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A family of cross-free separations gives rise to a
tree-decompositon.
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A tree-decomposition of a graph G is (T, W), where T is
atree and W = (W, :t € V(T)) satisfies

(T1) Uievrm W = VI(G),

(__2) if t € T[t, t//], then Wt a Wt” C Wt/,

(T3) Vuv € E(G)3t € V(T) s.t. u,v € W,

The width is max(|W;| —1:t € V(T)).

The tree-width of G is the minimum width of a
tree-decomposition of G.
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BACK TO MATHEMATICS
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(G has tree-with at least £ — 1

PROOF Assuming tree-width > 3k — 2. Choose a
tree-decomposition (7', W) such that

(1) |Wy| < 3k — 1 except for leaves

(2) |[Wy N Wy| <2k — 1 for every edge tt' € E(T)

(3) # verts in bags of size > 3k only is minimum
Suppose |W;| > 3k for some t. Then ¢ is a leaf; let ¢’ be
its neighbor. If for every X C V(G) of size < k there is
a component containing > k vertices of W; N Wy, then
let 5(X) be that component. Then ( is a haven. So

1| X| < k£ V component of G\ X contains < k vertices of
W, Wy. Then refine the tree-decomposition.



REMINDER: HOW TO USE A HAVEN

REMINDER A haven 3 of order k£ in D assigns to every
X € [V(D)]=" the vertex-set of a strong component of

D\ X such that
(H) X CY € [V(D)]*F = B(Y) C B(X).
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_et 3 be a haven of order k in G. Let X C V(G) with
X| < k/2 and B(X) minimum. Then X is “externally
inked":

BX+2)=p(Y)
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MAIN IDEA Two sets of disjoint paths: P and O, where
P joins A and B; |Q| >> |P|. WMA Ve € E(F;) not in
any (Q; there do not exist |P| disjoint A-B paths in G'\e.
There exist large sets P’ C P and Q' C O such that
either

e V(P)NV(Q)=0VP e P VQ € Q, or

o V(P)NV(Q)#0DVP e P VQ e Q.

In the latter case get a k£ X k grid, where k = |P’|. Let
p =Pl
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In X find ¢° disjoint large sets X, X5, ..., each
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THEOREM (Oporowski, Oxley, RT) Every internally
4-connected graph on at least f(t) vertices has a minor
isomorphic to D;, M, Oy, or K.

THEOREM (Ding, Oporowski, RT, Vertigan) Every
internally 4-connected nonplanar graph on at least f(t)
vertices has a minor isomorphic to D;, M, or K.
COROLLARY (Ding, Oporowski, RT, Vertigan) There
exists a constant c such that every minimal graph of
crossing number at least two on at least c vertices
belongs to a well-defined family of graphs.
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A branch-decomposition of G is a ternary tree 1T’ with
leaves the edges of GG. Every a € E(T') defines a
separation of (&; the order of « is the order of this
separation. The width of 71" is the maximum order of its
edges. The branch-width of G, bw(G), is the minimum
width of a branch-decomposition

e bw(G) <2 < G is series-parallel

e bw(G) < 3 < no minor isomorphic to:
K, cube, octahedron, Vg

¢ bw(G*) = bw(G)

o : tw(G) < bw(G) < tw(G) + 1

e bw(G) big < G has a big grid minor
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THEOREM Seymour, RT Branch-width of planar graphs
can be computed in polynomial time.

PROOF Proof relies on

LEMMA bw(G) > k < there exists an “antipodality” of
range > k. (Roughly, it assigns to every edge ¢ a
non-null subgraph at distance > k).

A game Ratcatcher vs. rat. The ratcatcher carries a
noisemaker of power k, and the rat will not move
through any wall in which the noise level Is too high.
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Menger property

Let T be a branch-decomposition of G. For a € E(T)
let X, be the corresponding cutset.

THM Geelen, Gerards, Whittle Every graph G has a
inked branch-decomposition of width bw(G):

fa,8€ E(T)and | X,| = |X3| =: k, then either

X, | < k for some ~y between o and 3, or there exist k
disjoint paths between X, and Xj.




