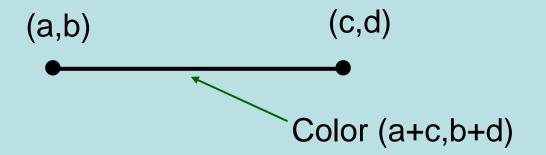
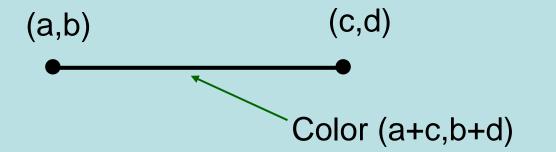


There is a 1-1 correspondence between 4colorings and tri-colorings:



There is a 1-1 correspondence between 4colorings and tri-colorings:



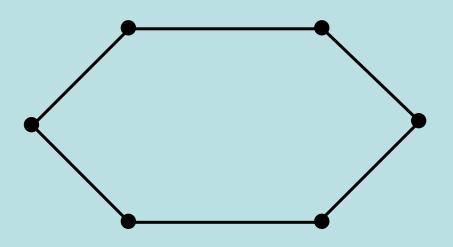
We will work with tri-colorings instead.

CONSISTENCY

Let *C* be a set of tri-colorings of a cycle *R*. We say *C* is realizable if there exists a neartriangulation *G* with its outer face bounded by *R* such that *C* is precisely the set of tri-colorings that extend to a tri-coloring of *G*.

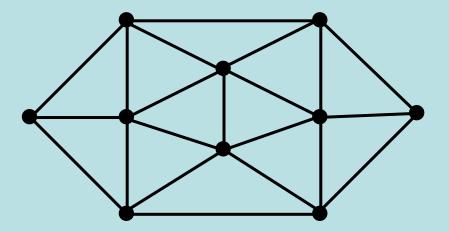
CONSISTENCY

Let *C* be a set of tri-colorings of a cycle *R*. We say *C* is realizable if there exists a near-triangulation *G* with its outer face bounded by *R* such that *C* is precisely the set of tri-colorings that extend to a tri-coloring of *G*.



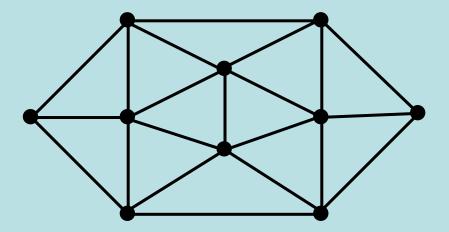
CONSISTENCY

Let *C* be a set of tri-colorings of a cycle *R*. We say *C* is realizable if there exists a neartriangulation *G* with its outer face bounded by *R* such that *C* is precisely the set of tri-colorings that extend to a tri-coloring of *G*.



If *C* is realizable, then for every *c* in *C* and every pair of colors *a*, *b* there exists a planar matching *M* of edges of that color ("Kempe chain") such that if we swap *a* and *b* on any subset of *M*, the new coloring belongs to *C*.

The latter property is consistency.



If *C* is realizable, then for every *c* in *C* and every pair of colors *a*, *b* there exists a planar matching *M* of edges of that color ("Kempe chain") such that if we swap *a* and *b* on any subset of *M*, the new coloring belongs to *C*.

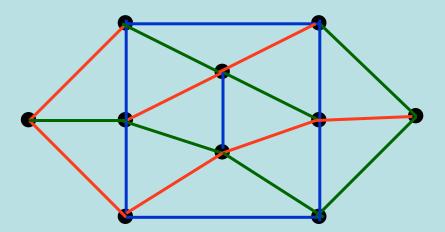
The latter property is consistency.



If *C* is realizable, then for every *c* in *C* and every pair of colors *a*, *b* there exists a planar matching *M* of edges of that color ("Kempe chain") such that if we swap *a* and *b* on any subset of *M*, the new coloring belongs to *C*.

The latter property is consistency.

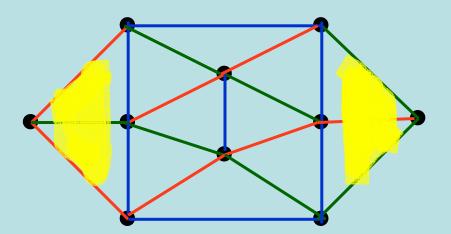
Example: a=red, b=green



If *C* is realizable, then for every *c* in *C* and every pair of colors *a*, *b* there exists a planar matching *M* of edges of that color ("Kempe chain") such that if we swap *a* and *b* on any subset of *M*, the new coloring belongs to *C*.

The latter property is consistency.

Example: a=red, b=green



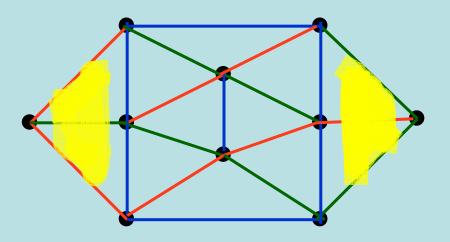
We need a stronger property, introduced by A. Bernhart and Cohen. It counts colorings compatible with given matching rather than noting whether they exist.

