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Robin Thomas

LECTURE 7: Matching structure, Pfaffian orientations and digraph structure I

Topics: Edmonds’ matching theorem, the linear hull of perfect matchings, the matching struc-
ture: decomposition into bricks and braces, the matching lattice, Pfaffian orientations and their
use, Pfaffian orientations of bipartite graphs, Polya’s permanent problem, the even directed cycle
problem, sign-nonsingular matrices, applications in economics.

Recommended reading: [LP] and [2] for Pfaffian orientations and their relation to other prob-
lems; [1] for directed tree-width.

Exercises

1. Let G be a bipartite graph with bipartition (A,B), and let M be a perfect matching in G. Let
D be the directed graph obtained from G by directing every edge from A to B and contracting
every edge of M , and let k be an integer. Prove that D is strongly k-connected if and only if G is
k-extendable (that is, every matching of size at most k can be extended to a perfect matching).

2. Let G be a connected bipartite graph with bipartition (A,B), and let k be an integer. Prove
that G is k-extendable if and only if for every set X ⊆ A, its neighborhood N(X) in B either has
size at least |X| + k or is equal to B.

3. Let G be a bipartite graph with bipartition (A,B), and let M be a perfect matching in G. Let
D be the directed graph obtained from G by directing every edge from A to B and contracting
every edge of M . Prove that G has a Pfaffian orientation if and only if D has a subdivision with
no even directed cycle.

4. Let G be a bipartite graph with bipartition (X,Y ), and let A be the matrix with rows indexed
by X and columns indexed by Y such that axy = 1 if x ∈ X is adjacent to y ∈ Y and axy = 0
otherwise. Prove that G has a Pfaffian orientation if and only if some of the entries of A can be
changed to −1 in such a way that the determinant of the resulting matrix is equal to the permanent
of A.

5. Prove that K3,3 has no Pfaffian orientation.
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