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transitive.

NOTE Letx=y meanz <yandy <xz. Then Q/= s
a partial order. Define x < y to mean x <y and y £ x.

(Q, <) is well-quasi-ordered (wqo) if for every infinite
sequence qi, ¢, . . . there exist ¢« < j with ¢; < g;.

NOTE Equivalent to

e no infinite antichain, and
e no infinite descending sequence q; > ¢ > - - -
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PROOF Say ¢ is terminal if ¢; < g; for no 5 > 4. There
are only finitely many terminal indices. Let 7 be larger
than all terminal indices. 3 79 > 71 with ¢;;, < ¢g;, 3 3
with ¢;, < ¢, etc.
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LEMMA If (Q1,<;1) and (@2, <5) are wqo, then
(Q1 X @Q2,<) is wago. Here (q1,q2) < (q¢1,3) if ¢1 <1 q
and ) §2 q%

PROOF Let (x1,41), (x2,%2),... be given. Find
11 <19 < ---with z;, <y, <q -+ Find 7 < s with

Yi, SQ Yis- Then

(xir7 y’lr) S (xig? y@s)



THEOREM (Higman) If @) is wqo, then Q=" is wqo.
()=" = finite sequences of elements of (), quasi-ordered
by monotone domination:

($17$27 R 7:Ek) é (ylay% <o 7y€)

if there is a strictly increasing mapping
f: {1,2,. : ,k} — {1,2,. .. 78} such that x; < Y¥(i)-

EXAMPLE (1,5,7,3) < (2,3,4,6,7,1,3)



PROOF An infinite sequence si, So, ... of elements of
Q=" is bad if it violates the definition of wgo. We want
to choose a minimal bad sequence.

Let 51 € Q=" be shortest such that s; starts a bad

sequence.
Let s9 € Q=" be shortest such that sy, s9 starts a bad

sequence.
Let s3 € Q<Y be shortest such that si, s9, s3 starts a bad
sequence.

etc.

Let s;, = q; + s/



CLAIM {s),s5,...} is wqo

PROOF OF CLAIM Let s ,s; ,... be a bad sequence.
WMA 71 <19 < --- Then

/ /
i178'

S$1y52y«++55i1—1,9S YRR

is a bad sequence, contrary to the choice of s;,.

By the product theorem @ x {s’,s,,...,} is wgo. So
i <j g < gjand s; < s, But then szgs],as
required.
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Let 17,75, ... be fixed. A section is ey, e, ... such that
e; € E(T},), where k; < ky < ---. A section is bad if
Te1, T eo, ... violates def of wgo. A section is minimal
bad if there is no bad section ey, es,...,¢; 1,€5, €, 4, ..
with €’ higher in T} .

LEMMA There is a minimal bad section.

LEMMA Let €1, €9,... be a minimal bad section, and let
e;,e; be the daughters of e;. Then {7 €}, T €,,...} and

{T¢€e,Te5,...} are wqo.

PROOF OF KRUSKAL'S THM By the product theorem
there exist i < j such that T e} <;T €, and T e} <;T €.
But then T e; <;] e; contrary to badness.
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GAP CONDITION

Let k be fixed, let k : E(T) — {0,1,...,k — 1}. Define
(Tl, /431) <y (TQ, /432) if f : V(Tl) — V(TQ) such that
(1) f(t1 A t2) = f(t1) A f(t2), and

if an edge e is mapped onto a path P, then
(2) k1(e) < ka(€') for every ¢ € E(P), and
(3) equality holds for the first and last edge of P.

THM Friedman, Robertson, Seymour For every k the
above Is a wqo.

PROOF Same as above; minimality somewhat trickier.
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(1) f(t1 Ata) = f(t1) A f(t2), and

if an edge e is mapped onto a path P, then
(2) ki(e) < ko(€') for every ¢’ € E(P), and
(3) equality holds for the first and last edge of P.

THM Friedman, Robertson, Seymour For every k the
above Is a wqo.

COR For every k, graphs of branch-width < k are wqo
by <,,..

COR There is no bad sequence G, Go, ... with G4
planar.

COR Planar graphs are wqo by <,,.
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INFINITE GRAPHS

THM Nash-Williams Infinite trees are wqgo by <;.
THEOREM (RT) Infinite graphs are not wqo by <,,..
CONJECTURE Countable graphs are.

HEOREM (RT) Known when G is finite and planar.

FACT Not known even when every component is finite.
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MINIATURIZATIONS

THM Ve 3k = k(c) V11, Ts, ..., T with |T;] < c+1
there exist ¢« < j with 1; <, Tj.

THM Friedman Above unprovable in Peano arithmetic.



