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A family of cross-free separations gives rise to a

tree-decompositon.
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A tree-decomposition of a graph G is (T,W ), where T is

a tree and W = (Wt : t ∈ V (T )) satisfies

(T1)
⋃
t∈V (T )Wt = V (G),

(T2) if t′ ∈ T [t, t′′], then Wt ∩Wt′′ ⊆Wt′,

(T3) ∀uv ∈ E(G)∃t ∈ V (T ) s.t. u, v ∈Wt.

The width is max(|Wt| − 1 : t ∈ V (T )).

The tree-width of G is the minimum width of a

tree-decomposition of G.
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A haven β of order k in G assigns to every X ∈ [V (G)]<k

the vertex-set of a component of G\X such that

(H) X ⊆ Y ∈ [V (G)]<k ⇒ β(Y ) ⊆ β(X).
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the vertex-set of a component of G\X such that

(H) X ⊆ Y ∈ [V (G)]<k ⇒ β(Y ) ⊆ β(X).

X
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BACK TO MATHEMATICS
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G has tree-with at least k − 1
PROOF Assuming tree-width ≥ 3k − 2. Choose a

tree-decomposition (T,W ) such that

(1) |Wt| ≤ 3k − 1 except for leaves

(2) |Wt ∩Wt′| ≤ 2k − 1 for every edge tt′ ∈ E(T )
(3) # verts in bags of size ≥ 3k only is minimum

Suppose |Wt| ≥ 3k for some t. Then t is a leaf; let t′ be

its neighbor. If for every X ⊆ V (G) of size < k there is

a component containing ≥ k vertices of Wt ∩Wt′, then

let β(X) be that component. Then β is a haven. So

∃|X| < k ∀ component of G\X contains < k vertices of

Wt ∩Wt′. Then refine the tree-decomposition.
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REMINDER: HOW TO USE A HAVEN

REMINDER A haven β of order k in D assigns to every

X ∈ [V (D)]<k the vertex-set of a strong component of

D\X such that

(H) X ⊆ Y ∈ [V (D)]<k ⇒ β(Y ) ⊆ β(X).
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|X| ≤ k/2 and β(X) minimum. Then X is “externally
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Let β be a haven of order k in G. Let X ⊆ V (G) with

|X| ≤ k/2 and β(X) minimum. Then X is “externally
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Let β be a haven of order k in G. Let X ⊆ V (G) with

|X| ≤ k/2 and β(X) minimum. Then X is “externally

linked”:

X Z

β(Χ+Ζ)=β(Υ)
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tree-width ≥ f(g) has a g × g grid minor.

MAIN IDEA Two sets of disjoint paths: P and Q, where

P joins A and B; |Q| >> |P|. WMA ∀e ∈ E(Pi) not in

any Qj there do not exist |P| disjoint A-B paths in G\e.

There exist large sets P ′ ⊆ P and Q′ ⊆ Q such that

either

• V (P ) ∩ V (Q) = ∅ ∀P ∈ P ′ ∀Q ∈ Q′, or

• V (P ) ∩ V (Q) 6= ∅ ∀P ∈ P ′ ∀Q ∈ Q′.

In the latter case get a k × k grid, where k = |P ′|. Let

p = |P|.
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THEOREM (Robertson, Seymour) Every graph of

tree-width ≥ f(g) has a g × g grid minor.

PROOF Take a haven β of large order. Pick X highly

externally linked with a large binary tree T in G\β(X).

In X find g2 disjoint large sets X1, X2, . . ., each

connected by a disjoint subtree of T . Apply previous idea

to Xi-Xj paths and Xp-Xq paths. Either we get a grid

for some i, j, p, q, or we will make all the paths disjoint

⇒ Kg2 minor ⇒ g × g grid minor.
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THEOREM (Oporowski, Oxley, RT) Every 3-connected

graph on at least f(t) vertices has a minor isomorphic to

Wt or K3,t.

THEOREM (Oporowski, Oxley, RT) Every internally

4-connected graph on at least f(t) vertices has a minor

isomorphic to Dt, Mt, Ot, or K4,t.

THEOREM (Ding, Oporowski, RT, Vertigan) Every

internally 4-connected nonplanar graph on at least f(t)
vertices has a minor isomorphic to D′t, Mt, or K4,t.

COROLLARY (Ding, Oporowski, RT, Vertigan) There

exists a constant c such that every minimal graph of

crossing number at least two on at least c vertices

belongs to a well-defined family of graphs.
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A branch-decomposition of G is a ternary tree T with

leaves the edges of G. Every α ∈ E(T ) defines a

separation of G; the order of α is the order of this

separation. The width of T is the maximum order of its

edges. The branch-width of G, bw(G), is the minimum

width of a branch-decomposition

• bw(G) ≤ 2 ⇔ G is series-parallel

• bw(G) ≤ 3 ⇔ no minor isomorphic to:

K5, cube, octahedron, V8

• bw(G∗) = bw(G)
• 2

3 tw(G) ≤ bw(G) ≤ tw(G) + 1
• bw(G) big ⇔ G has a big grid minor
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THEOREM Seymour, RT Branch-width of planar graphs

can be computed in polynomial time.

PROOF Proof relies on

LEMMA bw(G) ≥ k ⇔ there exists an “antipodality” of

range ≥ k. (Roughly, it assigns to every edge e a

non-null subgraph at distance ≥ k).

A game Ratcatcher vs. rat. The ratcatcher carries a

noisemaker of power k, and the rat will not move

through any wall in which the noise level is too high.
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Menger property

Let T be a branch-decomposition of G. For α ∈ E(T )
let Xα be the corresponding cutset.

THM Geelen, Gerards, Whittle Every graph G has a

linked branch-decomposition of width bw(G):

If α, β ∈ E(T ) and |Xα| = |Xβ| =: k, then either

|Xγ| < k for some γ between α and β, or there exist k

disjoint paths between Xα and Xβ.