Let i=0,1,2. A tri-coloring *c* of *R* is *i*-compatible with a signed matching *M* if

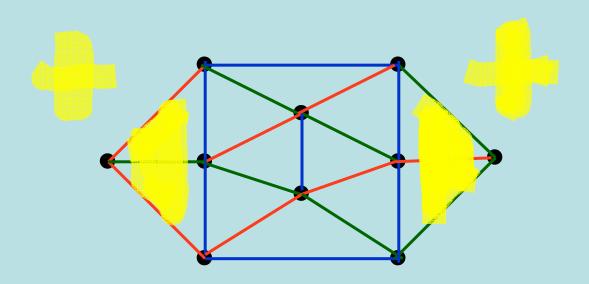
- *M* matches edges not colored *i*
- positively matched edges colored the same
- negatively matched edges colored differently

- M matches edges not colored i
- positively matched edges colored the same
- negatively matched edges colored differently

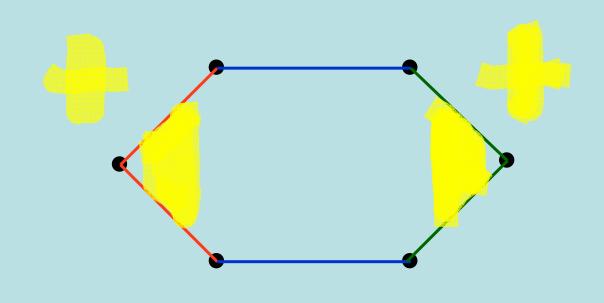
- M matches edges not colored i
- positively matched edges colored the same
- negatively matched edges colored differently



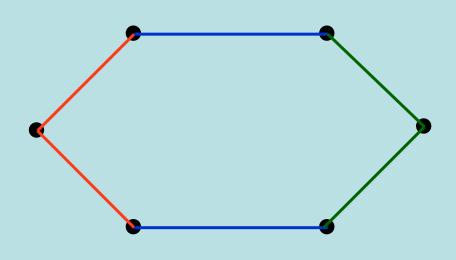
- M matches edges not colored i
- positively matched edges colored the same
- negatively matched edges colored differently



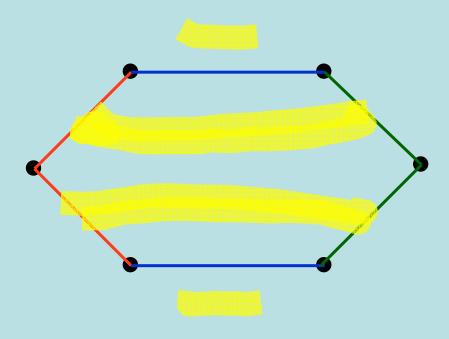
- M matches edges not colored i
- positively matched edges colored the same
- negatively matched edges colored differently



- M matches edges not colored i
- positively matched edges colored the same
- negatively matched edges colored differently



- M matches edges not colored i
- positively matched edges colored the same
- negatively matched edges colored differently



A set of colorings \mathcal{C} of a cycle R is block-count (BC) consistent if for every planar signed matching M there exists an integral variable $x_M \ge 0$ such that for every coloring c in C

 $\Sigma(x_M: M, c \text{ are } i\text{-compatible})$

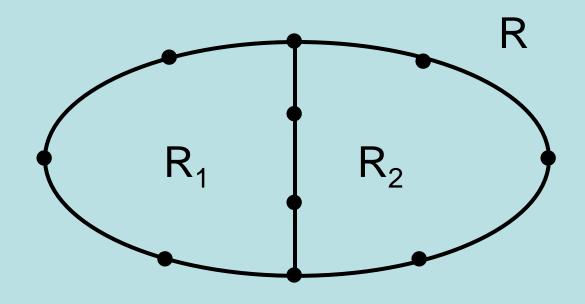
is independent of i=0,1,2.

Facts: Realizable ⇒BC-consistent Union of BC-consistent sets is BC-consistent For a configuration K let $\mathcal{J}(K)$ denote the set of all tri-colorings of the ring of K that extend into K. Let $\mathcal{E}(K)$ denote the maximal BC-consistent subset of Ω - $\mathcal{J}(K)$.

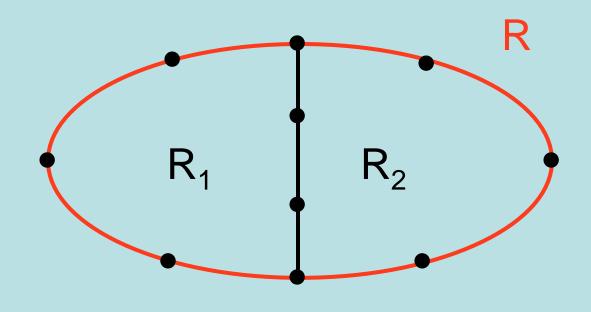
A configuration K is D-reducible if $\mathcal{E}(K)$ is empty.

