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A minor of G Is obtained by taking subgraphs
and contracting edges.

e Preserves planarity and other properties.

* G has an H minor (H<,G) If G has a minor
Isomorphic to H.

* A K; minor:




Excluding K, minors
« G#.K; < Gis a forest (tree-width <1)
« G#.K, < G is series-parallel (tree-width <2)

« G#,Ks < tree-decomposition into planar
graphs and Vg (Wagner 1937)

e G#, Ky < 227
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GRAPHS WITH NO K, MINOR

REMARK
G #, K= (G + universal vertex) %, K,

REMARK
G\X planar for XCV(G) of size <t-5= G* K,



GRAPHS WITH NO K, MINOR

THEOREM (Robertson & Seymour)
G, K= G has “structure”

Roughly structure means tree-decomposition
of pieces that k-almost embed In a surface that
does not embed K,, where k=K(t).

Converse not true, but:
G has “structure” = G, K, for some t'>>t

Our objective Is to find a simple iff statement
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* G#K; = |[E(G)|< 3n-6 (Wagner)
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Extremal results for K,
*G#K, = |E(G)|< (t-2)n-(t-1)(t-2)/2 for t<7
‘G 7Kg # |E(G)|< 6n-21, because of K, 5, 5,
*G#K, = |E(G)|< ct(log t)2n (Kostochka, Thomason)

CONJ (Seymour, RT) G Is (t-2)-connected, big
G2K, = |E(G)|< (t-2)n-(t-1)(t-2)/2

*G#Kg = |E(G)|< 6n-21, unless G is a
(K555, ,,5)-cockade (Jorgensen)

*G#Ky= |E(G)|< 7n-28, unless.... (Song, RT)



K, minors naturally appear in:

Structure theorems:

-series-parallel graphs (Dirac)

-characterization of planarity (Kuratowski)
-linkless embeddings (Robertson, Seymour, RT)
-knotless embeddings (unproven)
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Hadwiger’s conjecture is open for t>6

Open even for G with no 3 pairwise non-adjacent
vertices; HC implies any such G > K
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MAIN THM (with Norin) V t 4 N, V t-connected
graph G %, K, on >N, vertices 3 XCV(G)

with | X|<t-5 such that G\X is planar.

NOTES
e Glves Iff characterization
e t-connected and | X|<t-5 best possible

* N, needed for t>7
e Proved for 31t/2-connected graphs by
Kawarabayashi, Maharry, Mohar



MAIN THM (with Norin) V t 4 N, V t-connected
graph G %, K, on >N, vertices 3 XCV(G)
with [X|<t-5 such that G\X is planar.

INGREDIENTS IN THE PROOF

« “Brambles” (“tangles”)

 Thm of DeVos-Seymour on graphs in a disk

* No big bramble = bounded tree-width method
« Excluded K, theorem of Robertson & Seymour
to examine the structure of a big bramble
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DEF A bramble 83 In G Is a set of connected

subgraphs that pairwise touch (intersect or
are joined by an edge). The order of B Is
min{|X| : XNB=() for every B€3}.

THEOREM (Seymour, RT)
tree-width(G) = max order of a bramble + 1

THEOREM (Robertson, Seymour)
All brambles in G form a tree-decomposition.
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CASE 1 G has bounded tree-width

PROOF Let (T,W) be a tree-decomposition of bounded
width. T has a vertex of big degree or a long path.

This suffices to get a K, minor. For bigger cliques
we need a more sophisticated argument.



CASE 2 There Is a bramble 3 of large order

By the excluded K, theorem of Robertson
and Seymour we reduce to the same problem
as above.



SUMMARY

MAIN THM (with Norin) V t 4 N, V t-connected
graph G #,, K, on >N, vertices 3 XCV(G) with

|X|<t-5 such that G\X is planar.

COR G Is t-connected, > N, vertices,
G2, K = |E(G)|< (t-2)n-(t-1)(t-2)/2

CONJ Corollary holds for (t-2)-connected
graphs






