EIDMA MINICOURSE ON STRUCTUAL GRAPH THEORY

Robin Thomas

LECTURE 3: Tree-decompositons of graphs II.

Topics: Branch-width and algorithms. The graph minor theorem and its applications.

Recommended reading: [D, Chapter 12], [1] for branch-width, [2] for algorithms, and [3] for the graph minor theorem.

Exercises

- **1.** Prove that for $n \geq 3$ the complete graph on n vertices has branch-width $\lceil 2n/3 \rceil$.
- **2.** Prove that if a graph G has a cycle, then $bw(G) \le tw(G) + 1 \le 3bw(G)/2$.
- **3.** Prove that both inequalities in the above exercise are tight for infinitely many n.
- **4.** Prove that a graph G has branch-width at most two if and only if it is series-parallel.
- **5.** Prove that a planar graph of tree-width at least 10k has a $k \times k$ grid minor.

References

- 1. N. Robertson and P. D. Seymour, Graph Minors X. Obstructions to tree-decomposition, J. Combin. Theory Ser. B 52 (1991), 153–190.
- 2. N. Robertson and P. D. Seymour, Graph Minors XIII. The disjoint paths problem, *J. Combin. Theory Ser. B* **63** (1995), 65–110.
- 3. N. Robertson and P. D. Seymour, Graph Minors XVI. Excluding a non-planar graph, *J. Combin. Theory Ser. B* **89** (2003), 43–76.