COLORING TRIANGLE-FREE GRAPHS ON SURFACES Robin Thomas School of Mathematics Georgia Institute of Technology http://www.math.gatech.edu/~thomas joint work with Zdenek Dvorak and K. Kawarabayashi and Zdenek Dvorak and Daniel Kral

Coloring graphs on surfaces

The classical problems:

The 4-color problem (Guthrie 1852) Can every planar graph be 4-colored? Coloring graphs on surfaces

The classical problems:

The map color problem: Find max $\chi(G)$ over all $G \subseteq S_g$ for g > 0.

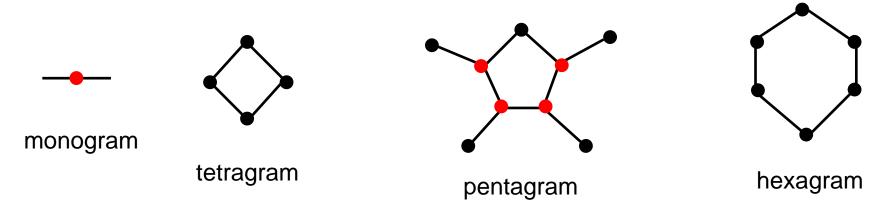
Answer: (7+ \(48g+1)/2\) (Heawood 1890; Ringel, Youngs 1960s)

Modern point of view: Fix Σ , *k*. Can we test $\chi(G) \leq k$ in poly-time for *G* in Σ ?

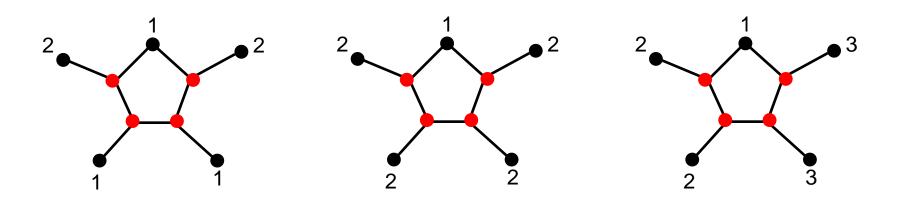
Modern point of view: Fix Σ , *k*. Can we test $\chi(G) \leq k$ in poly-time for *G* in Σ ?

- Yes for $k \ge 6$ by Euler's formula
- Yes for *k*=5 by Thomassen's theorem
- **Open** for *k*=4 (think Four-Color Theorem)
- No for *k*=3, unless P=NP
- Triangle-free graphs:
- Yes for $k \ge 4$ by Euler's formula
- Yes for *k*=3 (this talk)

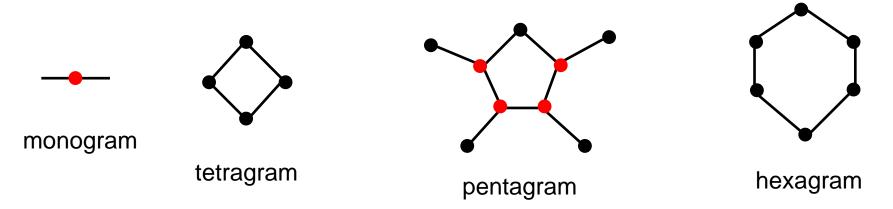
THM (Grotzsch) ∀ triangle-free planar graph is 3-colorable PROOF Reducible configurations:



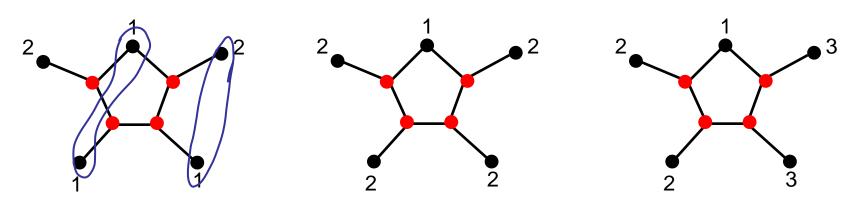
Non-extendable pentagram colorings:



THM (Grotzsch) ∀ triangle-free planar graph is 3-colorable PROOF Reducible configurations:

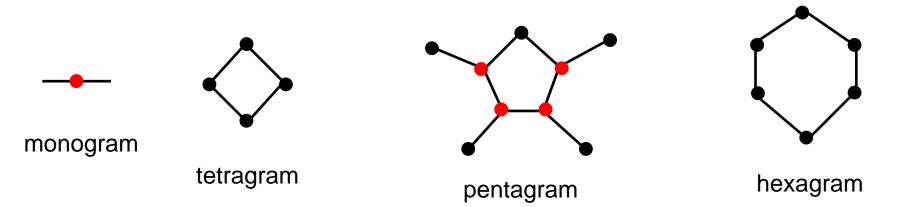


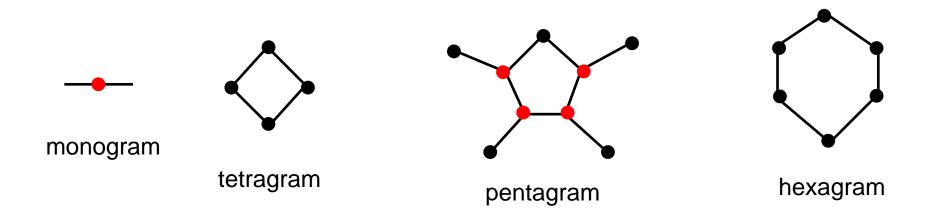
Non-extendable pentagram colorings:



Reduction: delete red vertices, identify indicated pairs

THM (Grotzsch) ∀ triangle-free planar graph is 3-colorable PROOF Reducible configurations:

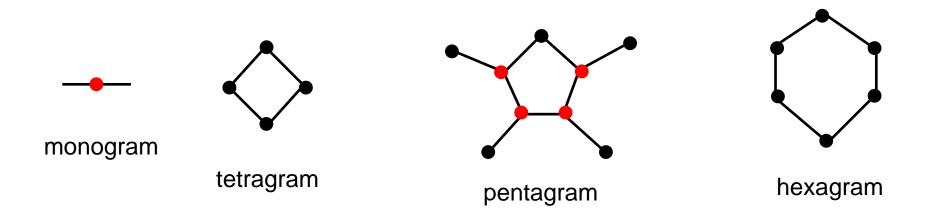




LEMMA 1 *G* connected triangle-free planar, *C* outer cycle, $|C| \le 6, G \ne C \Rightarrow \exists$ multigram s.t. red vertices are not in *C* PF $ch(v) = \begin{cases} deg(v)-4 & v \text{ not in } C \\ -1/3 & v \in C, deg 2 & ch(f) = \begin{cases} f|-4 & f \text{ internal} \\ 0 & f \text{ outer} \end{cases}$

 $\sum \text{charges} = \sum (d(v)-4) + \sum (|f|-4) - t_2/3 + \sum_{v \in C} (4-d(v)) - (|C|-4)$

 \leq 2E-4V+2E-4F- $t_2/3+2t_2+t_3-|C|+4 \leq 2t_2/3-4 < 0.$



LEMMA 1 *G* connected triangle-free planar, *C* outer cycle, $|C| \le 6, G \ne C \Rightarrow \exists$ multigram s.t. red vertices are not in *C* PF $ch(v) = \begin{cases} deg(v)-4 & v \text{ not in } C \\ -1/3 & v \in C, deg 2 & ch(f) = \begin{cases} |f|-4 & f \text{ internal} \\ 0 & f \text{ outer} \end{cases}$

 $\sum \text{charges} = \sum (d(v)-4) + \sum (|f|-4) - t_2/3 + \sum (4-d(v)) - (|C|-4)$

 \leq 2E-4V+2E-4F- t_2 /3+2 t_2 + t_3 -/*C*/+4 \leq 2 t_2 /3-4 < 0.

LEMMA 1 *G* connected triangle-free planar, *C* outer cycle $|C| \le 6, G \ne C \Rightarrow \exists$ multigram s.t. red vertices are not in *C* PF $ch(v) = \begin{cases} deg(v)-4 & v \text{ not in } C \\ -1/3 & v \in C, deg 2 & ch(f) = \\ 0 & o.w. \end{cases} \begin{cases} |f|-4 & f \text{ internal} \\ 0 & f \text{ outer} \end{cases}$

 $\sum \text{charges} = \sum (d(v)-4) + \sum (|f|-4) - t_2/3 + \sum (4-d(v)) - (|C|-4)$

 \leq 2E-4V+2E-4F- $t_2/3+2t_2+t_3-|C|+4 \leq 2t_2/3-4 < 0.$

Each face will send 1/3 to every incident vertex v s.t. either $v \in G$ -C has degree 3, or $v \in C$ has degree 2.

After that there is a face of charge $<0 \Rightarrow$ tetragram or pentagram. Q.E.D.

