.3) is very attractive from the metamathematical point of
view, because its finite miniaturization yields a statement of finite combinatorics
which is unprovable in Il:-CA0 or |J,ID,, that is, relatively strong fragments
of second-order arithmetics [2].

In this paper we are concerned with the analogue of (1.3) for infinite graphs.
The only results known for infinite graphs so far were Nash-Williams’ proof of
(1.1) and the author’s weaker version of (1.4) below (with H, = K,) [26]. Re-
lated results are Laver’s extension of (1.1) to a certain class of order-theoretical
trees [9] and his order type theorem [8] (see also [21]). Since (1.3) is false in
general as shown in [23], we are looking for some suitable class of infinite graphs
for which (1.3) is true. We prove the following theorem.
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(1.4) Theorem. Let H,, be a finite planar graph. Then the class of all (finite or
not) graphs with no minor isomorphic to H is wqo by minors.

In fact, we prove that this class is better-quasi-ordered and even “well be-
haved,” which is a technical strengthening of bqo defined in §4. Let us first re-
duce this theorem to another one. In [19], [20] Robertson and Seymour proved
the following (for the definitions see next section).

(1.5) Theorem. For every finite planar graph H,, there exists an integer w such
that every finite graph with no minor isomorphic to H, admits a linked tree-
decomposition of width < w .

A slightly stronger version of (1.5) (and with a better constant) is proved in
[25]; this version is then used for extension of (1.5) to infinite graphs in [5].
To summarize:

(1.6) Theorem. If G is such that its every finite subgraph admits a linked tree-
decomposition of width < w, then G itself admits a linked tree-decomposition
of width < w .

Using (1.5) and (1.6) it is easily seen that in order to prove (1.4) it is sufficient
to prove the following:

(1.7) Theorem. For any integer w, the class of graphs which admit a linked
tree-decomposition of width < w is wqo by minors.

This theorem is proved for finite graphs in [18], but our proof is completely
independent of that paper. Our proof of (1.7) is self-contained; we obtain it as
a corollary of a general theorem on QO-categories (Theorem (4.13)) which says
that if a graph category . is well behaved, then the graph category %" of
all graphs which admit a “w-bounded” linked tree-decomposition “over & ”
is well behaved. The main idea of the proof is to use the tree structure of the
graphs involved and to imitate the Nash-Williams’ proof of Conjecture (1.1).
But there are several complications to this.

First we need a labeled version of Nash-Williams’ result. The most natural
labeling theorem was proved by Laver in [8], but we need a more general one.
Each vertex ¢ of our tree 7 is labeled by some graph from a “nice” class, but
this graph is again labeled, this time by some possibly unbounded number of
labels, each label corresponding to an edge of 7" incident with ¢.

The second complication is that we need not only the labeling of vertices as
described above but also an infinitary version of a result proved by Friedman
for finite trees [22], when the edges are numbered from a finite set of num-
bers. When a tree is homeomorphically embedded in another tree, each of its
edges is represented by a path of the second tree. We need to insist that for
each edge e of the first tree, its number should not exceed any number on the
corresponding path P of the second tree and that the first and last edges of
P should have numbers equal to the number of e. In fact we label vertices
rather than edges, but that makes little difference. Since we have to build in
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these ingredients simultaneously, Theorem (8.2) includes them both. The pure
extension of Friedman’s result to infinite graphs is then derived in §9.

These two complications occur even in the finite case and are already treated
in [18]. Hence the above project can be described by saying that we need to
extend the method of Robertson and Seymour to infinite graphs. However,
there are two more complications which are peculiar to infinite graphs.

The third one is that the methods of wqo theory alone are insufficient to
obtain wqo results of infinite objects. We clarify this a bit more in §3.

Finally, the last complication is in fact caused by the second one. Namely,
since we proceed by reversed induction on the tree-width, we need a stronger
induction hypothesis than bqo. This is why we introduce the concept of “well
behaved,” which provides the suitable induction hypothesis. Some slight im-
provements of Nash-Williams’ idea enable us to show that this property is pre-
served on each step (see also (10.1) for a discussion on the extensions of bqo).

§2 contains all definitions and notation; §3 introduces the bgo theory and
presents the basic results. The exposition is self-contained and also includes an
introduction to wqo as a motivation for bqo as well as an explanation of why
the bqo theory is needed. In §4 we introduce the central notion of our study—
the notion of QO-category—and the basic constructions (e.g., the QO-category
of tree structures over a QO-category) and the notion of a well-behaved QO-
category. We formulate the Main Theorem and derive (1.7) from it there. In §§5
and 6 we prove two auxiliary lemmas. Lemma (5.3) reduces the Main Theorem
to proving that (< w, > 0)-structures (i.e., tree structures with bounded “amal-
gamation size”) over a well-behaved QO-category are well behaved. Lemma
(6.2) reduces the investigation of (< w, > k)-structures over . to the study
of (< k, > k)-structures over (< w, > k + 1)-structures over & . This makes
our reversed induction work and all we need is to show that (< k, > k)-
structures over a well-behaved QO-category are well-behaved. This is done in
§7, which is the cornerstone of the paper. Here the second complication does
not occur and we may basically use the Nash-Williams’ method. In §8 we prove
the Main Theorem, in §9 the extension of Friedman’s result to infinite graphs.
Some conjectures are mentioned in §10.

Acknowledgement. 1 would like to express my thanks to Jaroslav Nesetftil for his
encouragement and to Igor Kfiz for suggesting the notion of a QO-category.

2. DEFINITIONS

(2.1) The letter Q will always stand for a set on which a quasi-ordering < is
defined. If V is any set then V" denates the set of all injective sequences
of elements of V. If p = (v,,...,v,) € V", then set(p) denotes the set
{v,,...,v,} € V. By expV we denote the set of all subsets of V. As usual,
w denotes the first limit ordinal. If X ,Y are sets, then XUY denotes the
disjoint union of X and Y. It will sometimes be convenient to introduce a
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new element *. Let us make the agreement that whenever this symbol occurs
it will be assumed that it is distinct from all objects considered so far.

(2.2) Multivalued mappings. If X, Y are sets, then amapping f: X - expY —
{D} is called a multivalued mapping from X to Y. It is called injective if
f(x)N f(y) =D for any distinct elements x, y € X . The identity, denoted by
id, is a multivalued mapping defined on any nonempty set X by id(x) = {x}.
We denote by f(X) the set U, f(x) CY.If f is an injective multivalued

mapping from X to Y, then f_lz f(X) — X is defined by f_'(y) = x iff

yefx). f x=(x,....x,)€X and y = (y,,....,y,) €Y we write
xLy to mean that » = m and y, € f(x;,) for i=1,...,n. If f isa

multivalued mapping such that |f(x)| = 1 for any x € X, then f is called
single-valued. We shall often identify single-valued mappings from X to Y
with ordinary mappings X — Y in the obvious way. If f is a multivalued
mapping from X to Y and g is a multivalued mapping from Y to Z, then
the composition f o g is a multivalued mapping 4 from X to Z defined by

h(x) =U,crx 8¥)-

(2.3) Graphs. A graph G consists of a vertex set V(G), an edge set E(G),
and a relation of incidence between these sets. Edges are either loops with one
incident vertex or /inks with exactly two incident vertices. Incident vertices are
also called the end vertices of an edge, and the endvertices of an edge are said
to be adjacent in G. The degree of a vertex v is its number of incident edges,
links counted once and loops counted twice. A graph G is a subgraph of a graph
H if V(G) C V(H), E(G) C E(H), and incidences of G are incidences of
H . The graph union and intersection are evident. A path in G is a subgraph
of G with the usual property; no “repeated” vertices are allowed. A graph G
is connected if any two vertices of G are connected by a path. If 4 C V(G),
then G | A denotes the graph spanned by A, that is, the graph whose vertex
set is A, whose edge set consists of edges of G incident only with elements of
A , and with the incidence relation inherited from G. If G and H are graphs
then an injective multivalued mapping f from V(G) to V(H) is called an
expansion of G into H provided

(2.3a) the graph H | f(v) is connected for every v € V(G), and

(2.3b) there exists an injective mapping ¢ : E(G) — E(H), called an edge
expansion, such that if u,v are end vertices of an edge e € E(G), then ¢(e)
has one end vertex in f(#) and one in f(v).

It follows from (2.3b) that an edge expansion maps loops onto loops and links
onto links. Thus G is isomorphic to a minor of H iff there is an expansion
f of G into H. The mapping f T usually called a contraction (or a
subcontraction) because of its physical meaning. If G and H are graphs then
we say that G is homeomorphically embeddable into H if some subdivision of
G is isomorphic to a subgraph of H .
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(2.4) Trees. A tree T for our purposes is a possibly infinite oriented graph
with a specified vertex, called the root of T and denoted by root(7T), such
that each edge is directed away from the root and for every vertex ¢ of T
there is a unique directed path from root (7)) to ¢. (Thus a tree is not a graph
in our terminology.) If T is a tree, then V(7T) and E(T) denote the sets
of vertices and edges of T, respectively. If (¢,t) € E(T) we say that ¢ is
the successor of t and that ¢ is the predecessor of t' . Thus every t € V(T)-
{root (T)} has a unique predecessor. We say that ' follows ¢ if ¢ belongs
to the directed path from root(T) to t'. A subtree of T is a tree S with
V(S) C V(T), E(S) C E(T), and root(T) = root(S) € V(S). If t € V(T)
then the branch at t, denoted by T,, is the tree whose root is ¢ and which
consists of vertices of T that follow ¢ and all edges of 7 incident with these
vertices. Let us remark that 7, is not a subtree of T unless ¢ = root(7T), in
which case T, =T. If T isatree and ¢, € V(T), then [t,']; (or [t,¢']
when no confusion is likely) denotes the set of vertices of the path between ¢
and ¢ in the underlying undirected graph of T (which is a tree in the usual
sense) so that ¢,¢ € [¢t,£], C V(T). If T, S are trees, then a mapping
@: V(T) — V(S) is called monotone if ¢(t') follows ¢(t) whenever (¢,t) €
E(T).If ¢: V(T) — V(S) is monotone, we define ¢*, ¢, : V(T) — V(S) as
follows: We put ¢_(root(T")) = root(S), and for (¢, 'y € E(T) let s, =0(t),
Sy e a8y 28, = o(t') be the vertices of the directed path from ¢(z) to ¢(t')
in the order in which they occur on this path; we put w*(t') =S$,, 0" (t) = Sp_y -
A mapping ¢: V(T) — V(S) is called a homeomorphic embedding if it is
monotone and for any ¢,¢,,t, € V(T) if ¢, and ¢, are distinct successors of
t, then ¢, (t,) # ¢,(t,). In other words, ¢ is a homeomorphic embedding if
distinct successors of a vertex ¢ follow distinct successors of ¢(¢).