A configuration is C-reducible if there exists a smaller configuration K such that $\mathcal{E}(K)$ is disjoint from $\mathcal{I}(K)$.

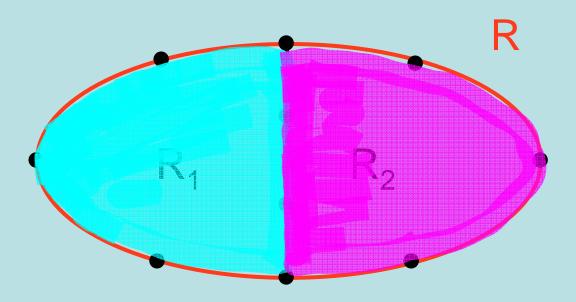
Let \mathcal{C}_1 , \mathcal{C}_2 be consistent sets on rings R_1 , R_2 . The product $\mathcal{C}_1 \otimes \mathcal{C}_2$ is the consistent set on R of all colorings c such that there exist $c_i \in \mathcal{C}_i$ such that c_i, c_1, c_2 agree on shared paths.

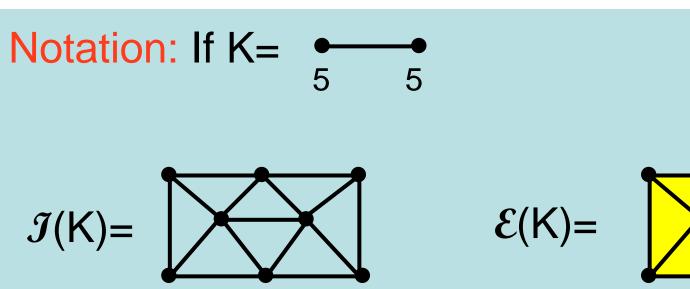


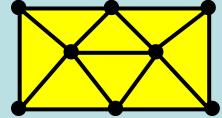
Let \mathcal{C}_1 , \mathcal{C}_2 be consistent sets on rings R_1 , R_2 . The product $\mathcal{C}_1 \otimes \mathcal{C}_2$ is the consistent set on R of all colorings c such that there exist $c_i \in \mathcal{C}_i$ such that C_i, C_1, C_2 agree on shared paths.

