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wo edge-cuts 0.X,0Y do not cross if:
XCYor XCY r XcCY or XCCYF*



Example of a cross-free family of edge-cuts:

Let T" be a tree, and (W;:t € V(T')) a partition of
V(G). Every edge of T defines a cut; the collection of
cuts thus obtained is cross-free.

OO
O #CO
>
>

O p> e D
0



A separation of a graph G is a pair (A, B) such that
AU B = V(@) and there is no edge between A — B and
B — A.
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A separation of a graph G is a pair (A, B) such that
AU B = V(@) and there is no edge between A — B and
B — A.

Two separations (A, B) and (C, D) do not cross if:
ACCand BOD,orACD and B DO C, or
ADCand BC D,orAD D and B C C.



A family of cross-free separations gives rise to a
tree-decompositon.
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A tree-decomposition of a graph G is (T, W), where T is
atree and W = (W, :t € V(T)) satisfies

(T1) Uievrm W = VI(G),

(__2) if t € T[t, t//], then Wt a Wt” C Wt/,

(T3) Vuv € E(G)3t € V(T) s.t. u,v € W,

The width is max(|W;| —1:t € V(T)).

The tree-width of G is the minimum width of a
tree-decomposition of G.
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e tw(G) <1< G is a forest
o tw(G) <2 < G is series-parallel

e tw(G) < 3 < no minor isomorphic to:

K5, 5-prism, octahedron, Vg
o tw(K, =n—1
e tree-width is minor-monotone

e The k£ X k grid has tree-width &






Consider all functions ¢ mapping graphs into integers
such that

(1) ¢(Kn) =n—1,
(2) G minor of H = ¢(G) < ¢(H),

(3) If G N H is a clique, then
O(GUH) = max{¢(G), p(H)}.

Order such functions by ¢ < ¢ if ¢(G) < ¥ (G) for all G.

THEOREM (Halin) Tree-width is the maximum element
In the above poset.



A haven (3 of order k in G assigns to every X € [V (G)]<*
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Cops and robbers. Fix a graph G and an integer k.
There are k cops, they move slowly in helicopters. There
Is a robber, who moves infinitely fast along cop-free
paths. He can see a helicopter landing, and can run to a
safe place before the chopper lands.
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Cops and robbers. Fix a graph G and an integer k.
There are k cops, they move slowly in helicopters. There
Is a robber, who moves infinitely fast along cop-free
paths. He can see a helicopter landing, and can run to a
safe place before the chopper lands.

Fact. A tree-decomposition of width £ — 1 gives a search
strategy for k cops.

Fact. A haven gives an escape strategy for the robber.

THEOREM (Seymour, RT) G has a haven of order k <
(G has tree-with at least £ — 1

COR Search strategy = monotone search strategy.
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HEOREM (Robertson, Seymour, RT) Every graph of
tree-width > 2029” has a g X g grid minor.

THEOREM (Bodlaender) For every k there is a
linear-time algorithm to decide whether tw(G) < k.

THEOREM (Arnborg, Proskurowski, .. .)

Many problems can be solved in linear time when
restricted to graphs of bounded tree-width.



Tree-width is useful in
e theory
e design of theoretically fast algorithms

e practical computations



FEEDBACK VERTEX-SET FOR FIXED k&
INSTANCE A graph G

QUESTION Is there a set X C V(G) such that | X| < k
and G\ X is acyclic?

ALGORITHM If tw(G) is small use bounded tree-width
methods. Otherwise answer “no”. That's correct,
because big tree-width = big grid = k + 1 disjoint
circuits = X does not exist.




k DISJOINT PATHS IN PLANAR GRAPHS

INSTANCE A planar graph G, vertices
81,82,...,Sk,tl,tg,...,tk of G

QUESTION Are there disjoint paths P, .., P, such that
P; has ends s; and ¢;7
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k DISJOINT PATHS IN PLANAR GRAPHS

INSTANCE A planar graph G, vertices
81,89, ...,8k, b1,ta, ..., T of G

QUESTION Are there disjoint paths P, .., P, such that
P; has ends s; and ¢;7

ALGORITHM tw(G) small = bounded tree-width
methods. Otherwise big grid minor = big grid minor
with the terminals outside. The middle vertex of this grid
minor can be deleted, without affecting the feasibility of
the problem.



