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GRAPH MINOR THEOREM

THM Robertson, Seymour Every infinite set of finite

graphs contains two graphs such that one is a minor of

another.
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GRAPH MINOR THEOREM

THM Robertson, Seymour Every infinite set of finite

graphs contains two graphs such that one is a minor of

another.

Finite graphs are well-quasi-ordered by ≤m.
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A quasi-order is (Q,≤), where ≤ is reflexive and

transitive.

NOTE Let x ≡ y mean x ≤ y and y ≤ x. Then Q/≡ is

a partial order. Define x < y to mean x ≤ y and y 6≤ x.
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A quasi-order is (Q,≤), where ≤ is reflexive and

transitive.

NOTE Let x ≡ y mean x ≤ y and y ≤ x. Then Q/≡ is

a partial order. Define x < y to mean x ≤ y and y 6≤ x.

(Q,≤) is well-quasi-ordered (wqo) if for every infinite

sequence q1, q2, . . . there exist i < j with qi ≤ qj.

NOTE Equivalent to

• no infinite antichain, and

• no infinite descending sequence q1 > q2 > · · ·
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LEMMA If (Q,≤) is wqo, then for every infinite

sequence q1, q2, . . . there exist i1 < i2 < · · · with

qi1 ≤ qi2 ≤ · · ·.
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LEMMA If (Q,≤) is wqo, then for every infinite

sequence q1, q2, . . . there exist i1 < i2 < · · · with

qi1 ≤ qi2 ≤ · · ·.

PROOF Say i is terminal if qi ≤ qj for no j > i. There

are only finitely many terminal indices. Let i1 be larger

than all terminal indices. ∃ i2 > i1 with qi1 ≤ qi2 ∃ i3
with qi2 ≤ qi3, etc.
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LEMMA If (Q1,≤1) and (Q2,≤2) are wqo, then

(Q1 ×Q2,≤) is wqo. Here (q1, q2) ≤ (q′1, q
′
2) if q1 ≤1 q

′
1

and q2 ≤2 q
′
2.
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LEMMA If (Q1,≤1) and (Q2,≤2) are wqo, then

(Q1 ×Q2,≤) is wqo. Here (q1, q2) ≤ (q′1, q
′
2) if q1 ≤1 q

′
1

and q2 ≤2 q
′
2.

PROOF Let (x1, y1), (x2, y2), . . . be given. Find

i1 < i2 < · · · with xi1 ≤1 xi2 ≤1 · · · Find r < s with

yir ≤2 yis. Then

(xir, yir) ≤ (xis, yis).
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THEOREM (Higman) If Q is wqo, then Q<w is wqo.

Q<w = finite sequences of elements of Q, quasi-ordered

by monotone domination:

(x1, x2, . . . , xk) ≤ (y1, y2, . . . , y`)

if there is a strictly increasing mapping

f : {1, 2, . . . , k} → {1, 2, . . . , `} such that xi ≤ yf(i).

EXAMPLE (1, 5, 7, 3) ≤ (2, 3, 4, 6, 7, 1, 3)
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PROOF An infinite sequence s1, s2, . . . of elements of

Q≤w is bad if it violates the definition of wqo. We want

to choose a minimal bad sequence.
Let s1 ∈ Q<w be shortest such that s1 starts a bad

sequence.
Let s2 ∈ Q<w be shortest such that s1, s2 starts a bad

sequence.
Let s3 ∈ Q<w be shortest such that s1, s2, s3 starts a bad

sequence.
etc.
Let si = qi + s′i
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CLAIM {s′1, s′2, . . .} is wqo

PROOF OF CLAIM Let s′i1, s
′
i2
, . . . be a bad sequence.

WMA i1 < i2 < · · · Then

s1, s2, . . . , si1−1, s
′
i1
, s′i2, . . .

is a bad sequence, contrary to the choice of si1.

By the product theorem Q× {s′1, s′2, . . . , } is wqo. So

∃ i < j qi ≤ qj and s′i ≤ s′j. But then si ≤ sj, as

required.
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TOPOLOGICAL CONTAINMENT ON ROOTED TREES

T1 ≤t T2 if ∃ a 1-1 mapping f : V (T1)→ V (T2) such

that f(t1 ∧ t2) = f(t1) ∧ f(t2).
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PROOF Choose e1 as high as possible such that it starts

a section.
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Let T1, T2, . . . be fixed. A section is e1, e2, . . . such that

ei ∈ E(Tki), where k1 < k2 < · · ·. A section is bad if

↑ e1, ↑ e2, . . . violates def of wqo. A section is minimal

bad if there is no bad section e1, e2, . . . , ej−1, e
′
j, e
′
j+1, . . .

with e′j higher in Tkj.

LEMMA There is a minimal bad section.