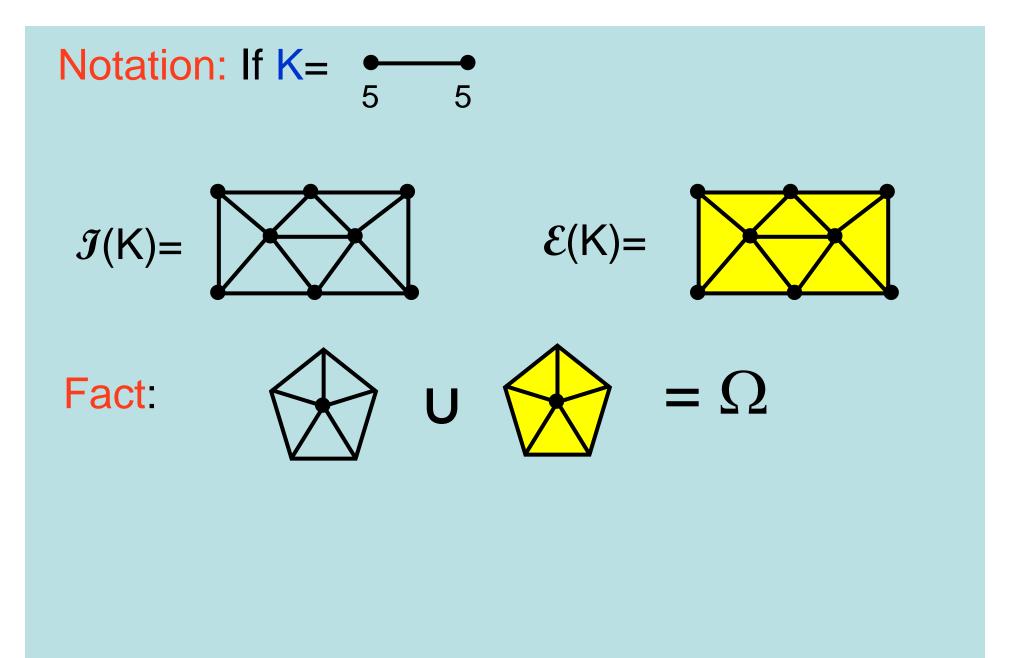


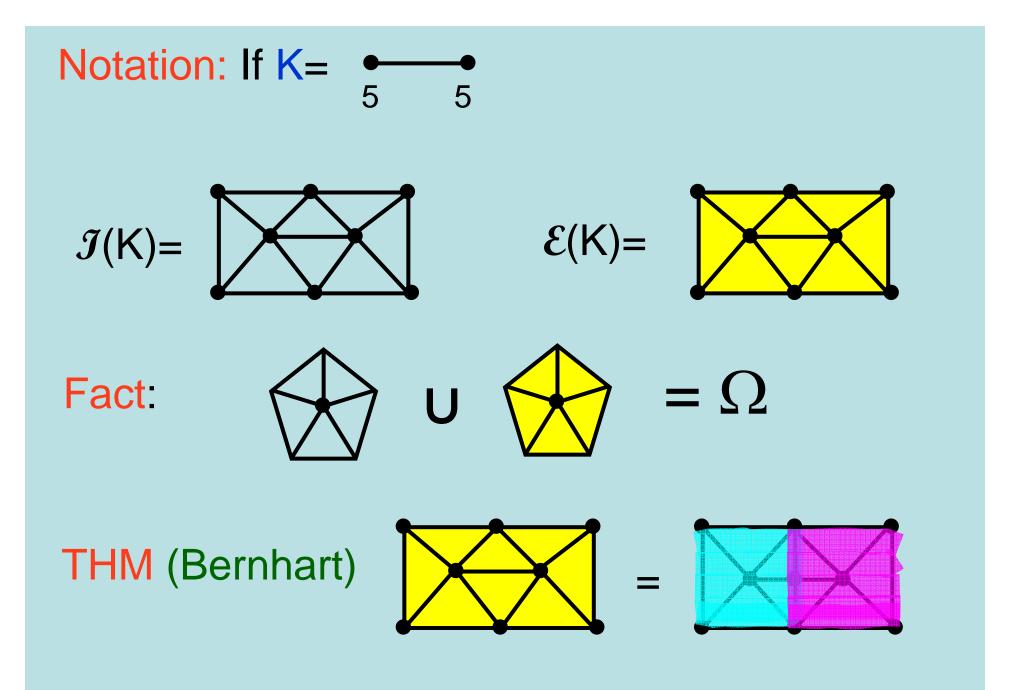
Let \mathcal{C}_1 , \mathcal{C}_2 be consistent sets on rings R_1 , R_2 . The product $\mathcal{C}_1 \otimes \mathcal{C}_2$ is the consistent set on R of all colorings c such that there exist $c_i \in \mathcal{C}_i$ such that C_i, C_1, C_2 agree on shared paths.