APPLICATIONS

THEOREM (Erdos, Pésa) There exists a function f such
that every graph has either £ disjoint cycles, or a set X

of at most f(k) vertices such that G\ X is acyclic.

THEOREM (Robertson, Seymour) For every planar
graph H there exists a function f such that every graph

has either k disjoint H minors, or a set X of at most
f(k) vertices such that G\ X has no H minor.

False for every nonplanar graph H. Open for
subdivisions.



HEOREM (Oporowski, Oxley, RT) There exists a
function f such that every 3-connected graph on at least
f(t) vertices has a minor isomorphic to W; or K.

HEOREM (Oporowski, Oxley, RT) There exists a
function f such that every 4-connected graph on at least

f(t) vertices has a minor isomorphic to D;, M;, Oy, or
Kyy.

THEOREM (Ding, Oporowski, RT, Vertigan) There
exists a function f such that every 4-connected

nonplanar graph on at least f(¢) vertices has a minor
isomorphic to D;, M;, or K.



COROLLARY (Ding, Oporowski, RT, Vertigan) There
exists a constant c such that every minimal graph of
crossing number at least two on at least ¢ vertices
belongs to a well-defined family of graphs.



HEOREM (Arnborg, Proskurowski)

Let P(G, Z) be some information about a graph G and
set Z C V(G) such that

(i) P(G,Z) can be computed in constant time if
V(G)|<k+1

(i) if Z" C Z then P(G, Z") can be computed from
P(G,Z) in constant time

(iii) if (A, B) is a separation of G with AN B C Z, then
P(G,Z) can be computed from

P(G1A,ANZ),P(G | B,BNZ) in constant time.

Then P(G, () can be computed in linear time if a
tree-decomposition of GG of width < k is given.



EXAMPLE. For A C V(G), let ay be the maximum
cardinality of an independent set I C V((G) with
INZ=A. Let P(G,Z) = (as: AC 2).



M = all Hermitian matrices A = (a;;) s.t. a;; # 0 if
i,J are adjacent and a; ; = 0 if 2 # 7 and not adjacent.
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M = all Hermitian matrices A = (a;;) s.t. a;; # 0 if
i,J are adjacent and a; ; = 0 if 2 # 7 and not adjacent.

W, = all positive semi-definite Hermitian matrices with
¢-dimensional kernel

DEFINITION (Colin de Verdiere) Let v(G) be the
maximum ¢ such that there exists A € Mg N W, such
that those manifolds intersect transversally at A.

THEOREM (Colin de Verdiere) v(G) < tw'(G), where
tw'(G) is a slight variation of tree-width s.t.
tw(G) < tw'(G) < tw(G) + 1.



A path decomposition of G is a sequence
Wi, Wsy, ..., W, such that

(i) JW; = V(G), and every edge has both ends in some
W, and

(i) if i <" <" then W; N W C Wy
The width of Wyq,..., W, is
max{|W;| —1:1<i<n}

The path-width of GG is the minimum width of a
path-decomposition.
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HISTORY Originally due to Robertson and Seymour.
Current bound by Bienstock, Robertson, Seymour, RT.
New proof by Diestel.
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HM F forest, pw(G) > |V(F)| -1 = F <,, G.

Diestel's proof. Let V(F') = {vy,vs,..., U} s.t. v; is
adjacent to < 1w, for j <i. Let L={(A,B): G| B
has no path-decomposition Wy, Ws, ..., W; of width
< k—2with AN B C Wl}

Choose © € {0,1,...,k} and (A, B) € L such that

(i) G 1 A has a minor isomorphic to F' | {vy,...,v;} s.t.
each “node” intersects A N B in precisely one vertex

(i) 2 (A, B")e LwithAC A", BD B, |A'NB’| < |[ANB,
(iii) 4 is maximum subject to (i) and (ii)

(iv) |B] is minimum subject to (i), (ii), (iii)



CLAIM # (A", B') € L with AC A", BD B/,
ANB|<|ANB|.



PROOF OF CLAIM. Suppose not. By (ii) equality holds.



PROOF OF THM Let 5 be the only index < ¢ such that
viy1 ~ v;. Pick any vertex of B — A adjacent to the
unique vertex of AN B that belongs to the v;-node.




Let (7', \W) be a tree-decomposition of G and t € V(7).
The torso at ¢t is G | W; plus all edges with both ends in
W, N W, for some t' ~ t.

(T, W) is a tree-decomposion over F if
every torso belongs to F.



HOW TO USE A HAVEN?

REMINDER A haven 3 of order k£ in D assigns to every
X € [V(D)]=" the vertex-set of a strong component of

D\ X such that
(H) X CY € [V(D)]*F = B(Y) C B(X).
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_et 3 be a haven of order k in G. Let X C V(G) with
X| < k/2 and B(X) minimum. Then X is “externally
inked":

BX+2)=p(Y)




Let > be a surface with k holes, (1, ..., C} their
boundaries ( “cuffs").

A graph GG can be nearly embedded in X if GG has a set
X of at most k vertices such that G\ X can be written
as GoU G U ...UGy, where for 7 > 0:

1. Gy has an embedding in X

2. (G; are pairwise disjoint

4. G; has a path decomposition (X,),cp, of width < £,
s.t. u € X, for all u € U; (the order on U; given by C;)

NOTATION: G € F(X)



>, — k = > with £ holes removed

>,y = orientable surface of largest genus that does not
embed H

>,y same for non-orientable

HEOREM (Robertson, Seymour)

For every finite graph H there exists £k > 0 such that
every graph with no H minor has a tree-decomposition
over

F(Su — k) UFE, — k).



THEOREM (Halin) A graph has no ray (= 1-way infinite
path) < it has a tree-decomposition (7', W) such that T°
s rayless and each W}, is finite.

With Robertson and Seymour we characterize graphs
with no K,. minor, no T}, subdivision, or no half-grid
minor. Havens and searching play an important role.

SAMPLE RESULT. A graph has no Ty,-minor < it has
no tree-decomposition (7', W), where T is rayless and
each W, is at most countable.



THEOREM (RT) There exists a sequence Gy, Go, ... of

(uncountable) graphs such that for ¢ < j GG, has no G
minor.

CONJECTURE True for countable graphs.

THEOREM (RT) Known when G is finite and planar.

FACT Not known even when every component is finite.



LEMMA (K¥iz, RT) Let F be “compact” (if every finite
subgraph of GG belongs to F, then G € F). If every finite
subgraph of G has a tree-decomposition over F, then so

does (.



HEOREM (Diestel, Thomas) For every finite graph H
there exists an integer k such that every (infinite) graph
with no H minor has a tree-decomposition over

F(Sm—k)UFE, — k).



A graph G is plane with one vortex if for some k it has a
near-embedding G, G1, .., G in the sphere with £ holes,
where G, ..., Gy are null.

A tree-dec. (I, W) has finite adhesion if
W, N Wyl is bounded (t' ~ t),

e for every t,

e for every ray t1,to,...In T,
lim inf ‘Wtz M Wtz’—|—1| Is finite.

THEOREM (Diestel, Thomas) An infinite graph has no
Ky,-minor if and only if it has a tree-decomposition of
finite adhesion over plane graphs with at most one
vortex.



HEOREM (Robertson, Seymour, RT)

Every planar graph with no minor isomorphic to a g X g
grid has tree-width < 5g.

PROOF Suppose GG has tree-width > 5g. Then GG has a
haven 5 of order > 5¢g. Take a planar drawing of G and
a circular cutset X of order < 4g with 3(X) inside X
and with inside of X minimal.



