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• A minor of G is obtained by taking subgraphs 
and contracting edges. 
• Preserves planarity and other properties.
• G has an H minor (H≤mG) if G has a minor 
isomorphic to H.
• A K5 minor:



Excluding Kt minors

• G¤mK3 ⇔ G is a forest (tree-width ≤1)
• G¤mK4 ⇔ G is series-parallel (tree-width ≤2)
• G¤mK5 ⇔ tree-decomposition into planar 
graphs and V8 (Wagner 1937)
• G¤mK6 ⇔ ???
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GRAPHS WITH NO Kt MINOR

REMARK
G¤m Kt⇒ (G + universal vertex) ¤m Kt+1

REMARK
G\X planar for X⊆V(G) of size ≤t-5⇒ G¤mKt



GRAPHS WITH NO Kt MINOR

THEOREM (Robertson & Seymour)
G¤m Kt⇒ G has “structure”

Roughly structure means tree-decomposition
of pieces that k-almost embed in a surface that
does not embed Kt, where k=k(t).

Converse not true, but:
G has “structure” ⇒ G¤m Kt’ for some t’>>t

Our objective is to find a simple iff statement
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•G¤Kt ⇒ |E(G)|≤ (t-2)n-(t-1)(t-2)/2 for t≤7
•G¤K8 ; |E(G)|≤ 6n-21, because of K2,2,2,2,2

•G¤K8  ⇒ |E(G)|≤ 6n-21, unless G is a 
(K2,2,2,2,2,5)-cockade (Jorgensen)

•G¤K9 ⇒ |E(G)|≤ 7n-28, unless…. (Song, RT)

CONJ (Seymour, RT) G is (t-2)-connected, big
G¤Kt ⇒ |E(G)|≤ (t-2)n-(t-1)(t-2)/2

•G¤Kt ⇒ |E(G)|≤ ct(log t)1/2n (Kostochka, Thomason)



Kt minors naturally appear in:

-series-parallel graphs (Dirac)
-characterization of planarity (Kuratowski)
-linkless embeddings (Robertson, Seymour, RT)
-knotless embeddings (unproven)

Structure theorems:

Hadwiger’s conjecture: Kt£mG ⇒χ(G)≤t-1
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Hadwiger’s conjecture is open for t>6

THM (Robertson, Seymour, RT) Every minimal 
counterexample to Hadwiger for t=6 is apex 
(G\v is planar for some v)

Open even for G with no 3 pairwise non-adjacent
vertices; HC implies any such G ≥m Kdn/2e
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MAIN THM (with Norin) ∀ t ∃ Nt ∀ t-connected 
graph G¤m Kt on ≥Nt vertices ∃ X⊆V(G) 
with |X|≤t-5 such that G\X is planar.

NOTES
• Gives iff characterization
• t-connected and |X|≤t-5 best possible
• Nt needed for t>7
• Proved for 31t/2-connected graphs by 
Kawarabayashi, Maharry, Mohar



MAIN THM (with Norin) ∀ t ∃ Nt ∀ t-connected 
graph G¤m Kt on ≥Nt vertices ∃ X⊆V(G) 
with |X|≤t-5 such that G\X is planar.

INGREDIENTS IN THE PROOF
• “Brambles” (“tangles”)
• Thm of DeVos-Seymour on graphs in a disk
• No big bramble ⇒ bounded tree-width method
• Excluded Kt theorem of Robertson & Seymour

to examine the structure of a big bramble 
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subgraphs that pairwise touch (intersect or
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min{|X| : XÅB≠∅ for every B∈B}.
EXAMPLE G=kxk grid, B={all crosses}, order is k
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DEF A bramble B in G is a set of connected
subgraphs that pairwise touch (intersect or
are joined by an edge). The order of B is 
min{|X| : XÅB≠∅ for every B∈B}.

THEOREM (Seymour, RT)
tree-width(G) = max order of a bramble + 1

THEOREM (Robertson, Seymour)
All brambles in G form a tree-decomposition.
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CASE 1 G has bounded tree-width

PROOF Let (T,W) be a tree-decomposition of bounded
width. T has a vertex of big degree or a long path.

This suffices to get a K7 minor. For bigger cliques
we need a more sophisticated argument.



CASE 2 There is a bramble B of large order

By the excluded Kt theorem of Robertson
and Seymour we reduce to the same problem
as above.



COR G is t-connected, ≥ Nt vertices,
G¤mKt ⇒ |E(G)|≤ (t-2)n-(t-1)(t-2)/2

MAIN THM (with Norin) ∀ t ∃ Nt ∀ t-connected 
graph G¤m Kt on ≥Nt vertices ∃ X⊆V(G) with 
|X|≤t-5 such that G\X is planar.

SUMMARY

CONJ Corollary holds for (t-2)-connected 
graphs