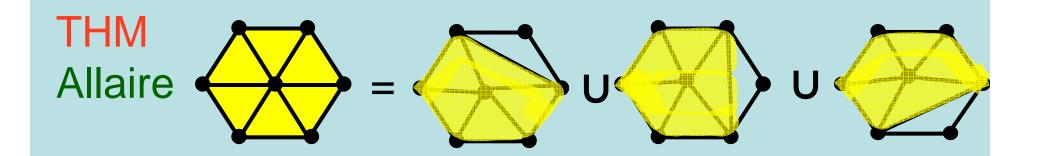


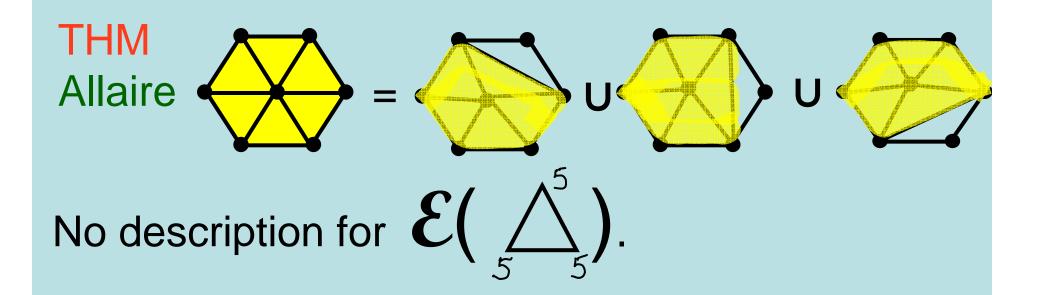


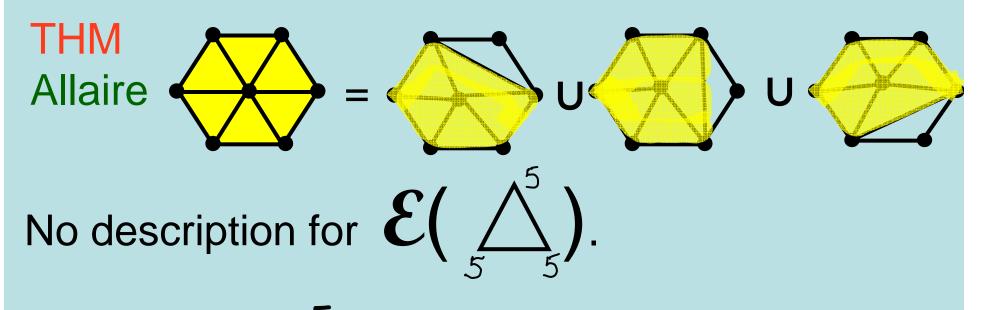




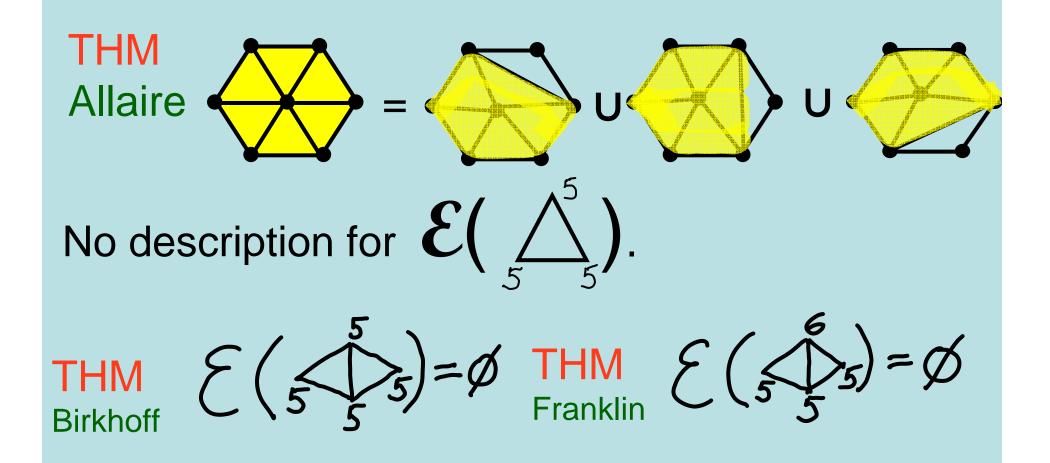


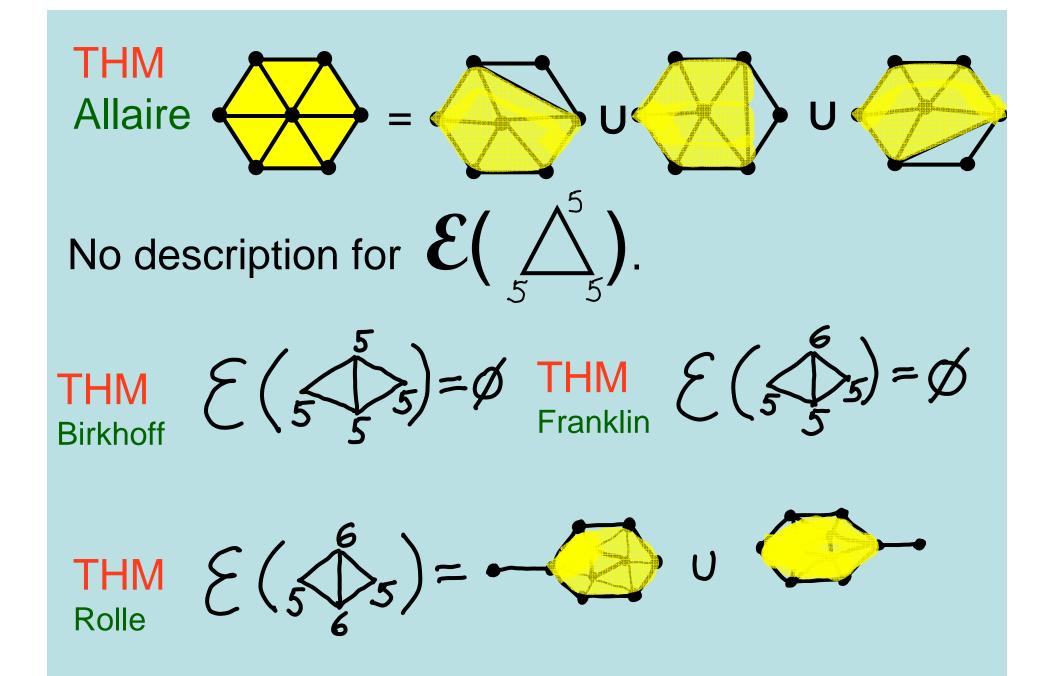