LEMMA 1 *G* connected triangle-free planar, *C* outer cycle $|C| \le 6, G \ne C \Rightarrow \exists$ multigram s.t. red vertices are not in *C* PF $ch(v) = \begin{cases} deg(v)-4 & v \text{ not in } C \\ -1/3 & v \in C, deg 2 & ch(f) = \\ 0 & o.w. \end{cases} \begin{cases} |f|-4 & f \text{ internal} \\ 0 & f \text{ outer} \end{cases}$

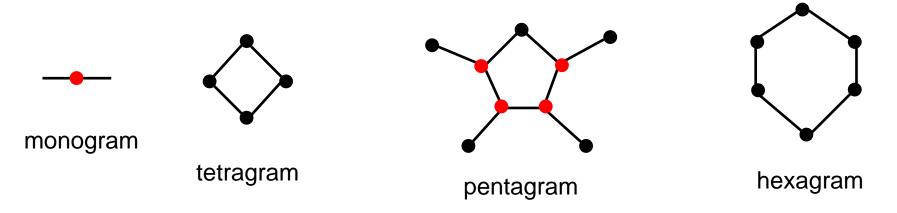
 $\sum \text{charges} = \sum (d(v)-4) + \sum (|f|-4) - t_2/3 + \sum (4-d(v)) - (|C|-4)$

 \leq 2E-4V+2E-4F- $t_2/3+2t_2+t_3-|C|+4 \leq 2t_2/3-4 < 0.$

Each face will send 1/3 to every incident vertex v s.t. either $v \in G$ -C has degree 3, or $v \in C$ has degree 2.

After that there is a face of charge $<0 \Rightarrow$ tetragram or pentagram. Q.E.D.

LEMMA 1 *G* connected triangle-free planar, *C* outer cycle, $|C| \le 6$, $G \ne C \Rightarrow \exists$ multigram s.t. red vertices are not in *C*



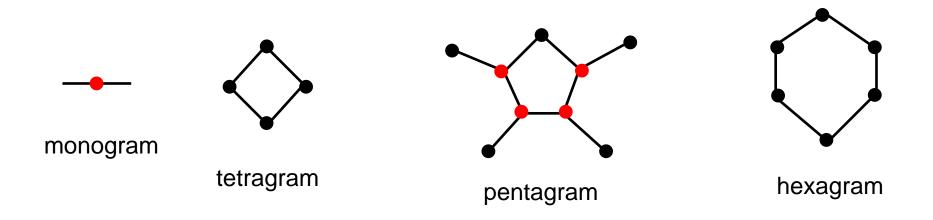
LEMMA 2 Every triangle-free planar graph has a safe multigram (reduction does not create triangles)

PF Pick a separating \leq 6-cycle C with smallest inside, or facial \leq 6-cycle if no separating cycle. Apply Lemma 1 to C and its interior. Q.E.D.

PF of Grotzsch: multigram \Rightarrow smaller graph \Rightarrow induction

LINEAR-TIME ALGORITHM

A problem: which vertices of a C_4 to identify? Kowalik: An O(n log n) algorithm

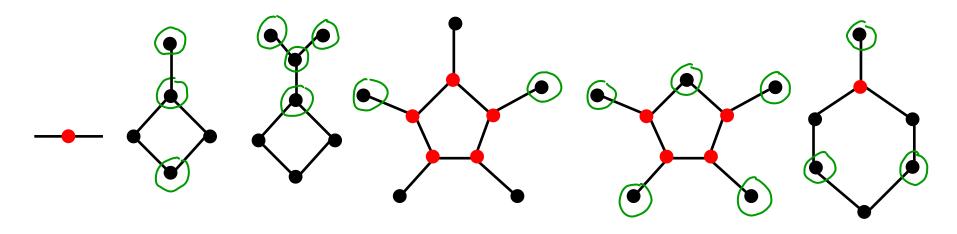


LEMMA 2 Every triangle-free planar graph has a safe multigram (reduction does not create triangles)

LINEAR-TIME ALGORITHM

LEMMA 2 Every triangle-free planar graph has a safe multigram (reduction does not create triangles)

LEMMA 3 Every triangle-free planar graph has a secure multigram (safe+marked vertices have bounded degree)



ALGORITHM Find secure multigram and reduce in constant time to a smaller graph; recurse

