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Coloring graphs on surfaces

The classical problems:

The 4-color problem (Guthrie 1852)
Can every planar graph be 4-colored?



Modern point of view: Fix Σ,k. Can we test 
χ(G) ≤ k in poly-time for G in Σ?

Coloring graphs on surfaces

The classical problems:

The map color problem: Find max χ(G) 
over all G Sg for g>0.

Answer: (7+√48g+1)/2 
(Heawood 1890; Ringel, Youngs 1960s)



Modern point of view: Fix Σ,k. Can we test 
χ(G) ≤ k in poly-time for G in Σ?

Yes for k≥6 by Euler’s formula

Yes for k=5 by Thomassen’s theorem

Open for k=4 (think Four-Color Theorem)

No for k=3, unless P=NP
Triangle-free graphs:
Yes for k≥4 by Euler’s formula
Yes for k=3 (this talk)



THM (Grotzsch) ∀ triangle-free planar graph is 3-colorable

PROOF Reducible configurations:
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tetragram pentagram hexagram

Non-extendable pentagram colorings:
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Reduction: delete red vertices, identify indicated pairs 
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monogram
tetragram pentagram hexagram

LEMMA 1 G connected triangle-free planar, C outer cycle,
|C|≤6, G≠C ⇒ ∃ multigram s.t. red vertices are not in C

≤ 2E-4V+2E-4F-t2/3+2t2+t3-|C|+4 ≤ 2t2/3-4 < 0.

PF deg(v)-4   v not in C |f|-4   f internal
ch(v)=   -1/3          v∈C, deg 2       ch(f)=

0 o.w.                              0       f outer

∑charges = ∑(d(v)-4) + ∑(|f|-4) – t2/3 + ∑(4-d(v))– (|C|-4)
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Each face will send 1/3 to every incident vertex v s.t.
either v∈G-C has degree 3, or v∈C has degree 2.

After that there is a face of charge <0 ⇒ tetragram or
pentagram. Q.E.D. 
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LEMMA 1 G connected triangle-free planar, C outer cycle,
|C|≤6, G≠C ⇒ ∃ multigram s.t. red vertices are not in C

monogram
tetragram pentagram hexagram

PF Pick a separating ≤6-cycle C with smallest inside,
or facial ≤6-cycle if no separating cycle. Apply Lemma 1
to C and its interior. Q.E.D.

PF of Grotzsch: multigram ⇒ smaller graph ⇒ induction

LEMMA 2 Every triangle-free planar graph has a safe
multigram (reduction does not create triangles)



monogram
tetragram pentagram hexagram

LEMMA 2 Every triangle-free planar graph has a safe
multigram (reduction does not create triangles)

LINEAR-TIME ALGORITHM

A problem: which vertices of a C4 to identify?
Kowalik: An O(n log n) algorithm



LEMMA 2 Every triangle-free planar graph has a safe
multigram (reduction does not create triangles)

LINEAR-TIME ALGORITHM

LEMMA 3 Every triangle-free planar graph has a secure
multigram (safe+marked vertices have bounded degree)

ALGORITHM Find secure multigram and reduce in
constant time to a smaller graph; recurse



PART II

Triangle-free graphs on surfaces



THM (Thomassen) Every 4-critical graph of girth ≥5 in
Σ has at most f(genus(Σ)) vertices.

THM (Youngs) For every non-bipartite quadrangulation
G of the projective plane χ(G)=4.

Not true for graphs of girth ≥4:



THM (Thomassen) Every 4-critical graph of girth ≥5 in
Σ has at most f(genus(Σ)) vertices.

THM For every 4-critical graph in a surface Σ
∑(|f|-4)≤c(genus(Σ)+no of triangles).

COR Every triangle-free 4-critical graph in Σ has at 
most c·genus(Σ) faces of size >4.

APPLICATION For every surface Σ there is a linear-
time algorithm to test whether a given triangle-free 
graph in Σ is 3-colorable.
COR (Kawarabayashi, Thomassen) ∀ Σ ∀ triangle-free 
G in Σ all but cg(Σ) vertices of G can be 3-colored.

COR (Havel’s conj) ∃ D s.t. if the triangles of a planar G
are pairwise at distance ≥ D, then 3-colorable.
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Testing 3-colorability of triangle-free G in Σ

Step 1: We either
• determine that G is 3-colorable (has no 4-critical 
subgraph with few faces of length >4), or
• find a subgraph H of bounded size s.t. each face
of H is a locally planar quadrangulation

Step 2: We try all 3-colorings of H to see if one of 
them extends to G, using:

THM If G is in orientable Σ, G has k precolored
faces, each of size ≤k, and G is a locally planar 
quadrangulation, then a precoloring extends iff
sum of winding numbers is zero.



Let G Σ, Σ orientable, let c:V(G)→{1,2,3} be a 
3-coloring. Orient edges 1→2, 2→3, 3→1. Let C be a 
cycle. Choose clockwise direction of C. Define winding 
number of C: w(C):= (#forward edges - #back edges)/3.

FACT ∑w(C)=0, sum over all facial cycles

COR If some faces are precolored, and all other faces 
are quadrangles, then a necessary condition for the 
precoloring to extend is that the sum of winding #s be 0.

FACT w(C4)=0



THM (Hutchinson) ∀ Σ orientable ∃ r s.t. 
every G Σ with all faces even and 
edge-width ≥r is 3-colorable.
THM B (Kral, RT) ∀Σ orientable ∀k ∃r ∀G Σ
with precolored cycles C1,…,Ck (“holes”) if
1. each hole has size ≤k
2. all other faces are C4s
3. there is no “schism” of length ≤r
4. no Ci surrounded by cycle of length <|Ci|
5. sum of winding numbers is 0
⇒ precoloring extends to a 3-coloring of G



Open problems

Fix a proper minor-closed class F. Can 
χ(G) be approximated to within an additive 
error of 10 in poly-time for G∈F?

Structure of 3-colorable triangle-free toroidal
graphs?