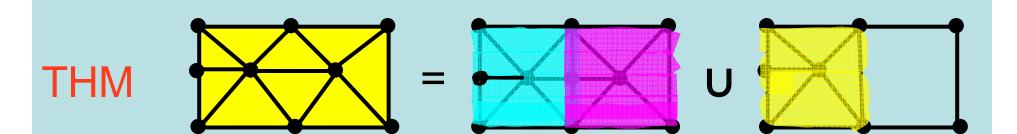


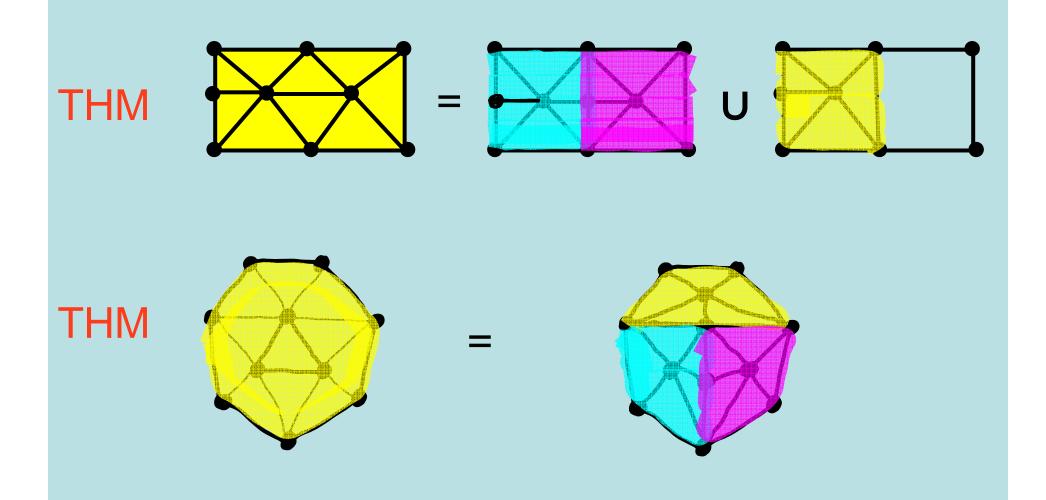


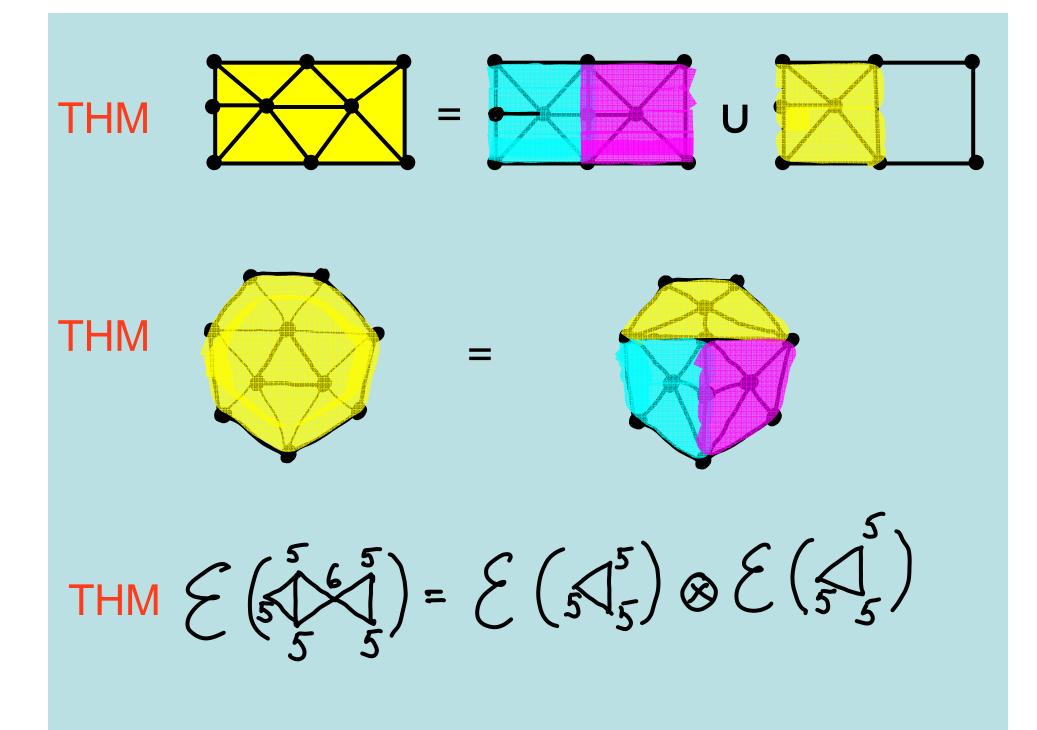
THM $\mathcal{E}\left(5,5\right) = \emptyset$ Birkhoff



