CONFIGURATIONS IN LARGE *t*-CONNECTED GRAPHS Robin Thomas

School of Mathematics Georgia Institute of Technology http://math.gatech.edu/~thomas

joint work with Sergey Norin

- A minor of G is obtained by taking subgraphs and contracting edges.
- Preserves planarity and other properties.
- **G** has an H minor ($H \leq_m G$) if **G** has a minor isomorphic to H.
- A K_5 minor:

SUMMARY

THM G is t-connected, big, $G \not\geq K_t \Rightarrow G \setminus X$ is planar for some $X \subseteq V(G)$ of size $\leq t-5$.

THM G is (2k+3)-connected, big \Rightarrow G is k-linked

THM (Larman&Mani, Jung) f(k)-connected $\Rightarrow k$ -linked THM (Robertson&Seymour) $f(k)=k(\log k)^{1/2}$ suffices

DEF G is k-linked if for all distinct vertices $s_1, s_2, ..., s_k, t_1, t_2, ..., t_k$ there exist disjoint paths $P_1, P_2, ..., P_k$ such that P_i joins s_i and t_i

THM (Larman&Mani, Jung) f(k)-connected $\Rightarrow k$ -linked THM (Robertson&Seymour) $f(k)=k(\log k)^{1/2}$ suffices THM (Bollobas&Thomason) f(k)=22k suffices THM (Larman&Mani, Jung) f(k)-connected $\Rightarrow k$ -linked THM (Robertson&Seymour) $f(k) = k(\log k)^{1/2}$ suffices THM (Bollobas&Thomason) f(k)=22k suffices THM (Kawarabayashi, Kostochka, Yu) f(k)=12k suffices **THM** (RT, Wollan) f(k) = 10k suffices MAIN THM 1 f(k)=2k+3 suffices for big graphs: $\forall k \exists Ns.t. every (2k+3)$ -connected graph on >Nvertices is k-linked

- THM (Larman&Mani, Jung) f(k)-connected $\Rightarrow k$ -linked THM (Robertson&Seymour) $f(k)=k(\log k)^{1/2}$ suffices THM (Bollobas&Thomason) f(k)=22k suffices THM (Kawarabayashi, Kostochka, Yu) f(k)=12k suffices
- THM (RT, Wollan) f(k) = 10k suffices

MAIN THM 1 f(k)=2k+3 suffices for big graphs: $\forall k \exists N$ s.t. every (2k+3)-connected graph on $\ge N$ vertices is *k*-linked

- NOTE f(k)=2k+2 would be best possible
- NOTE $N \ge 3k$ needed

- A minor of G is obtained by taking subgraphs and contracting edges.
- Preserves planarity and other properties.
- **G** has an H minor ($H \leq_m G$) if **G** has a minor isomorphic to H.
- A K_5 minor:

Excluding K_t minors

- $G \not\geq_{m} K_{3} \Leftrightarrow G$ is a forest (tree-width ≤ 1)
- $G \not\geq_m K_4 \Leftrightarrow G$ is series-parallel (tree-width ≤ 2)
- $G \not\geq_m K_5 \Leftrightarrow$ tree-decomposition into planar graphs and V_8 (Wagner 1937)
- $G \not\geq_{m} K_{6} \Leftrightarrow ???$

• apex ($G \lor v$ planar for some v)

- apex ($G \setminus v$ planar for some v)
- planar + triangle

- apex ($G \setminus v$ planar for some v)
- planar + triangle
- double-cross

- apex ($G \lor v$ planar for some v)
- planar + triangle
- double-cross

- apex (G\v planar for some v)
- planar + triangle
- double-cross
- hose structure

- apex (G\v planar for some v)
- planar + triangle
- double-cross
- hose structure

GRAPHS WITH NO K, MINOR

REMARK $G \not\geq_{m} K_{t} \Rightarrow (G + universal vertex) \not\geq_{m} K_{t+1}$

REMARK G X planar for $X \subseteq V(G)$ of size $\leq t-5 \Rightarrow G \neq_m K_t$

GRAPHS WITH NO K, MINOR

THEOREM (Robertson & Seymour) $G \not\geq_m K_t \Rightarrow G$ has "structure"

Roughly structure means tree-decomposition into pieces that *k*-almost embed in a surface that does not embed K_t , where k=k(t).

Converse not true, but: **G** has "structure" $\Rightarrow G \not\geq_m K_t$ for some t >> t

Our objective is to find a simple iff statement

Extremal results for K_t

• $G \not\geq K_t \Rightarrow |\mathsf{E}(G)| \leq (t-2)n-(t-1)(t-2)/2$ for $t \leq 7$ (Mader)

• $G \not\geq K_8 \Rightarrow |E(G)| \leq 6n-21$, because of $K_{2,2,2,2,2}$

• $G \not\geq K_t \Rightarrow |E(G)| \leq \operatorname{ct}(\log t)^{1/2} \mathsf{n}$ (Kostochka, Thomason)

CONJ (Seymour, RT) G is (t-2)-connected, big $G \not\geq K_t \Rightarrow |E(G)| \leq (t-2)n-(t-1)(t-2)/2$

• $G \not\geq K_8 \Rightarrow |E(G)| \leq 6n$ -21, unless G is a $(K_{2,2,2,2,2},5)$ -cockade (Jorgensen)

• $G \not\geq K_9 \Rightarrow |\mathsf{E}(\mathsf{G})| \leq 7n-28$, unless.... (Song, RT)

K_t minors naturally appear in:

Structure theorems:

- -series-parallel graphs (Dirac)
- -characterization of planarity (Kuratowski)
- -linkless embeddings (Robertson, Seymour, RT)
- -knotless embeddings (unproven)

Hadwiger's conjecture: $K_t \not\leq_m G \Rightarrow \chi(G) \leq t-1$

Hadwiger's conjecture: $K_t \not\leq_m G \Rightarrow \chi(G) \leq t-1$

• Easy for $t \le 4$, but for $t \ge 5$ implies 4CT.

