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• A minor of G is obtained by taking subgraphs 
and contracting edges. 
• Preserves planarity and other properties.
• G has an H minor (H·m G) if G has a minor 
isomorphic to H.
• A K5 minor:
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Jorgensen’s conjecture: If G is 6-connected and 
K6£mG, then G is apex.
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Excluding Kt

• G¤K3 ⇔ tree-decomposition into bags of size 
·2 (tree-width ·1)
• G¤K4 ⇔ tree-decomposition into bags of size 
·3 (tree-width ·2)
• G¤K5 ⇔ tree-decomposition into planar 
graphs and V8 (Wagner 1937)
• G¤K6 ⇔ ???
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• apex (G\v planar for some v)
• planar + triangle
• double-cross
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• G¤K9 ⇒ |E(G)|· 7n-28, unless…. (Song, RT)
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Jorgensen’s conjecture: If G is 6-connected and 
K6£mG, then G is apex.

MAIN THM True for big graphs:
There exists N such that every 6-connected 
graph G¤m K6 on ≥N vertices is apex.

Why easier for big graphs? Our method affords

Principle (P): If a non-planarity occurs, then it
occurs many times



STEPS OF THE PROOF:

1. Non-planar extensions of planar graphs
2. Bounded tree-width
3. Societies with leaps
4. Societies with no large transaction

MAIN THM
There exists N such that every 6-connected 
graph G¤m K6 on ≥N vertices is apex.
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three vertices with stable neighborhoods.

Not i-4-c
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THM (Robertson, Seymour, RT)
G·t H internally 4-connected, G planar, H not. 
Then G+jump·t H or G+cross·t H.

Extensions

• Rooted graphs
• Graphs on surfaces
• Apex graphs
• Minors
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K4,t

COR Every huge minimal graph 
of crossing number ≥2 contains
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Applications

THM A 5-connected graph G¤mK6 contains a 
subdivision of a graph below ⇒ G is apex.
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⇒ G has a big planar grid minor

Let’s look at the outside of the grid minor



DEF A society is a pair (G,Ω), where G is a 
graph and Ω is a cyclic ordering of a subset 
V(Ω)⊆ V(G).
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THM For a society (G,Ω) with a 4-leap, 
the following are equivalent:
(1) No planar enlargement has a K6 minor
(2) (G,Ω) has no minor isomorphic to

(3) (G,Ω) is apex, planar+triangle or
planar

contains no
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THM Every internally 6-connected non-apex society 
with “many legs” and no large transaction contains:

plus 2 small variations
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