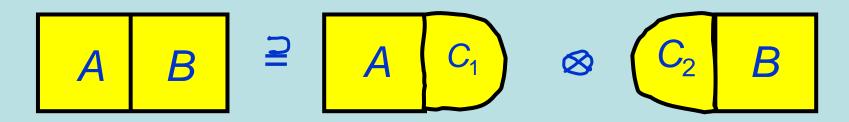




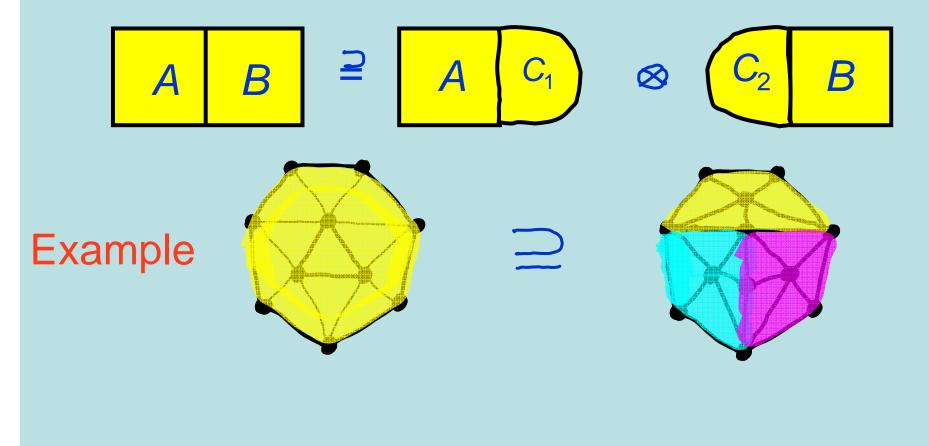




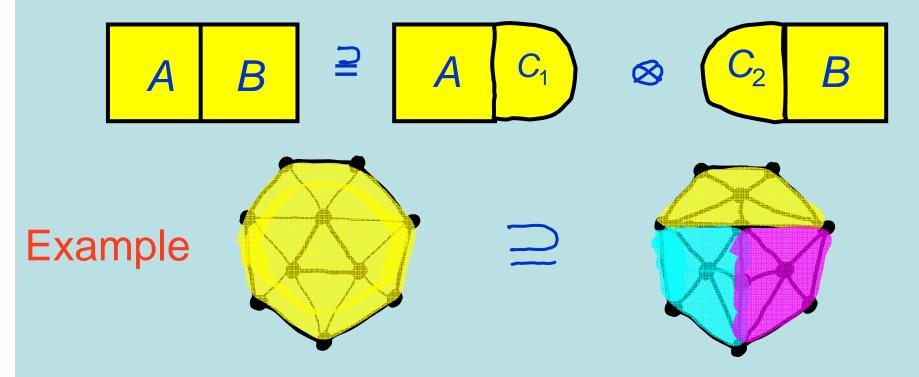
THM If A, B, C_1, C_2 are BC-consistent and $C_1 \cup C_2 = \Omega$, then $\mathcal{E}(A \otimes B) \supseteq \mathcal{E}(A \otimes C_1) \otimes \mathcal{E}(C_2 \otimes B)$.



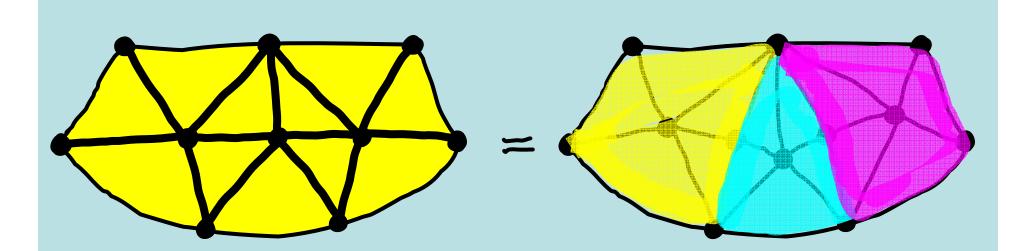
THM If A, B, C_1, C_2 are BC-consistent and $C_1 \cup C_2 = \Omega$, then $\mathcal{E}(A \otimes B) \supseteq \mathcal{E}(A \otimes C_1) \otimes \mathcal{E}(C_2 \otimes B)$.

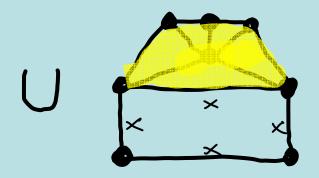


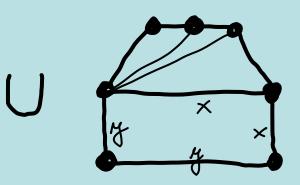
THM If A, B, C_1, C_2 are BC-consistent and $C_1 \cup C_2 = \Omega$, then $\mathcal{E}(A \otimes B) \supseteq \mathcal{E}(A \otimes C_1) \otimes \mathcal{E}(C_2 \otimes B)$.

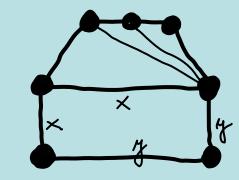


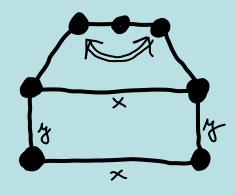
In general, equality does not hold.



