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We will work with tri-colorings instead.



CONSISTENCY

Let € be a set of tri-colorings of a cycle R. We
say Cis realizable If there exists a near-
triangulation G with its outer face bounded by R
such that € is precisely the set of tri-colorings
that extend to a tri-coloring of G.
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If C Is realizable, then for every c in € and every
pair of colors a, b there exists a planar matching
M of edges of that color (“Kempe chain™) such
that If we swap a and b on any subset of M, the
new coloring belongs to €.

The latter property Is consistency.
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We need a stronger property, introduced by
A. Bernhart and Cohen. It counts colorings

compatible with given matching rather than
noting whether they exist.

Let 1=0,1,2. A tri-coloring c of R Is I-compatible
with a sighed matching M if

M matches edges not colored |

 positively matched edges colored the same

* negatively matched edges colored differently
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c Is I-compatible with a signed matching M if
M matches edges not colored |

* positively matched edges colored the same
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A set of colorings € of a cycle R Is block-count
(BC) consistent if for every planar signed

matching M there exists an integral variable x,,>0
such that for every coloring c in C

2(X,, - M,c are I-compatible)
IS Independent of i1=0,1,2.

Facts: Realizable = BC-consistent
Union of BC-consistent sets Is BC-consistent



For a configuration K let J(K) denote the set of all
tri-colorings of the ring of K that extend into K. Let
E(K) denote the maximal BC-consistent subset of

Q-J(K).

A configuration K Iis D-reducible If £&(K) Is empty.

A configuration i1s C-reducible If there exists a
smaller configuration K’ such that £(K) Is disjoint

from J(K’).
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THM If A,B,C,,C, are BC-consistent and
C,uC,=Q, then E(A®B) DEARC,)RE(C,2B).
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In general, equality does not hold.
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@ and are D-reducible,
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then G}QG is D-reducible.
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Implies that A‘ cannot appear in a minimal
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counterexample.



THM The following configuration is D-reducible
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each label occurs even number of times.
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Take an induced cycle C and delete E(C). Get
pendant edges. A labeling assigns to each
pendant edge a pair of distinct labels such that
each label occurs even number of times.

A labeling is feasible if it Is induced by a quasi-
circulation of G-E(C).

Consistency defined similarly as in 4CT, except
that matchings are not necessarily planar.

THM (Huck) Cycles of length <10 are D-reducible
COR Min counterexample to CDC has girth >9

CONJECTURE Every cycle is D-reducible.



The 5-flow conjecture Every 2-connected graph
has a 5-flow.

Enough to prove for cubic graphs.

Kochol’s reducibility method:
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