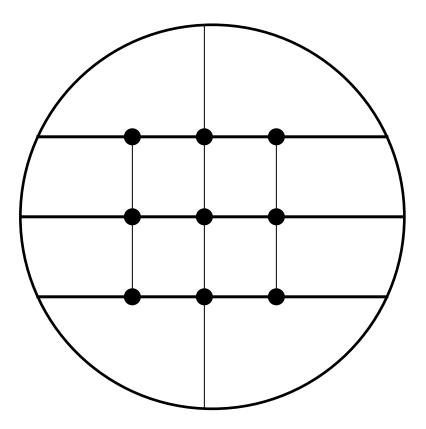
PART II

Triangle-free graphs on surfaces

THM (Thomassen) Every 4-critical graph of girth \geq 5 in Σ has at most *f*(genus(Σ)) vertices.

Not true for graphs of girth \geq 4:

THM (Youngs) For every non-bipartite quadrangulation G of the projective plane $\chi(G)=4$.



THM (Thomassen) Every 4-critical graph of girth \geq 5 in Σ has at most $f(\text{genus}(\Sigma))$ vertices.

THM For every 4-critical graph in a surface Σ $\Sigma(|f|-4) \le c(genus(\Sigma)+no of triangles).$

COR Every triangle-free 4-critical graph in Σ has at most c·genus(Σ) faces of size >4.

APPLICATION For every surface Σ there is a lineartime algorithm to test whether a given triangle-free graph in Σ is 3-colorable.

COR (Kawarabayashi, Thomassen) $\forall \Sigma \forall$ triangle-free *G* in Σ all but $cg(\Sigma)$ vertices of *G* can be 3-colored.

COR (Havel's conj) $\exists D$ s.t. if the triangles of a planar G are pairwise at distance $\geq D$, then 3-colorable.

THM (Thomassen) Every 4-critical graph of girth \geq 5 in Σ has at most *f*(genus(Σ)) vertices.

THM For every 4-critical graph in a surface Σ $\Sigma(|f|-4) \leq c(genus(\Sigma)+no of triangles).$

COR Every triangle-free 4-critical graph in Σ has at most c·genus(Σ) faces of size >4.

APPLICATION For every surface Σ there is a lineartime algorithm to test whether a given triangle-free graph in Σ is 3-colorable.

COR (Kawarabayashi, Thomassen) $\forall \Sigma \forall$ triangle-free *G* in Σ all but $cg(\Sigma)$ vertices of *G* can be 3-colored.

COR (Havel's conj) $\exists D$ s.t. if the triangles of a planar G are pairwise at distance $\geq D$, then 3-colorable.

Testing 3-colorability of triangle-free G in Σ

Step 1: We either

- determine that G is 3-colorable (has no 4-critical subgraph with few faces of length >4), or
- find a subgraph *H* of bounded size s.t. each face of *H* is a locally planar quadrangulation

Step 2: We try all 3-colorings of H to see if one of them extends to G, using:

THM If *G* is in orientable Σ , *G* has *k* precolored faces, each of size $\leq k$, and *G* is a locally planar quadrangulation, then a precoloring extends iff sum of winding numbers is zero.

Let $G \subseteq \Sigma$, Σ orientable, let $c: V(G) \rightarrow \{1,2,3\}$ be a 3-coloring. Orient edges $1 \rightarrow 2$, $2 \rightarrow 3$, $3 \rightarrow 1$. Let C be a cycle. Choose clockwise direction of C. Define winding number of C: w(C):= (#forward edges - #back edges)/3.

FACT $\sum w(C)=0$, sum over all facial cycles

COR If some faces are precolored, and all other faces are quadrangles, then a necessary condition for the precoloring to extend is that the sum of winding #s be 0.

THM (Hutchinson) $\forall \Sigma$ orientable $\exists r$ s.t. every $G \subseteq \Sigma$ with all faces even and edge-width $\geq r$ is 3-colorable.

THM B (Kral, RT) $\forall \Sigma$ orientable $\forall k \exists r \forall G \subseteq \Sigma$ with precolored cycles C_1, \ldots, C_k ("holes") if

- 1. each hole has size $\leq k$
- 2. all other faces are C_4 s
- **3.** there is no "schism" of length $\leq r$
- 4. no C_i surrounded by cycle of length $\langle C_i \rangle$
- 5. sum of winding numbers is 0
- \Rightarrow precoloring extends to a 3-coloring of G

Open problems

Structure of 3-colorable triangle-free toroidal graphs?

Fix a proper minor-closed class F. Can $\chi(G)$ be approximated to within an additive error of 10 in poly-time for $G \in F$?