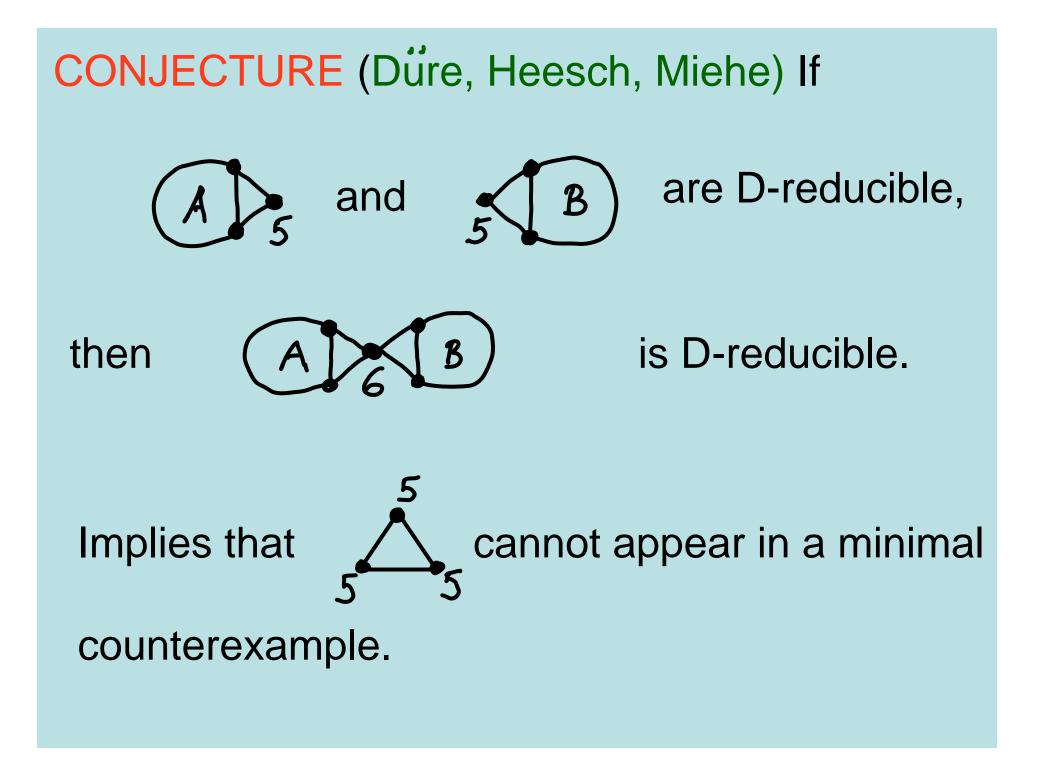




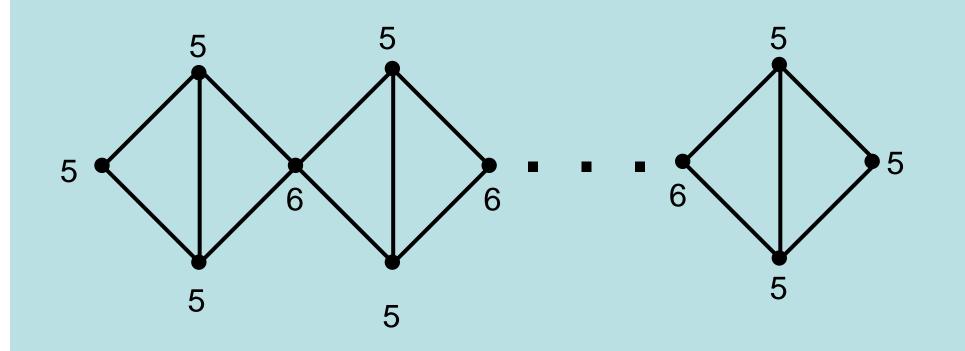




CONJECTURE (Düre, Heesch, Miehe) If \overrightarrow{A} and $\overrightarrow{5}$ and $\overrightarrow{5}$ are D-reducible, then \overrightarrow{A} is D-reducible.



THM The following configuration is D-reducible



union of disjoint cycles

union of disjoint cycles

Enough to prove for cubic graphs

union of disjoint cycles

Enough to prove for cubic graphs

A labeling is feasible if it is induced by a quasicirculation of G-E(C).

A labeling is feasible if it is induced by a quasicirculation of G-E(C).

Consistency defined similarly as in 4CT, except that matchings are not necessarily planar.

A labeling is feasible if it is induced by a quasicirculation of G-E(C).

Consistency defined similarly as in 4CT, except that matchings are not necessarily planar.

THM (Huck) Cycles of length <10 are D-reducible

A labeling is feasible if it is induced by a quasicirculation of G-E(C).

Consistency defined similarly as in 4CT, except that matchings are not necessarily planar.

THM (Huck) Cycles of length <10 are D-reducible COR Min counterexample to CDC has girth >9

A labeling is feasible if it is induced by a quasicirculation of G-E(C).

Consistency defined similarly as in 4CT, except that matchings are not necessarily planar.

THM (Huck) Cycles of length <10 are D-reducible COR Min counterexample to CDC has girth >9 CONJECTURE Every cycle is D-reducible. The 5-flow conjecture Every 2-connected graph has a 5-flow.

Enough to prove for cubic graphs.

Kochol's reducibility method:

