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MOTIVATION

δX = edges with one end in X, one in V (G)−X

Two edge-cuts δX, δY do not cross if:

X ⊆ Y or X ⊆ Y c or Xc ⊆ Y or Xc ⊆ Y c.
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Example of a cross-free family of edge-cuts:

Let T be a tree, and (Wt : t ∈ V (T )) a partition of

V (G). Every edge of T defines a cut; the collection of

cuts thus obtained is cross-free.
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A separation of a graph G is a pair (A,B) such that

A ∪B = V (G) and there is no edge between A−B and

B −A.
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A family of cross-free separations gives rise to a

tree-decompositon.
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A tree-decomposition of a graph G is (T,W ), where T is

a tree and W = (Wt : t ∈ V (T )) satisfies

(T1)
⋃
t∈V (T )Wt = V (G),

(T2) if t′ ∈ T [t, t′′], then Wt ∩Wt′′ ⊆Wt′,

(T3) ∀uv ∈ E(G)∃t ∈ V (T ) s.t. u, v ∈Wt.

The width is max(|Wt| − 1 : t ∈ V (T )).

The tree-width of G is the minimum width of a

tree-decomposition of G.
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• tw(G) ≤ 1 ⇔ G is a forest
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• tw(G) ≤ 1 ⇔ G is a forest

• tw(G) ≤ 2 ⇔ G is series-parallel

• tw(G) ≤ 3 ⇔ no minor isomorphic to:

K5, 5-prism, octahedron, V8

• tw(Kn) = n− 1

• tree-width is minor-monotone

• The k × k grid has tree-width k
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Consider all functions φ mapping graphs into integers

such that

(1) φ(Kn) = n− 1,

(2) G minor of H ⇒ φ(G) ≤ φ(H),

(3) If G ∩H is a clique, then

φ(G ∪H) = max{φ(G), φ(H)}.

Order such functions by φ ≤ ψ if φ(G) ≤ ψ(G) for all G.

THEOREM (Halin) Tree-width is the maximum element

in the above poset.
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A haven β of order k in G assigns to every X ∈ [V (G)]<k

the vertex-set of a component of G\X such that

(H) X ⊆ Y ∈ [V (G)]<k ⇒ β(Y ) ⊆ β(X).
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A haven β of order k in G assigns to every X ∈ [V (G)]<k

the vertex-set of a component of G\X such that

(H) X ⊆ Y ∈ [V (G)]<k ⇒ β(Y ) ⊆ β(X).

X

Υ
β(Υ)

β(Χ)
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Cops and robbers. Fix a graph G and an integer k.

There are k cops, they move slowly in helicopters. There

is a robber, who moves infinitely fast along cop-free

paths. He can see a helicopter landing, and can run to a

safe place before the chopper lands.
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Cops and robbers. Fix a graph G and an integer k.

There are k cops, they move slowly in helicopters. There

is a robber, who moves infinitely fast along cop-free

paths. He can see a helicopter landing, and can run to a

safe place before the chopper lands.

Fact. A tree-decomposition of width k − 1 gives a search

strategy for k cops.

Fact. A haven gives an escape strategy for the robber.

THEOREM (Seymour, RT) G has a haven of order k ⇔
G has tree-with at least k − 1

COR Search strategy ⇒ monotone search strategy.
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THEOREM (Robertson, Seymour, RT) Every graph of

tree-width ≥ 202g5
has a g × g grid minor.
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THEOREM (Robertson, Seymour, RT) Every graph of

tree-width ≥ 202g5
has a g × g grid minor.

THEOREM (Bodlaender) For every k there is a

linear-time algorithm to decide whether tw(G) ≤ k.

THEOREM (Arnborg, Proskurowski, . . .)

Many problems can be solved in linear time when

restricted to graphs of bounded tree-width.
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Tree-width is useful in

• theory

• design of theoretically fast algorithms

• practical computations
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FEEDBACK VERTEX-SET FOR FIXED k

INSTANCE A graph G

QUESTION Is there a set X ⊆ V (G) such that |X| ≤ k
and G\X is acyclic?

ALGORITHM If tw(G) is small use bounded tree-width

methods. Otherwise answer “no”. That’s correct,

because big tree-width ⇒ big grid ⇒ k + 1 disjoint

circuits ⇒ X does not exist.
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k DISJOINT PATHS IN PLANAR GRAPHS

INSTANCE A planar graph G, vertices

s1, s2, . . . , sk, t1, t2, . . . , tk of G

QUESTION Are there disjoint paths P1, .., Pk such that

Pi has ends si and ti?
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k DISJOINT PATHS IN PLANAR GRAPHS

INSTANCE A planar graph G, vertices

s1, s2, . . . , sk, t1, t2, . . . , tk of G

QUESTION Are there disjoint paths P1, .., Pk such that

Pi has ends si and ti?