(2.5) Tree-decompositions. A tree-decomposition of a graph G is a pair (T, X),
where T isatreeand X = (X,: t € V(T)) is a family of subsets of V' (G) with
the following properties:

(2.5a) U{X,:t e V(T)} =V(G),

(2.5b) for every edge e of G there exists ¢t € V(T) such that e has both
end vertices in X, , and

(2.5c) for ¢,¢',¢" e V(T),if ¢ €[t,"], then X,nX

tll g th .
The width of a tree-decomposition is

max{|X |- 1:te V(T)},

provided this max exists; otherwise it is undefined. The graph G has tree-width
w if w is minimum such that G has a tree-decomposition of width w .

It can be shown, for example, that forests have tree-width < 1, series-parallel
graphs have tree-width < 2, for n > 1 the complete graph K, has tree-width
n—1, and for n > 2 the n x n grid (i.e., the adjacency graph of the n x n
chessboard) has tree-width n. The tree-width of infinite graphs behaves nicely:
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if w is the maximum of tree-widths of finite subgraphs of a graph G, then the
tree-width of G is w (cf. [24, 27, §]).

A tree-decomposition (7", X) of a graph G is called /inked if for any oriented
path ¢, ... ,t, in T, oriented away from root(7), and any k > 0 such that
|th N Xz,+.| >k (i=1,...,n—1) there are k disjoint paths in G, each
between th NX 4 and th_, ap.¢ " Linked tree-decompositions are important
for our application. However, this property is not restrictive, since it is shown
in [25] for finite graphs and extended to infinite ones in [5] that a graph G of
tree-width w always has a linked tree-decomposition of width w .

(2.6) The space [A]”. If A is any set, then [4]“ denotes the set of all infinite
subsets of 4. We will consider [4]” only for 4 € [w]” . We need the so-called
classical topology on [A]“, that is, the topology [4]” gets as a subspace of 2,
which is given the product topology (the topology on 2 is discrete). The basic
open sets for this topology are, for instance, the sets of the form

{Ze[A]”: Zn{l, ..., maxs}=s},

where s runs through all finite subsets of 4. This topology is complete, sepa-
rable, and metrizable. Of particular interest will be Borel subsets of [4]“, that
is, the sets belonging to the smallest g-algebra generated by all open sets.

If X €[w]” then X— denotes the set X — {min X} .

3. BQO THEORY

In order to give some motivation for the better-quasi-ordering theory we start
with an account of results of wqo theory. These are not needed in the sequel
but are provided for the reader’s convenience.

(3.1) Definition. For ¢,q € Q we define g < g if g<q and ¢’ £ q, and
g=4q if ¢ <q <gq. The set Q is said to be well-founded if there is no
infinite descending sequence ¢, > ¢, > --- of elements of Q. We denote by
Q/ = the partially ordered set obtained from Q by identifying =-equivalent
elements. Any mapping f: A — Q, where 4 € [w]” is called a Q-sequence. A
Q-sequence f: A — Q is called good if there are i, j € A such that i < j and
f(i) < f(j), and is called bad otherwise. Thus Q is wqo if every Q-sequence
is good.

We need to build up new quasi-ordered sets starting from old. If Q,, Q,
are quasi-ordered sets, then Q,UQ, denotes the disjoint union of @, and Q,,
whose quasi-ordering is the disjoint union of the quasi-orderings on @, and
Q,. Q, x Q, denotes the Cartesian product of Q, and Q, equipped with
" the product quasi-ordering. For « an ordinal, Q% denotes the set of all a-
sequences of elements of Q, Q<% = Upca 0* and Q" = Unecon 2% - o™ is
quasi-ordered by the rule that (a,),, < (b e if there is a strictly increasing
mapping f: A — u such that a < b /(@) for all a € A. Finally, expQ, the
power set of Q, is quasi-ordered by 4 < B if thereis a 1-1 mapping f: 4 — B
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such that a < f(a) for every a € A. Construction of other wqo sets is more
technical and is left to §4.

(3.2) Theorem. The following conditions on a quasi-ordered set Q are equivalent.
(i) Q is wgo.
(i1) Q@ is well-founded and Q contains no infinite subset whose elements are
pairwise <-incomparable.
(iiii) For every Q-sequence f: A — Q thereexists B € [A]” such that f(i) <
f(j) forevery i,j€B suchthat i<j.
(iv) Every nonempty subset of Q contains at least one but finitely many
minimal elements.

(v) Every linear extension of < on Q/ = is a well-ordering.
Proof. Easy consequence of Ramsey’s theorem. O
(3.3) Proposition.
(i) Any well-ordered set is wqo.
(ii) If Q is the union of two subsets, each wqo in the induced quasi-ordering,
then Q is wqo.
(iii) If Q, and Q, are wqo then Q| x Q, is wqo.
(iv) For every Q-sequence f: A — Q there exists B € [A]° such that either
f I B isbador f(i) < f(j) forevery i,je€ B suchthat i< j.

Proof. Easy exercise. O

(3.4) Definition (Laver [9]). A partial ranking on Q is a well-founded partial
ordering <' of the elements of Q such that x <' y implies x < y. If
f:A— Q and g: B — Q are Q-sequences, we define g <’ f if BC 4 and
g(i) <' f(i) forevery i € B, and g<' f if BC 4 and g(i) < f(i) for
every i € B. Note that g <’ f is not equivalent to the conjunction g <’ f
and g # f. A Q-sequence f: A — Q is called minimal bad if it is bad and
there is no bad Q-sequence g <’ f.

The following lemma, essentially due to Nash-Williams, is a powerful tool
for proving the wqo property.
(3.5) Lemma. Let f: A — Q beabad Q-sequence. Then there exists a minimal
bad Q-sequence g <' f.
Proof. Let A ={i, <i, <---}. Choose g(i,) such that it is a first term of a
bad Q-sequence which is <' f and there is no ¢ <’ g(i,) with this property.
Then choose g(i,) such that g(i,), g(i,) (in that order) are the first two
terms of a bad Q-sequence which is <’ f and there isno ¢ <’ g(i,) with this
property. Continuing this process we get a bad g: 4 — Q. We claim it is the
desired one. For if thereisabad h: B — Q, h<' g, we may define k: C — Q
by C={i€A4:i<minB}UB and

k(i) =g(i), i<minB, i€ A,
h(i), I €B.
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Now k is bad and k(min B) = A(min B) <’ g(min B), which contradicts the
choice of g(minB). O

To illustrate the use of (3.5) we prove one of the basic theorems of wqo
theory, namely Higman’s finite sequence theorem. We formulate it in a form
similar to corresponding theorems from bqo theory.

(3.6) Theorem (Higman [4]). If f: A — Q<% isa bad Q" -sequence, then there
exist B € [A]” and a bad Q-sequence g: B — Q such that for any i € B, g(i)
is a term of f(i). Hence if Q is wqo, then Q<% is wqo.

Proof. For s,t € Q< define s <' ¢t to mean that s is a subsequence of ¢.
Clearly <’ is a partial ranking and if g € Q isa term of s€ Q< and s <'¢,
then ¢ is a term of ¢. Hence by (3.5) we may safely assume that the Q<“-
sequence f is minimal bad. Let

fG)=(q,....q,) (i€4).
Since clearly n; > 1 for any i € A, we may define for i € 4

gy =a,, h()=(a,....d))

By (3.3iv) let B € [4]” besuchthat g | B iseither bad or such that g(i) < g(/)
for any i,j € B such that i < j. In the first case g is as desired, so let us
prove that the second one cannot hold. Suppose it does. Since 4 | B <’ f and
f is minimal bad, 4 [ B cannot be bad. Hence there are i, j € B such that
i <jand A(i) < h(j). But also g(i) < g(j), which implies f(i) < f(Jj), a
contradiction to the badness of f. O

The following example shows why methods of wqo theory do not suffice for
the proofs of well-quasi-orderedness of infinitary objects. It turns out to be for
the reason that the property of being wqo is too weak for inductive arguments
about infinite objects to be carried out; one cannot pass from Q wqo to Q“
wqo (or from Q wqo to exp Q wqo).

(3.7) Example (Rado [15]). There exists a wqo set Q such that Q“ is not wqo,
namely Q = {(i,j): i < j < w} quasi-ordered by the rule (i,j) < (k,/) if
i=k and j<I,or j<k.Itiseasy to verify that Q is as claimed.

However, the wqo spaces which “occur in nature” do not behave like the
above example. The concept of better-quasi-ordering, invented by Nash-
Williams, treats this situation. The property of being bgo is strong enough
to be preserved by sufficiently many infinitary operations, and that makes a
certain inductive argument work.

So let us begin with the bqo theory. The original Nash-Williams’ definition
is purely combinatorial, but we use a topological one, due to Simpson [21],
which is easier to handle but perhaps misleading since bqo is a combinatorial
property and not a topological one. We start with the fundamental theorem of
Galvin and Prikry, which plays the role of Ramsey’s theorem in bqo theory. It
is sufficiently well known, so we omit its proof.
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(3.8) Theorem (Galvin and Prikry [3]). Let A4 € [w]” and let & be a Borel set
in [A]” . Then there exists X € [A]” such that either [X]” C # or [X]"NF =
.

(3.9) Definition. If 4 € [w]” then a mapping a: [4]° — Q is called an array if
the range of a is countable and a! (q) is a Borel set in [4]” forevery g€ Q.
An array is called good if there is X € [A4]” such that a(X) < a(X-) (recall
that X— = X — {min X}) and is called bad otherwise. The set Q is called
better-quasi-ordered (bqo) if every array a: [4]” — Q is good.

(3.10) Remark. It can be shown that a is an array if and only if it is Borel
measurable with respect to the discrete topology on Q and that Q is bqo if
and only if every continuous array is good.

(3.11) Proposition.

(i) Any well-ordered set is bqo.

