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A minor of G Is obtained by taking subgraphs
and contracting edges.

e Preserves planarity and other properties.

* G has an H minor (H<,G) If G has a minor
Isomorphic to H.

* A K; minor:




SUMMARY

THM G is t-connected, big, G#K, = G\X is
planar for some XC V(G) of size <t-5.

HM G Is (2k+3)-connected, big = G Is k-linked

DEF G is k-linked if for all distinct vertices
S1,S,,--,Sln b, .. 1, there exist disjoint paths
P.,P,,...,P,such that P, joins s, and t,
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HM (Larman&Mani, Jung) f(k)-connected = k-linked

HM (Robertson&Seymour) f(K)=k(log k)2 suffices

HM (Bollobas&Thomason) f(k)=22k suffices

"HM (Kawarabayashi, Kostochka, Yu) f(K)=12k suffices
THM (RT, wollan) f(k)=10k suffices
MAIN THM 1 f(k)=2k+3 suffices for big graphs:

vV k 34 Ns.t. every (2k+3)-connected graph on >N
vertices Is k-linked

NOTE f(k)=2k+2 would be best possible
NOTE N > 3k needed
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and contracting edges.
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Excluding K, minors
« G#.K; < Gis a forest (tree-width <1)
« G#.K, < G is series-parallel (tree-width <2)

« G#,Ks < tree-decomposition into planar
graphs and Vg (Wagner 1937)

e G#, Ky < 227
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GRAPHS WITH NO K, MINOR

REMARK
G #, K= (G + universal vertex) %, K,

REMARK
G\X planar for XCV(G) of size <t-5= G* K,



GRAPHS WITH NO K, MINOR

THEOREM (Robertson & Seymour)
G, K= G has “structure”

Roughly structure means tree-decomposition
Into pieces that k-almost embed in a surface that
does not embed K,, where k=K(t).

Converse not true, but:
G has “structure” = G, K, for some t'>>t

Our objective Is to find a simple iff statement



Extremal results for K,
*G#K, = |E(G)|< (t-2)n-(t-1)(t-2)/2 for t<7 (Mader)
‘G 7Kg # |E(G)|< 6n-21, because of K, 5, 5,
*G#K, = |E(G)|< ct(log t)2n (Kostochka, Thomason)

CONJ (Seymour, RT) G Is (t-2)-connected, big
G2K, = |E(G)|< (t-2)n-(t-1)(t-2)/2

*G#Kg = |E(G)|< 6n-21, unless G is a
(K555, ,,5)-cockade (Jorgensen)

*G#Ky= |E(G)|< 7n-28, unless.... (Song, RT)



K, minors naturally appear in:

Structure theorems:

-series-parallel graphs (Dirac)

-characterization of planarity (Kuratowski)
-linkless embeddings (Robertson, Seymour, RT)
-knotless embeddings (unproven)
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MAIN THM 2 (Norin, RT) True for all values of 6:
v t 3 N, ¥ t-connected graph G_*,, K, on

>N, vertices 4 XCV(G) with [X|<t-5 such that
G\X Is planatr.
NOTES t-connected and |X|<t-5 best possible,

N, needed. Proved for 31t/2-connected graphs
by Bohme, Kawarabayashi, Maharry, Mohar

STEPS IN THE PROOF
 Bounded tree-width argument
« Excluded K, theorem of Robertson & Seymour;
reduce to the bounded tree-width case
 Thm of DeVos-Seymour on graphs in a disk
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LEMMA Let G be a 2-connected graph on n
vertices with a triangle. Then any configuration
of n-1 labeled tokens can be moved to any
other configuration by repeatedly sliding a token
along an edge to an unoccupied vertex.




CASE 2 G has huge tree-width

PROOF By the excluded K, theorem of Robertson &
Seymour we may assume G Is k-almost embedded in
a surface that does not embed K,, where k=Kk(t).




SUMMARY
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