ALGORITHM tw(G) small ⇒ bounded tree-width

methods. Otherwise big grid minor ⇒ big grid minor

with the terminals outside. The middle vertex of this grid

minor can be deleted, without affecting the feasibility of

the problem.
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APPLICATIONS

THEOREM (Erdös, Pósa) There exists a function f such

that every graph has either k disjoint cycles, or a set X

of at most f(k) vertices such that G\X is acyclic.

THEOREM (Robertson, Seymour) For every planar

graph H there exists a function f such that every graph

has either k disjoint H minors, or a set X of at most

f(k) vertices such that G\X has no H minor.

False for every nonplanar graph H. Open for

subdivisions.
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THEOREM (Oporowski, Oxley, RT) There exists a

function f such that every 3-connected graph on at least

f(t) vertices has a minor isomorphic to Wt or K3,t.

THEOREM (Oporowski, Oxley, RT) There exists a

function f such that every 4-connected graph on at least

f(t) vertices has a minor isomorphic to Dt, Mt, Ot, or

K4,t.

THEOREM (Ding, Oporowski, RT, Vertigan) There

exists a function f such that every 4-connected

nonplanar graph on at least f(t) vertices has a minor

isomorphic to D′t, Mt, or K4,t.
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COROLLARY (Ding, Oporowski, RT, Vertigan) There

exists a constant c such that every minimal graph of

crossing number at least two on at least c vertices

belongs to a well-defined family of graphs.
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THEOREM (Arnborg, Proskurowski)

Let P (G,Z) be some information about a graph G and

set Z ⊆ V (G) such that

(i) P (G,Z) can be computed in constant time if

|V (G)| ≤ k + 1
(ii) if Z ′ ⊆ Z then P (G,Z ′) can be computed from

P (G,Z) in constant time

(iii) if (A,B) is a separation of G with A ∩B ⊆ Z, then

P (G,Z) can be computed from

P (G � A,A ∩ Z), P (G � B,B ∩ Z) in constant time.

Then P (G, ∅) can be computed in linear time if a

tree-decomposition of G of width ≤ k is given.
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EXAMPLE. For A ⊆ V (G), let αA be the maximum

cardinality of an independent set I ⊆ V (G) with

I ∩ Z = A. Let P (G,Z) = (αA : A ⊆ Z).
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Discrete magnetic Schrödinger operators

MG = all Hermitian matrices A = (aij) s.t. ai,j 6= 0 if

i, j are adjacent and ai,j = 0 if i 6= j and not adjacent.

W` = all positive semi-definite Hermitian matrices with

`-dimensional kernel

DEFINITION (Colin de Verdière) Let ν(G) be the

maximum ` such that there exists A ∈MG ∩W` such

that those manifolds intersect transversally at A.

THEOREM (Colin de Verdière) ν(G) ≤ tw′(G), where

tw′(G) is a slight variation of tree-width s.t.

tw(G) ≤ tw′(G) ≤ tw(G) + 1.
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A path decomposition of G is a sequence

W1,W2, . . . ,Wn such that

(i)
⋃
Wi = V (G), and every edge has both ends in some

Wi, and

(ii) if i < i′ < i′′ then Wi ∩Wi′′ ⊆Wi′

The width of W1, . . . ,Wn is

max{|Wi| − 1 : 1 ≤ i ≤ n}

The path-width of G is the minimum width of a

path-decomposition.
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THM F forest, pw(G) ≥ |V (F )| − 1 ⇒ F ≤m G.
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THM F forest, pw(G) ≥ |V (F )| − 1 ⇒ F ≤m G.

HISTORY Originally due to Robertson and Seymour.

Current bound by Bienstock, Robertson, Seymour, RT.

New proof by Diestel.
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THM F forest, pw(G) ≥ |V (F )| − 1 ⇒ F ≤m G.

Diestel’s proof. Let V (F ) = {v1, v2, . . . , vk} s.t. vi is

adjacent to ≤ 1 vj for j < i. Let L = {(A,B) : G � B
has no path-decomposition W1,W2, . . . ,Wt of width

≤ k − 2 with A ∩B ⊂W1}.