(ii) If a:[A])” — Q is a bad array and Q = Q,U0Q,, then there exist B €
[4]° and i € {1,2} such that a | [B]”: [B]” — Q, is a bad array.
Hence if Q, and Q, are bqo, then Q is bqo. In particular, every finite
set is bqo.

(i) If a:[A4]° — Q, x Q, is a bad array, then there exist B € [41“,
i € {1,2} and a bad array b: [B]” — Q; such that b(Z) is the ith
coordinate of a(Z) for any Z € [B]”. Hence if Q, and Q, are bqo,
then Q, x Q, is bqo.

(iv) For any array a: [A]” — Q there exists B € [A]” such that either
a | [B” is bad or a(Z) < a(Z-) for every Z € [B]”.

Proof. Easy consequence of the Galvin-Prikry theorem. O
(3.12) Proposition. Every bgo set Q is wqo.

Proof. Suppose that Q is not wqo and let f: 4 — Q be a bad Q-sequence.
Define a: [4]° — Q by a(Z) = f(minZ). Then a is a bad array. O

(3.13) Definition. Let Q be equipped with a partial ranking <. If a: [4]” —»
Q and b: [B]” — Q are arrays, we write b <' a if BC 4 and b(Z) <’ a(2Z)
forall Ze[B]”,and b<'a if BC A and b(Z) <' a(Z) forall Z € [B]”.
An array a: [A]° — Q is called minimal bad if there is no bad array b <’ a.

The following theorem is essentially due to Nash-Williams [13] although it
was first enunciated explicitly by Laver [9]. The proof we present here is due to
[1] (see [21] for a different pvoof).

(3.14) Theorem (Minimal Bad Array Lemma). Let <' be a partial ranking on
Q andlet a;: [AO]‘” — Q be a bad array. Then there is a minimal bad array
a<'a,.

Proof. Suppose that there is no minimal bad array beneath a,. We shall con-
struct a sequence of bad arrays (a,),c, (@, is the first uncountable ordi-
nal) with a,:[4,]° — Q and for a« < B, 4, C *4, C 4;, and for all
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Zec [AanAﬂ]‘”, ag(Z) < a (Z). (Here A C «+B means B—A4 finite). For suc-
cessor steps a+1, since @, is not a minimal bad array, we can choose a_ , with
A, € [Aa]w as required. Now suppose J < w, is a limit ordinal and we have
already got (a,),.;. First note that for any Z € [w]” {a<d6:Z C 4.} is fi-
nite, for otherwise if Z C 4, , where a, < a,,,then a, (Z)' > a, (Z)' >---,
contradicting the well-foundedness of <'. Let B € [AO]“’ be such that B C x4
for every a < d; such a B is easily constructed since J is countable. We de-
fine b: [B]® — Q by b(Z) = a (Z), where o = max{f: Z C 4 s} Then
b is well-defined and we claim that 1t is a bad array. Clearly the range of b
is countable and b~ (q) = Ua<5(aa (q) - Ua<ﬂ<z§[Aﬂ] ), hence b is an ar-
ray. To show it is bad suppose that b(Z) < b(Z—) for some Z € [B]”

b(Z) = a(Z) and b(Z-) = ay(Z-). Since Z— C Z it must be a <
and hence a,(Z-) <’ a,(Z-). But then a,(Z) < a,(Z-), contradicting the
badness of a_.

Now apply the successor step to b and get a;: [4 5]“’ — Q bad with a,(Z) <
b(Z) forall Z e [Aa]“’. Then ay4(Z) < a(Z) for every a < J and every
Ze[4;n Aa]w , thus completing the construction.

Next we construct a set Z € [w]“ and an increasing sequence a, of count-
able ordinals such that Z € [Aa"]w for every n € w. Let M, = w, and
assume that we have constructed distinct natural numbers z, ..., z,, ordi-
nals @) <--- < a, < w,, and uncountable sets w, = M; 2 M, 2 --- 2 M,
such that z, € 4, forany a € M, U{e,, ... ,a,}. Choose a,, , € M, such
that a,,, >a,,let B="/ 4, —{z,,...,z,},andlet i, € BnA, for each
a€EM,. Then there exists i € @ and an uncountable set M, , C M, such that
i, =i forall aEM Let z, ,=i.Finallyput Z={z,,...,z,,...}.

n+l° n+l1 n’
Now if Z and «, are as above, we have aal(Z)' > aaz(Z)’ > .-, contra-

dicting the well-foundedness of <'. 0O

(3.15) Lemma. If a = (a,),c; b = (by)ge, € Q°, and a £ b, then there
.exists v < A such that (a,),c, <b and (a )., O£b.

Proof. Given a £ b define & by induction as follows. Let h(a) be the least
B € p such that a, < b, and B> h(d) forall ' <a. Let v be the least «
such that h(a) is undefined. O

acy

(3.16) Theorem (Nash-Williams [14]). For a bad array a: [A]” — Q*" there
exists a witnessing bad array, i.e., a bad array c: [C1° — Q such that C € [A]”
and ¢(Z) is a term of a(Z) for any Z € [C]”. Hence if Q is bqo, then Q"
is bqo.

Proof [21]. For s,t € QO" define s <' ¢ to mean that s is an initial segment
of ¢; that s, if 1 =(t,),c, then s =(t,),c, for some u < 4. Clearly <’ isa

partial ranking and if g € Q isaterm of s € QO” and s <' ¢, then ¢ isaterm
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of t. Hence by the Minimal Bad Array Lemma (3.14) we may safely assume
that the array a is minimal bad.

Let a(Z) = (a,(Z)),c1(z) by (3.15) let v(Z) be such that (aa(Z))aey(Z)
< a(Z-) and (aa(z))a€u(2)+l £ a(Z-). Letting b(Z) = (aa(Z))aey(Z) we
see that b <’ a. By minimality of a, there is no bad array <' b. Hence,
by (3.11iv) there exists C € [4]° such that b(Z) < b(Z-) for every Z €
[C]”. Thus we have (@, (Z2))aer(z) < @(Z-))yep(z-y DUt (8,(Z)) ) (z)41 £
(@,(Z=)) aey(z-y41 forevery Z €[C]”. Thus c: [C]” — Q defined by ¢(Z) =
ay(z)(Z ) is the desired witnessing array. O

(3.17) Theorem. For every bad array a: [A]” — exp Q there exists a witnessing
bad array, i.e., a bad array c: [C]” — Q such that C € [A]° and c(Z) € a(Z)
for any Z € [C]”. Hence, if Q is bqo then expQ is bqo.

Proof. Given a bad array a: [4]° — expQ we may well-order each a(Z) C Q

to obtain a sequence b(Z) € QO” . The array b thus obtained is clearly bad,
hence the theorem follows from (3.16). O

4. QO-CATEGORIES

(4.1) Definition. A QO-category is a pair &/ = (¢ ,.#) such thattoeach y€ &
are associated sets Vy and Py , where Py - V; contains the empty sequence,
and # = {F(y,n):y,n € &}, where & (y,n) consists of some injective
multivalued mappings from Vy to V,7 such that

(4.1a) ide ' (y,y) forany y € &, and

(4.1b) if f, e (y,.7,) and f, € (y,,7,), then the composition f o f, €
& (y,.,7,) forany y,,3,,7,€8.

The elements of & are called objects and the elements of &/ (y,n) are called

& -morphisms or simply morphisms when no confusion is likely. To simplify

the notation we shall write y € &/ instead of y€&.

(4.2) Each QO-category & turns into a quasi-ordered set by the rule that
y <, n iff Z(y,n) # 3;if f € &(y,n) then we say that f is a mor-
phism corresponding to y <, n. Thus it makes sense to consider wqo and bqo
properties of QO-categories.

(4.3) Graph categories. A QO-category &/ will be called a graph category if for
each y € & there is a graph G, such that V, = V(Gy) and fed(y,n) iff f
is an expansion of Gy into Gﬂ . Let us remark that if &/ is a graph category,
then &/ is wqo (bqo) if and only if {G},: y € &} is wqo (bgo) by minors, no
matter what the sets Py are.

(4.4) Q-labelings. Let Q be a quasi-ordered set, &%/ a QO-category, and let

y €. A Q-labeling of y is a triple g = (Dg, g, &) such that Dg is an
arbitrary set and

g&:Dg—P, g:Dg— Q.
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We define a new QO-category &/[Q] of Q-labelings of elements of & as
follows. Its objects are pairs (Y, g), where y € & and g is a Q-labeling of

y. We put V(y,g) = Vy, P(y'g) =Py, and we define

feH[QN(y.g).(n,h))

if f € &(y,n) and there is a 1-1 mapping i: Dg — Dh such that for any
x € Dg

(4.42) 2(x) L h((x)), and

(4.4b) g(x) < h(1(x)).
We define Im(y, g) :=Im g = {g(x): x € Dg}.

(4.5) Multiple labelings. The QO-category & [Q][Q'] is isomorphic to & [QUQ']
(in the usual category theory sense).

Proof. The isomorphism is given by

(7.8).8)—(.h),

where h is a QUQ'-labeling of y defined by h = (Dh,h,h), where Dh =
DguDg¢’,

h(x)=2(x), x €Dg,
gx), xeDg,
h(x) =g(x), xeDg,

g (x), xeDg. O
(4.6) Remark. Definition (4.3) provides an important example of a QO-
category; another example is obtained by replacing the expansion by a homeo-
morphic embedding. The reader should also check that the quasi-ordered sets
introduced in (3.1) are in fact Q-labelings of some simpler QO-categories.

(4.7) New graph categories. Let &/ be a graph category; we wish to define a new
graph category &/ k where k >0 is an integer. We define y = (T, (y(t): t €
V(T))) e &% if T is a tree and .

(4.7a) y(t) e & forany te V(T),

(4.7b) (T, (Vy(,): t € V(T))) is a linked tree-decomposition of the graph
G:= U{Gym: teV(T)}, and

(4.7¢) for any (¢,t') € E(T) and any p € V(G)", |Vy(t) N Vy(,,)l < k and if
Vy(,) Nnv. . =set(p),then pe Py(,) N Py(,,) .

(1)
We put Gy =G, Vy =V (G), and

P :={pe V;: set(p) SV, for some t € V(T) and p € Py(l)for any such ¢}.

The & k-morphisms are defined by saying that &/ kisa graph category.
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(4.8) Tree-structures. Let &/ be a QO-category. A tree-structure over & is a
pair (T ,t), where T is atree and t = (t(t): t € V(T)) is such that

(1) = (7(t), b, (B y: (1) € E(T))),

where y(t) e &, p,, Py € Py(t) , and Py oy and p, have the same length.
We denote by N(T,T)(t) the length of p,.

Now we define a new QO-category (&) whose objects are tree-structures
over & and

Vir g ={t.v):teV(T),ve Vit
Pr o ={.v),....(t,v,)): L€ V(T), (v,,....v,) EP,,}.
It is convenient to use the following notation: if (T",7),(S,0) € F(¥) let
©(t) = (2(1), B, (P oy: (£, 1) €E(T))) (€ V(T)),
a(s) = (1(s) .4, . (4 : (5.5) €E(S))  (s€ V(S)).

This notation will be used throughout the paper.

We define #(&)((T,1),(S,0)) as the set of all injective multivalued map-
pings A from V. , to Vs which are of the form A(z,v) = {(p(¢t) , u): u e
f,(v)}, where

(4.8a) ¢: V(T)— V(S) is a homeomorphic embedding,

(4.8b) f, €L (y(t),n(p(t))) forany t € V(T),

(4.8¢) b 2, (1) oy TOT DY (¢.t') € E(T), p, A 4, forany te€
V(T),

(4.8d) N(T,T)(t) = N(S,a)(¢(t)) = N(s ,a)(¢*(t)) < N(S 'a)(S)
for any ¢ € V(T') and any s € [¢,(2), ¢()]s -

A tree-structure (T, 7) will be called a (> i, < k)-structure if i < N(T,t)(t)
< k for any ¢t € V(T)-{root(T)}, the length of p ., - is at most k, and if
|V(T)| > 1 then this length is i. The QO-category of (> i, < k)-structures
over & will be denoted by 5@51."(% ). The (> k, < k)-structures will be
called k-structures; the QO-category of k-structures over & will be denoted
by S(¥).

Let (T ,7) € (&) and let R be either a subtree of T or a branch of T;
for r € V(R) let

p(r)=((r), b, . (B, y: (r,7') € E(R))).

Then the tree-structure (R, p) € (&) will be called the restriction of (T , 1)
to R and will be denoted by (R, 7) for simplicity. Let us remark that (R, 1) <
(T, 1), namely via the identity morphism.

(4.9) P (), F5K(), and S () are QO-categories.

Proof. Since (4.1a) is clearly satisfied, we must verify (4.1b). So let 4 €
LT ,1),(S,0), ue LK)S.0), (R,p)), and we must show that
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n=Aopue L (K)(T,1), (R,p). Let (T, 1), (S, o) have the usual notation
and let

p(r)=(k(r), 2,, (2, o (r.7") € E(R))).
Let
AMt,v)={(p(t),u): u€ f,(v)} and
uis,w) ={(y(s),u): ue g (w)}
Then
n(t,v)={(x(), u): ueh(v)},
where x(¢) = w(¢(?)) and A, = f,0 g,. Hence conditions (4.8a) and (4.8b) are

cleary fulfilled for #. Let us remark that x_(¢) = v, (¢ (¢)). To prove (4.8¢c)
we observe that

LA by 4 =z
p(t.t') q(¢(t) 0(1")) (W(p(0) welp- (') — “(x() . x(1")

and similarly for p,. Hence

h, hy
Py ™ 2w ey Po ™

and (4.8c) follows. To prove (4.8d) let us write
Ny ot) = N o (9(0)) :NR L W(@(0) = N ,,)(x(t))
Nir o) = Nig y(@0,(0) = Ng_y(W.(9,(1)) = Ng_,(1,(t)), and
Nir (1) < Nis g)(8) < Nig, ()
for s €[p,(t),9(t)lg and r €[y, (s), w(s)]l, . Hence
Ner o(8) < Ny (1)

for all r € U{lw.(s), w(s)Ig: s € [0,(2), 9(D)]s} = [x,(¢), 2(¢)]x » which com-
pletes the proof. O

(4.10) The isomorphism of 5”25,."(% Q] and yfik(&/ Q.
To each ((T,7),8) € 5”25,."(% )[Q] corresponds a unique (T,7) €
S5 (A 1Q)), where

T(0)=((2(1). 8).p,. (D, 4 (t,1) € E(T)))
and g, = (Dg,,§,,&,) is defined by the rules
Dg, = {x € Dg: set(2(x)) C{(t.v): v €V, }}.
§=281Dg,
8, =21Dg,
The reader is invited to check that this defines an isomorphism between

Z S.k(.sa/ [Q] and £ <k [Q]) . Hence in the sequel we shall identify these
>i >i
QO-categories. In particular we define Im(T', 7') := Im(T , 7).
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(4.11) Well-behavedness. A QO-category %/ is said to be well-behaved if for any
quasi-ordered set Q and any bad array a: [4]” — %/[Q] such that Ima(Z) is
bqo for any Z € [4]“ there exist B € [4]” and a bad array b: [B]” — Q such
that b(Z) € Ima(Z) for any Z € [B]”. The array b is called a witnessing
array for a.

(4.12) Lemma. If &/ is well-behaved, then it is bqo.
Proof. Obvious. O

Now we are able to formulate the main result of this paper.

(4.13) Main Theorem. If & is a well-behaved graph category and k > 0 an
integer, then the graph category </ * is well-behaved.

Let us observe how (1.7) can be proved using this theorem. Let %/ be the
graph category whose objects are graphs with < k vertices; for G € & let
G;=G, Vy=V(G),and P,=V(G)".

(4.14) Proposition. %, is well-behaved for any k > 0.

Proof. Let a: [A]” — & [Q] be a bad array, a(Z) = (G(Z), g(Z)). We may
safely assume that V(G(Z)) =V, a fixed set (using (3.8)), and that Dg(Z) is

an ordinal for any Z € [4]”. Now each a(Z) can be encoded by an element

of
Card"VC) 5 (<9 x )@

(the first item encodes the number of edges with prescribed end vertices.) With
this identification the existence of a witnessing array follows from (3.11ii),
(3.11iii), and (3.16). O

(4.15) Proof of (1.7) (assuming (4.13)). Let G,,G,, ... be asin (1.7) and let
(T",X") be alinked tree-decomposition of G, of width < w . Then
Yi=(T".(G, I X:teV(T)) e, .

By (4.14), (4.13), (4.12), and (3.12) there are i, j suchthat i < j and y' <y’ .
Hence G, is isomorphic to a minor of Gj. , as desired. O

5. FIRST ENCODING LEMMA

In this section we prove the first auxiliary lemma, which enables us to replace
the QO-category . “[Q] by the QO-category .?Zsow «)[0].

(5.1) Let (y,8) = (T,(y(t): t € V(T))),g) € ¥“[Q] be given, let g =
(Dg,£2,8), and for any x € Dg let a vertex #(x) € V(T) be chosen in
such a way that set(&(x)) € P, . We define the encoding (T ,1),8) €
F5()Q] of (7,g) by the rule

(6) = (¥(1), b, , (P y: (2.0) € E(T))),
Z=(Dg.2.%).
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where (letting £(x) = (v, ...,v,))
&(x) = ((t(x),v)),....(t(x),v,)),
Py =Py > SUPy ) =VyyNVy, and

(5.1a) if ¢, ... ,¢
such that

, is a directed path in T, directed away from the root
Vi) Vol = Waay WVoi = K
and
Vi Wyl 2k (I=1,...n=1),
then there are k disjoint paths P, ..., P, in Gy such that P, joins the ith
term of Py, 1) with the ith term of Py _ 1y=P- Let us note that Im(y, g) =
Im((T",7).3).

(5.2) Lemma. Each (y,g) € &"[Q] has an encoding.

Proof. The encoding is almost fully determined; the only thing to specify is
how to arrange the intersections Vy(t) N Vy(t,) ((t,t') € E(T)) into sequences
to make condition (5.1a) fulfilled. This is done by induction. First we choose
Prooyr) 10 be the empty sequence. Now let (¢, t') € E(T), let X be the set of
edges of the path from root(7") to ¢, and suppose that D oy is arranged for
every edge (s, s’) €X.Let k=1|V,,nV, t)| If there is no edge (s,s') € X
such that |V, NV, | =k and |V, NV, |>k for every edge (r,r') of
the path from s to ¢, then arrange pt, = D¢ 1y arbitrarily. If there is one,
then choose (s,s') € X with |V, NV, | =k such that 5" is as close to
t as possible. By the linked property there are k disjoint paths each between

Vy(s nv. sy = set(p(s o) ) and V, 0V, . Noworder V,,NV, ., in such a way

that these paths would join the tth term of D oy with the ith term of Dy -
It is easily seen that this leads to an appropnate ordenng of V yN Vy(,,) m|

(5.3) First Encoding Lemma. Let (T ,7),%), ((S,0).h) eyjo’”(y)[g] be

encodings of (v,8), (n.,h) € &"[Q] respectively. If (T ,1),8) < ((S,0),h)
as members of yzsow(.sa/)[Q], then (y,g) < (n.h) as members of %" [Q].

Proof. Let
y=(T,(x(1):teV(T)), &=(Dg.2.8).
n=(S,(ns):s€V(s)), h=(Dh,h,h),
©(8) = (7(0) . b, (D py: (£, 1) € E(T))),
a(s) = (1(5) .4, . (ds : (5.5 € E(S))).
Let pt", p(it’t,), q;,q(is’s,) be the ith terms of p,, p, .y, 455 954y, TE-
spectively. We put N(f) := Ny ,(f). Let A € Z3"(#)QN((T.7).8).
((S,0),h)) and let A(t,v) = {(p(t),u): u € f(v)}. Then ¢, f, satisfy
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(4.8a)—(4.8d); in particular f, is an expansion of Gy(t) into GW(,)) and thus
there is an edge expansion ¢,: E(G. (1) )= E (G,,( ¢(t))) , and there is a 1-1 mapping
1: Dg — Dh such that for every x € Dg

(5.3a) g(x) 5 ha(x)),

(5.3b) &(x) < h((x)).

By (4.8d) and (5.1a) there exist for every (t t') € E(T) d1s10mt paths Q ,’
(i.= 1,...,N(t)) such that sz joins q(w) o) = qw_(l,) with qw.(,) o) =
Do)

(5.4) Claim. V(Q,) € U{Vyy: 0.(t') € [0(1).sls, 97 (1) € [o(£)) . s]5} for
every (t,t') € E(T).

Proof. 1t is easily seen that a path joining a vertex from Vn(s) to a vertex from
V, v must use any of the sets V, ., (s' €[s,s"]g). Now suppose that some
v € V(Q,) does not belong to the set on the right-hand side. But v € V,
for some s € .S, and we may safely assume that ¢(¢) € [s, (o*(t')]s . Then the

two subpaths of Q:, obtained by cutting Q:, at v have only v in common

and both must use a vertex from V. w0 Votouttry) ? which is impossible since

|V (o) ((o « ))| = k and any of the paths Q (j # i) also use a vertex from

no(1) ” V. -

We define

=S w):vev, yulJV@):v=rp}
and e(e) = ¢,(e) for e € E(G) and ¢ € V(T) such that e has both end
vertices in Vy(,) and ¢ is as close to root (T") as possible. Our aim is to show
that f € Z“[Q]((7.g).(n,h)). We proceed in a series of claims.
(5.5) Claim. Let t,t' € V(T) and v € V. If u € f(v)nV,
veV,, and ue S (v).
. 1 .

Proof. First let (t,t) € E(T). Since u € V”( N Vouy S 4 wo) N
Vato. ,)))n( (o) N Vw,))) by (2.5¢), there are lfj e{l,...,N({')} such
that q(w) o) = U= qw ) But since the paths Qt', are disjoint, it must be

o) > then

i=j. By (4 8¢c) u € f,(p, () and ue€ ft,(ptj,). Since f, is injective it follows

that v = pt "= pt, €V, and hence u € f,(v).

A similar proof works for (¢',t) € E(T). Now if t,{' e V(T) are arbltrary,

we take vertices Foslis-eesly =1, r('):ro, Fis e ;,_t suchthat r 7“1’

(r;,1;,) €EE(T) (i=0,...,n—1) and (r;,r;, ) €ET) (i= n—l)
. /!

By (2.5¢) u €V, ;1) N Vioirry) forall i=0,1,...,n, j _0,...,n and

J

(5.5) follows from the special case proved above. O
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(5.6) Claim. f is injective.

Proof. Let u € f(v)N f(v'). We have to distinguish three cases.

1. Let u € f,(v)N f,(v") for some ¢,¢' € V(T). Then u € f,(v) by (5.5)
and hence v =v’ by injectivity of f,, .

2. Let v’ = p'.,l = pf for (¢,,t,) € E(T) and u € f,(v)n V(Q,iz). First let
t, €lt,t,];; then u e Vo) N Vi) by (5.4) and (2.5¢). Hence u ef (v)
by (5.5) and’ u= ( (1) .0ty - BY (4.80) u = q ou(t)) € f,l(p 1) and
hence v = p, = v’ by the injectivity of [

Second, let ¢, € [¢,,¢],; then u € Vm.(“» Vot by (5.4) and (2.5¢).
Hence u € f,}(v) by (5.5) and u = qw) By (4.8¢) u = ¢7(12 € f,z( 2)) and
hence v = pt’2 =v’' by the injectivity of £,

3.Letv=p, ,, 0 = p(jt; i for (1,.1,) € E(T), (] .4,) € E(T) and let
ue V(Q('.tl ’tz))ﬂV(Q(j,; ,z;))' First assume that ¢, t' € [t2 ,t;]T It follows from
(5.4) and (2.5¢) that u € (V,,, y " V. ) Va0t M Vi ) hence there
are ie{l,...,N(,)} and j~e {1, ... ,N(tz)} such that U= qw(tl)'%(m) =

] 1
q(Jw(t;).rp-(t;))' Then u € f, (P, ) nf,;(p(’t; ”£>) = f, ()N ft;(v) and hence
v =v" by part 1 above.

It remains to consider the case when ¢, ,t; € [t; , 4,17, but we hope that the
reader is familiar enough with the techniques to supply the proof himself. O

(5.7) Claim. G, I f(v) is connected for every v € V,.

Proof. The proof is more or less obvious but tedious to write out in full, so we
merely sketch it. It follows from the following facts:
1. Each G" I f,(v) is connected by (2.3a);

2. the (oriented) graph spanned by {t € V(T): v € Vy(,)} in T is connected
by (2.5¢); and
3. ifve Vo N y(t, for (¢, t) € E(T), then v = p(” for some i and
Q, joins g,y . ) € Fi(V) 10 iy ooy €S (@) O
(5.8) Claim. ¢ is an edge-expansion.

Proof. By (2.5b), ¢ is well-defined. From the definition of ¢ and the injectivity
of g, we see that ¢ is injective; since each ¢, satisfies (2.3b) it follows that &
satisfies (2.3b). O

(5.9) Claim. #(x) L h(1(x)) for any x € Dg.

Proof. Immediate from (5.3a). O

From (5.6), (5.7), (5.8), and (5.3b) follows that f € & “[Q]((y,&).(n.h)),
which completes the proof of Lemma (5.3). O
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6. SECOND ENCODING LEMMA

The Second Encoding Lemma enables us to replace the QO-category
yfkw (&) by Z{(Sﬂfk’ﬁl (&7)) , which together with the result of the next section
makes our induction work.

(6.1) Definition. Put % = 5”:,:11( ) ; we shall define a mapping
B I A ) = F(B).
Let (T ,7) € .5’25,;”(.% ) and let

(1) = (2(0), B, (P y: (£.1) € E(T))).

Let us remove from 7 all edges (¢,¢') for which N(T‘t)(t )=k,andlet V(R)

denote the set of components of the resulting forest. For 7,7’ € V(R) we put
(r.r') € E(R) provided there are t € V(r), t € V(r') such that (¢,¢') € E(T)
and let root(R) be that component which contains root(7’). Then R thus
defined is a tree.

Every r € V(R) is again a tree in the obvious way; its root is its nearest
vertex from root (7).

For r € V(R) we define (r,a) by

a(t) = (7(t), P (P - (1,1) € E(r))),
where
p =D, if |V(r)| =1 ort # root(r),
= Dy for some { € V(r) such that (¢, t') € E(r) otherwise.

Clearly (r,0) € 55", (%) . We put

p(r)=((r.0).z,,(z, ,: (r.r') € E(R))),

where
z, ((root(r) v,), ..., (root(r),v,)),
=((t,uy), oo (tuy),
and t € V(r), v, ... ,vn,u1 ,u, are such that Prootr) = (vy,...,v,),
(t,t') € E(T) for some {' € V( ) and p, . = (4,,... ;). Finally we

define £, ((T ,7)) = (R, p).

(6.2) Lemma. Let (T',<"), (T*.7") € F5°(%); and let (R',p") =
E (T, 7)) (i=1,2). If (R',p") < (R*,p). then (T' ,7') < (T, 7).
Proof. Let

F) =G0, B (Bl (L) EET) (e V(T),

) =((r.a'). 2 (2} . (r.F)€ERY)  (reV(RY),
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where z and z, ,) are constructed from p: and pit t) as above. Let u €

F(B)(R",p'),(R*,p%); then u has the form u(r,(1,v)) = {(w(r),x): x
€ A,(t,v)} such that y and A, satisfy (4.8a)-(4.8c). Rewrmng these condi-
tions we get

(6.2a) y: V(R ) — V(Rz) is a homeomorphic embedding,

(6.2b) 4, € S5 (H)((r.a"). (w(r).c%)) forany r e V(R')

(6.2¢) zy, 0 2 20, ) .oy forany (r, ') € E(R"), z; % 2z}  foranyre
V(R").

Similarly, from (6.2b) it follows that A  has the form A (¢,v) = {(¢"(2) , u):
u € f/(v)}, where ¢" and f satisfy (4.8a)-(4.8d). Again, rewriting these
conditions we get

(6.2d) ¢": V(r) — V(w(r)) is a homeomorphic embedding,

(6.2¢) f € & (Y1), v (p(1))) forany 1€ V(r),

1 52
(6-2) Dy 1y = Py oy fOTany (¢,1) € E(r),

1’:1 % 2 for any t € V(r)-{root(r)}.
(628) Ny, (1) = Ny ,,z)w(t)) = Ny o0 (0. (0 )) Niyir) o2(s) for any
reV(RY, any t € V(r)-{root(r)}, and any s € [¢p_( ()

For r € V(R), t € V(r), and v € V,, we put (o(t) = ’(t), f,(v) =
f/(v), and A(t,v) = A,(t,v) = {(p(t),u): u € f,(v)}. We shall prove that
Ae F5X()(T' <", (T?, %), which will give the lemma. To this end we
must show that ¢ and f, satisfy (4.8a)-(4.8d), but first we prove that for any
(r.r'ye E(R")

(6.2h) p[l 1, p , where ¢ =root(r),

(6.21) (p(root( )) —root(t//(r)),

(6.2) Py 4y 4, Do)y » Where (t,') € E(T') are such that ¢ € V(r),
tevr',

(6.2k) ¢ (root(r)) =root (y,(r)).

To prove (6.2h) and (6.2i) let ¢t =root(r), s =root(y(r)), pll = (v,

v,), and ps2 = (u,,...,u,,); then zl ((t,v)),....(t,v,)) and 22() =
((s,u),....(s,u,)). By (6.2c) n =m, s = (p(t) and u, € f(v,) (i =
l,...,n), which proves (6.2h) and (6.21).

To prove (6.2j) and (6.2k) let (¢,t) € E(Tl) be such that ¢ € V(r) and
! € V(r'); then ¢ =root(r'). Let s € V(y(r)), s € V(y,(r')) be such

that (s,s') € E(T?); then s’ =root(y,(r')). Let p(lu,) = (v,,...,9,),
2 1 2
Py = (U, .cow). Then z, = ((t,v)), ... A6, 9))s Ziyiy ooy =

((s,u),....(s,u4,)). By (6.2¢c) s o(t) and “1 € f,(v;,) and by (6.21)
o(t') € V(w(r')) which implies that 5" = ¢_(¢'). This proves (6.2j). Further,

p.(root(r')) = ¢ (t') = s = root(w,(r'))
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and for r = root(Rl)

¢, (root(r)) = (p*(root(Tl)) = root(Tz) =root(y,(r)).

This proves (6.2k).

Now we are ready to show that ¢" and f; satisfy (4.8a)-(4.8d). To prove
(4.8a) let ¢,¢ ,¢, € V(Tl) be such that ¢, and ¢, are distinct successors of
t. Let t € V(r), t, € V(r)), and t, € V(r,), where r,r ,r, € V(Rl). We
must show that ¢ (¢,) # ¢,(¢,). If r, =r, then r =r =r, and the assertion
follows from (6.2d); if r, # r, then say r # r, and we have ¢ _(¢,) € V(y,(r)))
by (6.2k) and ¢, (t,) € V(y,(r,)) UV (¥(r)) by (6.2k) or (6.2d) depending on
whether or not 7 # r, . In any case

Vv (r)) n(V(y(n)uV(y(r)) =9
and (4.8a) follows.

Condition (4.8b) follows from (6.2¢), condition (4.8c) from (6.2f), (6.2h),
and (6.2j). Finally, to prove (4.8d) let ¢ € V(T") and let r € V(R') be such
that t € V(r). If t #root (r) then (4.8d) follows from (6.2g) and if V(Tl) =
{t} then it is obvious. So assume that |V(T")| > 1 and that ¢ =root (r). We
have by (6.2i) and (6.2K) for any s € V(T?)

. N(T, ',1)(1) =k= N(Tz ,,2)(r00t('//(r)) = N(Tz ,12)(¢(t)) )
k= N(Tz ,12)(1‘00'[(1//*(")) = N(Tz ﬂ)(fp,..(t)) )
k < N(T2 ’12)(s) ,

which completes the proof of the lemma. 0O

7. WELL-BEHAVEDNESS OF k-STRUCTURES
In this section we prove

(7.1) Theorem. If &/ is a well-behaved QO-category, then the QO-category
S () is well-behaved for any k > 0.

The idea we use is essentially due to Nash-Williams but we follow Laver’s
paper [9], slightly improved in various places.

Let us fix £ > 0 and a well-behaved QO-category & . Let % be an arbitrary
QO-category.

(7.2) Definition. Let T be a tree. The least ordinal y (if such exists) such that
there is a mapping h: V(T) — {root (T')} — y such that A(¢) > h(¢') for any
(t,t') € E(T), t #root{T) is called the rank of T and is denoted by rank (T).
It is easy to see that T has a rank if and only if it contains no infinite path and
that the rank of a branch of T distinct from 7 is smaller than the rank of T .

We introduce the following notation. Let 5”,(0(56’ ) denote the subcategory
of (&) consisting of all objects (T',1) € S (%) such that |V(T)| = 1
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and let # (%) denote the subcategory of ¥ (%) consisting of all objects
(T, 1) € S (F) such that T has a rank.

For (T.7),(S.0) € % (%#) we define (T ,7) < (S,0) if (T,7)=(S,.0)
< (S,0) for some s € V(S)-{root(S)}. Recall that 5 is the branch of S
at s and (S, o) is the restriction of (S,0) to S,. If (S,0) € #,(%F), then
rank(T) < rank(S), hence <’ is a partial ranking on M (F) .

(7.3) Lemma. 5”,(0(5&7 ) is well-behaved.
Proof. Let Q be a quasi-ordered set and let

a: [4]” - F()[Q]

be a bad array such that Ima(Z) € Q is bqo for any Z € [4]”. By (4.10) we
may safely assume that a(Z) € # (¥ [Q]) (Z €[A4]”). For Z € [A]” let

a(Z)=(T,.15), V(T,)={1},
T,(t)=((v2.8,) . p;. D), pP,EPY,,
8,=(Dg;.8;.8,).
Let us define h, = (Dh,, fzz ,hz) by
Dh,, = Dg, U {*},

h,(x) = g,(x) forx e Dg,,
=p, for x = *,

h,(x) = g,(x) forxeDg,,
= % for x = *.

Finally, put 5(Z) = (y,.h,) € &[Q U {*}]. We claim that b: [4]” —
& [Q U {+}] is a bad array. Indeed, let 5(Z) < b(Z-) for some Z € [4]”;
then there are an f € &/ (y,,7,_) and a 1-1 mapping i: Dh, — Dh,_ such
that (4.4a) and (4.4b) are satisfied. Clearly i(x) = * and i(x) € Dh,_ — {x}
for x € Dh, — {+}. If we define A:V,, , — Vg _ , by Mty v) =
{(t,_.u): u€ f(v)}, then it is easily seen that

AeZWIAN((Ty, 1) (T5_ . 15.)),

thus showing a contradiction a(Z) < a(Z-).

From (3.11ii) it follows that Imb(Z) C Ima(Z) U {x} is bqo for any Z €
[4]” . Hence by the well-behavedness of % there are C € [4]” and a witness-
ing bad array c:[C]” — QU {*} such that ¢(Z) € Imb(Z) (Z € [C]”). By
(3.11ii) we may assume that C is chosen in such a way that ¢(Z) € Q for any
Z €[C]”. Now

c(Z2)eImb(Z)n Q@ CIma(Z),

hence c¢ is the desired witnessing array. O
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(7.4) Definition. Let (7, 1), (S,0) € #(F), let A€ S (F)(T ,1).(S,0)),
let A(r,v) ={(p(t) . u): ue f,(v)}, and let R be a subtree of 7. We put for
te V(R)
B(T ,R)={reV(T)-V(R):(t,r)e E(T)},
C(S. R, A)={seV(S): (p(t).s) € E(S)
and s is followed by no ¢(t'), ¢ € V(T)}.

(7.5) Lemma. Let (T ,7), (S,0) € S(HF) with the usual notation (cf. (4.8)),
let T° be a subtree of T, and suppose that there is a morphism

P eFB(T . 1).(5,0)).

Let lo(t V) = {(gpo(t) JU)TUE f,o(v)} and suppose that for any t € V(TO) there
isa I-1 mapping J,: B(T , TO) - C/(S, T° ,A) such that forany r € B(T , TO)
f;O
(7-52) P 1y = Gigo(0) g1t
(7.5b) there is a morphism 1" € S (B)(T,.1),(S,,  0))-
Define A by

At,v)=2%(t,v) forteV(T’), veV,,,
=X(t,v) forteV(T), veV,, reB (T.T"), t,eV(T").

Then 1 e S (Z)(T ,t).(S,0)) and hence (T ,1) <(S,0).

Proof. We have to verify that A satisfies (4.8a)-(4.8d). Conditions (4.8a) and
(4.8b) follow immediately; condition (4.8c) follows from the corresponding
properties of A’ and A" and from (7.5a). Condition (4.8d) is vacuously true. O

(7.6) Definition. Let (7 ,7) € S (%) and let T, be a subtree of 7. Let
(T ,7) have the usual meaning. We shall define a new k-structure (7;,7;,) €
F(B[F(F)]) as follows:

T () = (7). &) b, (D 2 (1.1) € E(TY))),

where g, = (Dg,.8,.8,), Dg = B/(T ,T,), and for r € Dg,, §(r) = Py n
and g(r)=(T,, 7).
Let us remark that if (7',7) € #(Z), then (T, 1) € M (B (F)]).

(7.7) Lemma. If (Ty.tq,) < (Sy.05,) as elements of (B[S, (#)]), then
(T.1) <(S,0) as elements of %, (F).

Proof. Let the notation be as in (7.6) and let
05,() = ((1(8) . k) .4, .4 ) (5,5) € E(Sp)),

where h = (Dh_,h . h). Let ° € S (BLF(B))(T,.11), (S,.05)) and
let Ao(t,v) = {(wo(t) ,U):u € fto(v)} , where wo,flo satisfy (4.8a)-(4.8c). For



WELL-QUASI-ORDERING INFINITE GRAPHS 303

t € V(T,) the mapping f belongs to B[%(B)I(»(1). &), (n(e°(1) k),

hence fto € F(y(t),n(p(t))) and thereis a 1-1 mapping 1,: Dg, — tho(
that for any r € Dg,

flo
(7.72) by 1y = o) a(ry) » a4
(7.7b) (T, ,7) < (SW) ,0).
Let A’ € S (LT, 1), (SW) ,0)); defining A asin (7.5), we see that (7, 71) <
(S,0). O

(7.8) Lemma. ./, (&) is well-behaved.

Proof. Suppose that the lemma is false for some quasi-ordered set Q and that
a: [A]” - M, (% )[Q] is a bad array such that Ima(Z) is bqo for every Z €
[4]”, there is no witnessing bad array, and

0 such

I'(a): =sup{rank(T)+ 1: ((T, 1), g) = a(Z) for some Z € [4]"}

is the least possible.

By the Minimal Bad Array Lemma (3.14) there are B € [4]° and a minimal
bad array b: [B]” — A,(Z)[Q], b <"a. Then Imb(Z) C Ima(Z) is bqo for
any Z € [B]“, there is no witnessing array for b (since any witnessing array
for b is a witnessing array for a), and I'(b) =1(a).

Now consider b(Z) as an element of .#, («[Q]). For Z € [B]” let b(Z) =
(T ,7), let T, be the subtree of T consisting of the root of T', and let ¢(Z) =
(T, rTO) € %O(M[Q][%(M[Q])]). By (4.5) and (4.10) we can consider ¢ as
an array

c: [B1” = F () QUA(FQN];
by (7.7) ¢ 1is bad.

Our next aim is to show that Imc(Z) is bqo for any Z € [B]”. If for some
Z €[B]” c¢(Z) was not bqo, there would be a bad array

i [U1° — (QU, (¥ [Q)) NImc(Z).
By (3.11ii) we may safely assume that either
ii[I” - QNnImc(Z) CIma(Z),
which is impossible since Ima(Z) is bqo, or else
i:[N° - A (Z[Q])NImc(Z).

Now since I'(i) < I'(b) = I'(a), there is a witnessing bad array for i, thus
showing that Ima(Z) is not bqo, which is a contradiction. Hence Imc(Z) is
bqgo for any Z € [B]”.

By (7.3) there are D € [B]” and a witnessing bad array d: [D]” — QU
M (Z[Q]) for c. By (3.11ii) we may assume that either

d:[D]” - Q,
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in which case d is a witnessing array for a, or else
d: [D]° — A4,(#1Q)),

in which case d <’ b, contradicting the minimality of . Since both cases lead
to a contradiction, we are done. 0O

(7.9) Definition. A k-structure (T ,t) € &, (%) is called descentionally finite
if there is no infinite sequence ¢, ,¢,, ... € V(T) such that ¢, | € V(Tt,) and

(T, . 0)>(T,. 1) >

The set of descentionally finite k-structures will be denoted by % (%) . Let us
remark that the inclusion & (%)[Q] C F (Z[Q]) is generally false. That is
why Lemma (7.13) cannot be formulated by saying that % (&) is well-behaved.
Note that <’ is a partial ranking on % (&Z).