PROOF Choose e1 as high as possible such that it starts

a section. Choose e2 as high as possible such that e1, e2

start a section. Etc.
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Let T1, T2, . . . be fixed. A section is e1, e2, . . . such that

ei ∈ E(Tki), where k1 < k2 < · · ·. A section is bad if

↑ e1, ↑ e2, . . . violates def of wqo. A section is minimal

bad if there is no bad section e1, e2, . . . , ej−1, e
′
j, e
′
j+1, . . .

with e′j higher in Tkj.

LEMMA There is a minimal bad section.

LEMMA Let e1, e2, . . . be a minimal bad section, and let

e′i, e
′′
i be the daughters of ei. Then {↑ e′1, ↑ e′2, . . .} and

{↑ e′′1, ↑ e′′2, . . .} are wqo.

PROOF WMA there is a bad section e′i1, e
′
i2
, . . .. Then

e1, e2, . . . , ei1−1, e
′
i1
, e′i2 . . . contradicts minimality.
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ei ∈ E(Tki), where k1 < k2 < · · ·. A section is bad if

↑ e1, ↑ e2, . . . violates def of wqo. A section is minimal

bad if there is no bad section e1, e2, . . . , ej−1, e
′
j, e
′
j+1, . . .

with e′j higher in Tkj.

LEMMA There is a minimal bad section.

LEMMA Let e1, e2, . . . be a minimal bad section, and let

e′i, e
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Let T1, T2, . . . be fixed. A section is e1, e2, . . . such that

ei ∈ E(Tki), where k1 < k2 < · · ·. A section is bad if

↑ e1, ↑ e2, . . . violates def of wqo. A section is minimal

bad if there is no bad section e1, e2, . . . , ej−1, e
′
j, e
′
j+1, . . .

with e′j higher in Tkj.

LEMMA There is a minimal bad section.

LEMMA Let e1, e2, . . . be a minimal bad section, and let

e′i, e
′′
i be the daughters of ei. Then {↑ e′1, ↑ e′2, . . .} and

{↑ e′′1, ↑ e′′2, . . .} are wqo.

PROOF OF KRUSKAL’S THM By the product theorem

there exist i < j such that ↑ e′i ≤t↑ e′j, and ↑ e′′i ≤t↑ e′′j .
But then ↑ ei ≤t↑ ej contrary to badness.
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GAP CONDITION

Let k be fixed, let κ : E(T )→ {0, 1, . . . , k − 1}.
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GAP CONDITION

Let k be fixed, let κ : E(T )→ {0, 1, . . . , k − 1}. Define

(T1, κ1) ≤t (T2, κ2) if ∃ f : V (T1)→ V (T2) such that

(1) f(t1 ∧ t2) = f(t1) ∧ f(t2), and

if an edge e is mapped onto a path P , then

(2) κ1(e) ≤ κ2(e′) for every e′ ∈ E(P ), and

(3) equality holds for the first and last edge of P .

THM Friedman, Robertson, Seymour For every k the

above is a wqo.

PROOF Same as above; minimality somewhat trickier.
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(1) f(t1 ∧ t2) = f(t1) ∧ f(t2), and

if an edge e is mapped onto a path P , then

(2) κ1(e) ≤ κ2(e′) for every e′ ∈ E(P ), and
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above is a wqo.
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by ≤m.
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(1) f(t1 ∧ t2) = f(t1) ∧ f(t2), and

if an edge e is mapped onto a path P , then

(2) κ1(e) ≤ κ2(e′) for every e′ ∈ E(P ), and

(3) equality holds for the first and last edge of P .

THM Friedman, Robertson, Seymour For every k the

above is a wqo.

COR For every k, graphs of branch-width < k are wqo

by ≤m.

COR There is no bad sequence G1, G2, . . . with G1

planar.

COR Planar graphs are wqo by ≤m.
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INFINITE GAP CONDITION

Let k =∞, let κ : E(T )→ {0, 1, . . .}.
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INFINITE GAP CONDITION

Let k =∞, let κ : E(T )→ {0, 1, . . .}. Define

(T1, κ1) ≤t (T2, κ2) if ∃ f : V (T1)→ V (T2) such that

(1) f(t1 ∧ t2) = f(t1) ∧ f(t2), and

if an edge e is mapped onto a path P , then

(2) κ1(e) ≤ κ2(e′) for every e′ ∈ E(P ), and

(3) equality holds for the first and last edge of P .

THM Kř́ıž The above is a wqo.



17

INFINITE GRAPHS

THM Nash-Williams Infinite trees are wqo by ≤t.
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INFINITE GRAPHS

THM Nash-Williams Infinite trees are wqo by ≤t.

THEOREM (RT) Infinite graphs are not wqo by ≤m.

CONJECTURE Countable graphs are.

THEOREM (RT) Known when G1 is finite and planar.

FACT Not known even when every component is finite.
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MINIATURIZATIONS

THM ∀c ∃k = k(c) ∀T1, T2, . . . , Tk with |Ti| ≤ c+ i

there exist i < j with Ti ≤t Tj.

THM Friedman Above unprovable in Peano arithmetic.