Choose i ∈ {0, 1, . . . , k} and (A,B) ∈ L such that

(i) G � A has a minor isomorphic to F � {v1, . . . , vi} s.t.

each “node” intersects A ∩B in precisely one vertex

(ii) @ (A′, B′) ∈ L with A ⊆ A′, B ⊇ B′, |A′∩B′| < |A∩B|
(iii) i is maximum subject to (i) and (ii)

(iv) |B| is minimum subject to (i), (ii), (iii)
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CLAIM @ (A′, B′) ∈ L with A ⊆ A′, B ⊇ B′,
|A′ ∩B′| ≤ |A ∩B|.
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PROOF OF CLAIM. Suppose not. By (ii) equality holds.
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PROOF OF THM Let j be the only index ≤ i such that

vi+1 ∼ vj. Pick any vertex of B −A adjacent to the

unique vertex of A ∩B that belongs to the vj-node.
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Let (T,W ) be a tree-decomposition of G and t ∈ V (T ).

The torso at t is G �Wt plus all edges with both ends in

Wt ∩Wt′ for some t′ ∼ t.

(T,W ) is a tree-decomposion over F if

every torso belongs to F .
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HOW TO USE A HAVEN?

REMINDER A haven β of order k in D assigns to every

X ∈ [V (D)]<k the vertex-set of a strong component of

D\X such that

(H) X ⊆ Y ∈ [V (D)]<k ⇒ β(Y ) ⊆ β(X).
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Let β be a haven of order k in G. Let X ⊆ V (G) with

|X| ≤ k/2 and β(X) minimum. Then X is “externally

linked”:

X β(Χ)
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Let β be a haven of order k in G. Let X ⊆ V (G) with

|X| ≤ k/2 and β(X) minimum. Then X is “externally

linked”:

X Z

β(Χ+Ζ)
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Let β be a haven of order k in G. Let X ⊆ V (G) with

|X| ≤ k/2 and β(X) minimum. Then X is “externally

linked”:

X Z

β(Χ+Ζ)=β(Υ)
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Let Σ be a surface with k holes, C1, . . . , Ck their

boundaries (“cuffs”).

A graph G can be nearly embedded in Σ if G has a set

X of at most k vertices such that G\X can be written

as G0 ∪G1 ∪ . . . ∪Gk, where for i > 0:

1. G0 has an embedding in Σ
2. Gi are pairwise disjoint

3. Ui := V (G0) ∩ V (Gi) = V (G0) ∩ Ci
4. Gi has a path decomposition (Xu)u∈Ui of width < k,

s.t. u ∈ Xu for all u ∈ Ui (the order on Ui given by Ci)

NOTATION: G ∈ F(Σ)
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Σ− k = Σ with k holes removed

ΣH = orientable surface of largest genus that does not

embed H

Σ′H same for non-orientable

THEOREM (Robertson, Seymour)

For every finite graph H there exists k ≥ 0 such that

every graph with no H minor has a tree-decomposition

over

F(ΣH − k) ∪ F(Σ′H − k).
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INFINITE GRAPHS

THEOREM (Halin) A graph has no ray (= 1-way infinite

path) ⇔ it has a tree-decomposition (T,W ) such that T

is rayless and each Wt is finite.

With Robertson and Seymour we characterize graphs

with no Kκ minor, no Tκ subdivision, or no half-grid

minor. Havens and searching play an important role.

SAMPLE RESULT. A graph has no Tℵ1-minor ⇔ it has

no tree-decomposition (T,W ), where T is rayless and

each Wt is at most countable.
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MOTIVATION

THEOREM (RT) There exists a sequence G1, G2, . . . of

(uncountable) graphs such that for i < j Gj has no Gi

minor.

CONJECTURE True for countable graphs.

THEOREM (RT) Known when G1 is finite and planar.

FACT Not known even when every component is finite.
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LEMMA (Kř́ıž, RT) Let F be “compact” (if every finite

subgraph of G belongs to F , then G ∈ F). If every finite

subgraph of G has a tree-decomposition over F , then so

does G.
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THEOREM (Diestel, Thomas) For every finite graph H

there exists an integer k such that every (infinite) graph

with no H minor has a tree-decomposition over

F(ΣH − k) ∪ F(Σ′H − k).
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A graph G is plane with one vortex if for some k it has a

near-embedding G0, G1, .., Gk in the sphere with k holes,

where G2, . . . , Gk are null.

A tree-dec. (T,W ) has finite adhesion if

• for every t, |Wt ∩Wt′| is bounded (t′ ∼ t),

• for every ray t1, t2, . . . in T ,

lim inf |Wti ∩Wti+1
| is finite.

THEOREM (Diestel, Thomas) An infinite graph has no

Kℵ0-minor if and only if it has a tree-decomposition of

finite adhesion over plane graphs with at most one

vortex.
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THEOREM (Robertson, Seymour, RT)

Every planar graph with no minor isomorphic to a g × g
grid has tree-width < 5g.

PROOF Suppose G has tree-width ≥ 5g. Then G has a

haven β of order ≥ 5g. Take a planar drawing of G and

a circular cutset X of order ≤ 4g with β(X) inside X

and with inside of X minimal.