(7.10) Definition. Let (T, 7) € & (%) and let {T’"}me be a nondecreasing
sequence of subtrees of T such that each 7™ has a rank and U, V(T") =
V(T). We shall define k-structures (T ,1") € M (B[F(F)U{*}]). Let
7(¢) be as usual; for t € V(T") we put g = (Dg", 2" .&"), where

Dg" =B/(T,T")

t
and for r € Dg)"

am
gt (r) = p(t,r) ’
g'(r)= (T, ,t) if(T,,7)<(T,1),

= x otherwise.
Now let
(1) = (1), 7). B, By p: (£.1)EET™))  (teV(T™)
and put
O(T,7)={(T",7"): m € w} € exp M (B[F,(F) U{x}]).

It is worth noting that if (T™,7™) < (S¥,0"), then (T™,7) < (S¥.0).
(7.11) Lemma. If ®(T ,7) < ®(S,0) then (T ,1)<(S.0).
Proof. Let (T™,7™) and (T ,t) be as in (7.10). Let

a(s) = (1(5) .4, (4 y* (5.8 € E())),

&S ,0)={(S",d"): mecw},

" (s) = ((n(s) , ) . 4. (45 ¢t (5.5) € E(S™))),

h" = (DhT T B).
Let R be a subtree of T'. We say that a morphism A € & (%#)((R,1),(S,0))
of the form A(¢,v) = {(¢(t),u): u € f,(v)} is feasible if for any ¢ € V(R)
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there exists a 1-1 mapping J,: B,(T ,R) — C,(S,R,4) such that for any r €
B,(T,R)
t

(7:118) By 2 iy g0

(7.11b) if (T,,7) < (T ,7) then (T,,7) < (SJ,(,) ,0), and

(7.11¢c) if (T,,7) = (T, 1) then (SJ,(r),O') =(S,0).
We shall construct a morphism 4 € & (#)((T,),(S,0)) by induction. The
induction hypothesis at stage m is that there is a subtree R™ of T containing
T™ and a feasible morphism A" € % (#)((R",1).(S ,0)).

For m = 0 there exists by assumption an n such that

(T°,7") < (8", 0");
let 2 be the corresponding morphism and put R%: =T1°, A(t,v) ={@),u):
u € f(v)}. In particular, 1 € Z,(®)((R°,7),(S,0)) and for every t € V(R
there exists a 1-1 mapping 1,: Dgt0 — Dh;(t) such that for every r € Dg,0 =
B,(T,R%

(7.114) p, ) 40 0

(7.11e) if (T,,7) < (T ,7), then (7,,7) < (Sn(r) ,0), and

(7.11f) if (T, ,7) = (T ,7) then (SW) ,0)=(S,0).
Thus letting A0 = x, J,0 (r) =1,(r) we see that A% is feasible.

Now assume that on the mth step we have constructed a subtree R™ of
T containing T™ and a feasible morphism A" € Z (%&)((R".,7),(S,0)).
Our aim is to extend A™ to a feasible morphism

" e F(B)R™ 1) ,(S,0),

m+1 m+1

where R contains T

Let A"(¢,v) = {(¢"(t), u): u € f"(v)}. Since A" is feasible, there is
for any ¢ € V(R™) a 1-1 mapping J,": B(T ,R™) — C,(S,R™,A) satisfying
(7.11a)~(7.11c). By assumption there exists n € w such that (T, ™) <
(S",0"); let A(t,v) = {(@(¢),u): u € f,(v)} be the corresponding morphism.
In particular 1 € ,(&)(T™"" ,7),(S",0)) and for every ¢t € V(T™"") there

exists a 1-1 mapping 1,: Dgt’"+l — Dhg(t) such that for every r € Dg””’1 =

B,(T,T™") conditions (7.11d)—(7.11f) are satisfied.
Let ¢, € V(R™) and ry€ B, (T, R™). We distinguish two cases.

Case I (T, ,7) < (T,7). Then (T, ,7) < (S;m a); let A be the corre-
fo

r ro)’

sponding morphism. We put R(ry) := V(T ).

Case II: (T, ,7) = (T,t). Then (S o) =(S,0); let 1=17" be the

r J;g(ro) ’

morphism corresponding to (S,0) < (Sj,"(,o) ,0) and let
‘o

At ,v) = (@), u): uef v
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m+1

) and every reDg,m+1 =B(T,T™")

In particular, for every t € V(T ,
(71 lg) ( y(r)”’ O') S (Si(’t(’)) ’ (7) .

Welet R(ry) := V(T, )N V(T™"). The composition A" := 7o is a morphism
showing that (T"'Jrl ,T) < (SJ,,,(,O) ,0). We claim that for every ¢t € V(T'"“)
o

and every r € Dg"™*' = B(T , T™"")

7T g

(7.11h) P, )" =" A5G0 5.0

(7.11) if (T, ,1) < (T ,7) then (T, ,7) < (Sﬁ () ,0), and

(7.113) if (T,,r) =(T,1) then (S$ (") ,0)=(S,0).
Indeed, (7.11h) follows from (7.11d) and the fact that 7 satisfies (4.8¢c), (7.111)

follows from (7.11e) and (7.11g), and (7.11j) follows from (7.11f), (7.11g), and
the inequalities

t

(S.0) < (S, 0) < (S5, ) S (55 () » 0) £ (S, 0).
Now whichever case occurs, we let
R™ =T 1 (W(R™) UJ{R(ry): t,€ V(R™), re B, (T, R™)}),
A" vy =4"(,v) forteV(R™,

A"
=A"(t,v) forteR(ry), ryeB, (T ,R"), t,eV(R"),
Iy =) forteV(R™), re B(T ,R™"),
=7.4(r)) forteV(R™-V(R™), re B(T ,R™).

It follows from Lemma (7.5) (applied to T = R™', T =R™, 2=1") and
condition (7.11a) that ™' € F(®)((R™"',1),(S,0)). To show that """
is feasible we must verify that Jm+l satisfies (7.11a)-(7.11¢). But that fol-
lows easily from (7.11h)-(7.11j) and the fact that J,'" satisfies (7.11a)-(7.11c),

completing the induction.
Now for t € V(T) and v € ¥, let m be such that ¢ € V(R™); we put

At,v)=2A"(t,v). Clearly A e 7 (Z)(T,1),(S,0)). O
(7.12) Definition. For (T ,1) € # (&) we define its height as follows:
ht(T,7)=0 if(T,,7)=(T,7) foreveryt e V(T)
=sup{ht(7,, 1)+ 1: (T,, 7)< (T ,1),t € V(T)}.
It follows from the definition of % (%) that ht(T , 1) is well-defined for every
(T.,1)e F(F).

(7.13) Lemma. If a: [A]” — Z (¥ [Q)) is a bad array such that Ima(Z) is bqo
for any Z € [A]”, then there exists a witnessing bad array for a.

Proof. Suppose that the lemma is false and let us take a bad array a: [4]” —
#. (¥ [Q]) such that Ima(Z) is bqo forevery Z € [A4]“, there is no witnessing
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bad array, and
A(a) :=sup{ht(a(Z)) + 1: Z € [4]"}

is the least possible. By the Minimal Bad Array Lemma (3.14) there are B €
[4]” and a minimal bad array b: [B]” — #,(«/[Q]), b <"a. Then Imb(Z) C
Ima(Z) is bqo for any Z € [B]“, there is no witnessing array for b, and
A(b) = A(a).

Let ¢(Z) = ®(b(Z)) € exp 4 (K [QNF (F QD) U{*}]). By (7.11) ¢ is a
bad array, and by (3.17) there are D € [B]” and a witnessing bad array

d: D] — A (A [QIF (Z[Q]) U{*}]).
Now we consider 4 as an array
d: [D]” — A,()[QUF(H[QIU{*}].

Next we show that Imd(Z) is bgo for any Z € [D]”. If for some Z € [D]”
d(Z) was not bqo, there would be a bad array

it [I1” = (QUF(H[QNU{*}) NImd(Z).
By (3.11ii) we may safely assume that either
i:[I” - QNnImd(Z) CIma(Z),

which is impossible since Ima(Z) is bqo, or

i [11° = {+},
which is impossible since i is bad, or

i: [11° - Z (¥ [Ima(Z)])NImd(Z).
Now since A(i) < A(b) = A(a) there is a witnessing bad array for i, thus
giving a contradiction to Ima(Z) being bqo. Hence Imd(Z) is bgo for any
Z e [D]”.
By (7.8) there are E € [D]” and a witnessing bad array e for d,
e: [E]” = QUZ (L [Q)U{*}.

By (3.11i1) we may assume that

e:[E]” - Q,
in which case e is a witnessing array for a, or

e: [E]" — F(« Q).

in which case e <’ a, or

e: [E]” — {x}

which is impossible since ¢ is bad. Since all possibilities lead to a contradiction,
Lemma (7.13) is proved. O
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(7.14) Definition. Let (T, 1) € & (%) and let {T'"}mew be as in (7.10). We
shall define k-structures (T ,"1) € M, (B[F (F)U{*}]) as in (7.10). For
teV(T™) we put

"g,=(D"g,."8,."8).
where D" g = B,(T,T™), and for re D"g,

mg,(r) = p(,,,-) ,

"g(r)=(T, ,v) if(T, ,1)€F(P),
= % otherwise.

Now let

"2(6) = ((1(1)."8) . P, (P py: (0, ) EETT))) (e V(T™)
and put
W(T,1)={(T","1): m € w} € exp M (B[F(F)U{*}]).

(7.15) Lemma. Let (T ,1), (S.0) € F(F) - F(F) and let ¥(T ,1) <
¥(S,,0) forany s € V(S) such that (S;,0) ¢ #(F). Then (T ,1)<(S,0).