Hadwiger's conjecture: $K_t \leq_m G \Rightarrow \chi(G) \leq t-1$

- Easy for $t \le 4$, but for $t \ge 5$ implies 4CT.
- For *t*=5 implied by the 4CT by Wagner's structure theorem (1937)

Hadwiger's conjecture: $K_t \not\leq_m G \Rightarrow \chi(G) \leq t-1$

- Easy for $t \le 4$, but for $t \ge 5$ implies 4CT.
- For *t*=5 implied by the 4CT by Wagner's structure theorem (1937)
- For *t*=6 implied by the 4CT by

THM (Robertson, Seymour, RT) Every minimal counterexample to Hadwiger for t=6 is apex ($G \setminus v$ is planar for some v).

Hadwiger's conj open for **b**6. Thm implied by

Hadwiger's conjecture: $K_t \not\leq_m G \Rightarrow \chi(G) \leq t-1$

- Easy for $t \le 4$, but for $t \ge 5$ implies 4CT.
- For *t*=5 implied by the 4CT by Wagner's structure theorem (1937)
- For *t*=6 implied by the 4CT by

THM (Robertson, Seymour, RT) Every minimal counterexample to Hadwiger for t=6 is apex (*G**v* is planar for some *v*).

Hadwiger's conj open for **b**6. Thm implied by

Jorgensen's conjecture: If G is 6-connected and $K_6 \not\leq_m G$, then G is apex (G\v is planar for some v).

Jorgensen's conjecture: If *G* is 6-connected and $K_6 \not\leq_m G$, then *G* is apex (*G**v* is planar for some *v*). THM (DeVos, Hegde, Kawarabayashi, Norin, RT, Wollan) True for big graphs: There exists *N* such that every 6-connected graph $G \not\geq_m K_6$ on $\geq N$ vertices is apex. MAIN THM 2 (Norin, RT) True for all values of 6:

Jorgensen's conjecture: If G is 6-connected and $K_6 \not\leq_m G$, then G is apex.

THM (DeVos, Hegde, Kawarabayashi, Norin, RT, Wollan) True for big graphs:

There exists *N* such that every 6-connected graph $G \not\geq_m K_6$ on $\geq N$ vertices is apex. MAIN THM 2 (Norin, RT) True for all values of 6: $\forall t \exists N_t \forall t$ -connected graph $G \not\geq_m K_t$ on $\geq N_t$ vertices $\exists X \subseteq V(G)$ with $|X| \leq t$ -5 such that $G \setminus X$ is planar.

NOTES *t*-connected and $|X| \le t-5$ best possible, N_t needed. Proved for 31*t*/2-connected graphs by Bohme, Kawarabayashi, Maharry, Mohar

Jorgensen's conjecture: If *G* is 6-connected and $K_6 \not\leq_m G$, then *G* is apex.

THM (DeVos, Hegde, Kawarabayashi, Norin, RT, Wollan) True for big graphs:

There exists *N* such that every 6-connected graph $G \not\geq_m K_6$ on $\geq N$ vertices is apex.

MAIN THM 2 (Norin, RT) True for all values of 6: $\forall t \exists N_t \forall t$ -connected graph $G \geq_m K_t$ on

 $\geq N_t$ vertices $\exists X \subseteq V(G)$ with $|X| \leq t-5$ such that $G \setminus X$ is planar.

NOTES *t*-connected and $|X| \le t-5$ best possible, N_t needed. Proved for 31 *t*/2-connected graphs by Bohme, Kawarabayashi, Maharry, Mohar MAIN THM 2 (Norin, RT) True for all values of 6: $\forall t \exists N_t \forall t$ -connected graph $G \geq_m K_t$ on $\geq N_t$ vertices $\exists X \subseteq V(G)$ with $|X| \leq t$ -5 such that $G \setminus X$ is planar.

NOTES *t*-connected and $|X| \le t-5$ best possible, N_t needed. Proved for 31*t*/2-connected graphs by Bohme, Kawarabayashi, Maharry, Mohar

STEPS IN THE PROOF

- Bounded tree-width argument
- Excluded K_t theorem of Robertson & Seymour; reduce to the bounded tree-width case
- Thm of DeVos-Seymour on graphs in a disk

LEMMA Let *G* be a 2-connected graph on *n* vertices with a triangle. Then any configuration of *n*-1 labeled tokens can be moved to any other configuration by repeatedly sliding a token along an edge to an unoccupied vertex.

CASE 2 G has huge tree-width

PROOF By the excluded K_t theorem of Robertson & Seymour we may assume G is k-almost embedded in a surface that does not embed K_t , where k = k(t).

SUMMARY

THM G is *t*-connected, big, $G \not\geq K_t \Rightarrow G \setminus X$ is planar for some $X \subseteq V(G)$ of size $\leq t-5$.

THM G is (2k+3)-connected, big \Rightarrow G is k-linked