Proof. Let (T ,t) and (T™,™7) be as in (7.14). Let

a(s) = (n(s).4,. (4, y: (s.5) €ES))),

¥(S,0)={(S","a): mew},

"a(s) = ((n(s)."h,) .4y, (4 o7 (5.8)) € ES™)),

"h =(D"h,,"h ,"h,).
For the purpose of this proof we change the definition of “feasible” as follows.
Let R be a subtree of 7. We say that a morphism A € %, (#)((R,1),(S,0))
of the form A(z,v) = {(¢(¢) . u): u € f,(v)} is feasible if for any ¢t € V(R)

there exists a 1-1 mapping J,: B,(T ,R) — C,(S,R,4) such that for any r €
B(T ,R)

(7.152) p, ,, < (1) Ji(r) >

(7.15b) if (T, ,1) € # (%) then (T,,1) < (S, 0),and

(7.15¢) if (T, ,7) ¢ F# (&) then (S, , .0) ¢ F(F).
We will construct a morphism 4 € .% (%)((T,t),(S,0)) by induction as in
the proof of (7.11). The induction hypothesis at stage m 1is that there is a
subtree R” of T containing 7" and a feasible morphism

A" e Z(B)(R" 7). (S, ).
For m = 0 there exists by assumption an »n such that

(1°,%) < (8", 0);
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let A° be the corresponding morphism and put R:=T1°, /10(t ,0)={(@(t) ,u):
u € f (v)}. Inparticular A° € Z,(Z)((R",7),(S,0)) and forevery t € V(R°)
there exists a 1-1 mapping 1,: Dog, — D"ha(,) such that for every r € Dogt =
B(T,R%

f
(7.15d) Py .y = 400 1)) -
(7.15¢) if (T,,1) € F(F) then (T,,1) < (S, 0), and
(7.15§) if (T, ,1) ¢ S (F) then (S, (, ,0) ¢ F(F).
Thus letting J, (r) =1,(r) we see that A% is feasible.

Now assume that on the m th step we have constructed a subtree R™ of T
containing 7" and a feasible morphism 1" € %, (%)((R™,1).(S,0)). Our
aim is to extend 4™ to a feasible morphism

e F(B)(R™,1),(S,0)),

m+1 m+1

where R contains T

Let A"(¢t,v) = {(¢™(?), u). u € f"(v)}. Since A" is feasible, there exists
for any t € V(R™) a 1-1 mapping J;": B,(T ,R™) — C(S,R™,A™) satisfying
(7.152)=(7.15¢). Let t, € V(R™) and ry € B, (T ,R™). We distinguish two
cases.
Case I: (T, ,7) € F(F). Then (T, T S (S s ), 0); let A" be the corre-
sponding morphism. We let R(ry) := V(T, ).
CaseIl: (T, ,7) ¢ F(#). Then (S i) 0) & F(F).
By assumption there exists n € @ sucﬁ that

(Tm+l m+1 )<( ) 5’),

where (S,6) = (S iy 0) et A°(t,v) = {(P(t),u): u € f,(v)} be the cor-
responding morphism. In particular A" € F(Z)(T 7" , 1), (S ) ,0)) and

m+1

for every t € V(T""") there exists a 1-1 mapping 1,: Dm“gt - D" ha(,) such

that for every r € D'"”g, conditions (7.15d)—(7.15f) are satisfied. We put
R(ry) =V(T,)nV(T™").
Now whichever case occurs, we let

R™ =T (W(R™U|J{R(rp): t, € V(R™), r,€ B, (T ,R™)},
A" vy ="t ,v) forte VR™), ve Voo
=A"(t,v) forteR(ry), ve Voo
+1 +1
I ry=J"(r) forteV(R"™), reB(T ,R""),
=1(r) forteV(R™")-V(R™), re B(T ,R™"),

It follows from Lemma (7.5) (applied to T = R™"', T° = R™, A = ")
and condition (7.15a) that """ € F(&)(R™"',1), (S,0)). To show that
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A" s feasible we must verify that J" *1 satisfies (7.15a)—(7.15¢c). But that

follows from (7.15d)—-(7.15f) and the fact that J,'" satisfies (7.15a)-(7.15c).
This completes the construction.
Now for ¢ € V(T) and v € V,,, let m be such that ¢ € V(R™); we put

At,v) =A"(t,v). Clearly A€ F(#)(T,1),(S,0)). O

(7.16) Lemma. If (T ,t) € £ (¥ [Q]) and Im(T ,t) is bgo, then (T ,1) €
SACA())F

Proof. Let (T 1) € S (H[Q]) — Z(¥[Q]) and let Q' = Im(T, 1) be bqo.
We may assume that for ¢t € V(T) the trees (T,)'" are chosen in such a way

that (T,)” = T,nT". Then for ¢,r € V(T) such that r € V(T,) we have
W(T,,t) <¥(T,, 1), namely via the identity embedding. Since

{(¥(T,,7): te V(T)} Cexp M (Z[QNF(Z QDU {*}]),

it follows from (4.10), (7.8), (7.13), and results of §3 that this set is bqo, in
particular well-founded. Thus there exists ¢ € V(T) such that (T,,7) ¢
F(L[Q]), but forany r € V(T,)—{t} such that (T,,7) ¢ F (Z[Q]) it holds
¥(T,,t) £ ¥(T,,7) (and hence ¥(T,,7) = y(T,,7)). Fix such a ¢. Since
(T,,7) ¢ F(H[Q]), there exists s € V(T,) — {¢t} such that (7,,7) < (T}, 1)
and (T,,1) ¢ F(¥[Q]). But (7.15) implies (7,,7) < (7,,7), which is a
contradiction. 0O

Now we are ready to prove (7.1). Let
a: [A]” - S (#)[Q]
be a bad array such that Ima(Z) is bqo for any Z € [4]“. If we consider each
a(Z) as an element of (¥ [Q]), it follows by (7.16) that a is a bad array
a: [4]° - Z(Z[Q)).

Now (7.13) gives the desired witnessing array.

8. PROOF OF THE MAIN THEOREM

(8.1) Lemma. If &/ is a well-behaved QO-category and 0 < i < w, then the
QO-category 5’;’."’(% ) is well-behaved.
Proof. We proceed by induction on w —i. For i = w it follows from (7.1),
so let the lemma hold true for i + 1 and let
a: [4]” - 75" (#)(Q]
be a bad array such that Ima(Z) is bqo for any Z € [4]”. Since according to
(4.10)
S0 = F5 (A Q)
and § .
FUSS A QD) = F(FZ, ()R]
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we may define an array

b: [4]Y = F(H >,+1( )[Q]

by the rule b(Z) = E,(a(Z)) . By the Second Encoding Lemma (6.2) b is bad.
Hence by the induction hypothesis and Theorem (7.1) there exist C € [4]” and
the desired witnessing array c: [C]Y — Q. O

(8.2) Theorem. If & is well-behaved, then 5”;0"’ (/) is well-behaved.
(8.3) Proof of (4.13). Let &/ be a well-behaved graph category and Q a quasi-
ordered set. Let

a: [4]° - [Q]
be a bad array such that Ima(Z) is bqo for every Z € [4]”. For Z € [4]”
b(Z) be an encoding of a(Z). By the First Encoding Lemma (5.3)

B: [4]” — %" ()[Q]

is a bad array and hence by Theorem (8.2) there exist C € [4]“ and a witnessing
array c: [C]” — Q, which is the desired witnessing array for a. This completes
the proof of (4.13).

9. FRIEDMAN’S GAP CONDITION

(9.1) Definition. Let n be a natural number and let ., be the QO-category
whose objects are pairs y = (T ,/), where T isatreeand /: V(T) — {1,
n}, Vy = V(T), and Py consists of the empty sequence and all one-element
sequences of elements of Vy , and with morphisms defined by saying that ¢ €
ST, 1) (Ty 1)) if

(9.1a) ¢: V(T,) — V(T,) is a homeomorphic embedding, and

(9.16) 1,(1) = Ly(p(1) = Ly(0,(1)) < Ly(s) for every s € [p, (1), p(1)].
Condition (9.1b) is called the gap condition. Let S’jfm be the subcategory of
all y such that Vy is finite. Friedman has shown that Q wqo implies Zlﬁ“[Q]
wqo (cf. [22]). From our results it follows that . is well-behaved.

(9.2) Theorem. The QO-category %, is well-behaved.

Proof. Let &/ be the QO-category whose only object is y and Vy ={1,...,n},
P, ={py,p,,....p,},where p,=(1,...,i). Toeach ((T.l).g) € Z[0]

we assign a tree structure ((7,7),g') € 5”;0" (&)[Q U {*}] as follows:

! / NG

w(6)= (7.0, (Pyy: (1, 1) €ET))), & =(Dg .8 .%).

where

P="Dyy # root(T),
= empty sequence, otherwise,
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Dg' = Dgu {x} and for x € Dg’

2'(x)=((z, 1)) if x € Dg and 2(x) = (1),
= empty sequence if x € Dg and g(x) is the empty sequence,
= ((root(T'), l(root(T)))) if x = *,

g(x)=%(x) ifxeDg,
= * if x =x*.
We claim that if ((T,7),g’) and ((S,0),h’) are assigned to ((T',!), g) and
((S, k), h), respectively, then (T ,7),g') < ((S,0),h') implies (T ,l),g) <
((S,k),h). Indeed, let A be a morphism corresponding to the first relation.
Then A(t,v) = {(¢(t),v)}, where ¢: V(T) — V(S) is a homeomorphic em-
bedding, and there exists 1: Dg’ — Dh' such that (4.4a) and (4.4b) are satisfied.
Clearly i(*) = *, hence ¢(root(T")) = root(S) and [/(root(T)) = k(root(S)).
For t # root(T) we have
I(t) = N (1) = Ng . (9(1)) = k(p(2))

= (S ,a)(¢*(t)) = k(¢*(t))

< N _o)(s) = k(s)
forany s € [p,(¢), ¢(2)]g by (4.8c). Thus ¢ corresponds to the second relation
and the-claim is proved. The theorem now follows from (8.2). O

10. CONJECTURES

(10.1) For a QO-category & consider the following statements:
(i) @ bqo implies & [Q] bqo,
(ii) & is well-behaved,
(iii) every bad array a: [4]° — [Q] admits a witnessing array.
Clearly (iii) = (ii) = (i). It seems to be an interesting technical question
whether the converse implications hold or not.

(10.2) It is asked in [1] whether the QO-category of infinite trees (with home-
omorphic embeddings as morphisms) satisfies (10.1iii). It follows from (7.1)
that it is well-behaved, but the method used probably cannot give more.

Conjecture. If a QO-category & satisfies (10.1iii) and k > 0, then the QO-
category 5”250"(5% ) satisfies (10.1iii).

(10.3) Conjecture. The class of countable graphs is wqo by minors.
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