LARGE 6-CONNECTED GRAPHS WITH NO K₆ MINOR

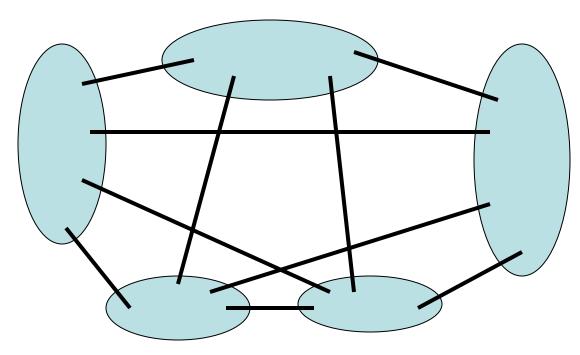
Robin Thomas

School of Mathematics Georgia Institute of Technology http://math.gatech.edu/~thomas

Joint work with

- Matthew DeVos
- Rajneesh Hegde
- Kenichi Kawarabayashi
- Serguei Norine
- Paul Wollan

- A minor of G is obtained by taking subgraphs and contracting edges.
- Preserves planarity and other properties.
- **G** has an **H** minor ($H \leq_m G$) if **G** has a minor isomorphic to **H**.
- A K_5 minor:



• Easy for $t \le 4$, but for $t \ge 5$ implies 4CT.

- Easy for $t \le 4$, but for $t \ge 5$ implies 4CT.
- For *t*=5 implied by the 4CT by Wagner's structure theorem (1937)

- Easy for $t \le 4$, but for $t \ge 5$ implies 4CT.
- For *t*=5 implied by the 4CT by Wagner's structure theorem (1937)
- For *t*=6 implied by the 4CT by

THM (Robertson, Seymour, RT) Every minimal counterexample to Hadwiger for t=6 is apex ($G \setminus v$ is planar for some v)

- Easy for $t \le 4$, but for $t \ge 5$ implies 4CT.
- For *t*=5 implied by the 4CT by Wagner's structure theorem (1937)
- For *t*=6 implied by the 4CT by

THM (Robertson, Seymour, RT) Every minimal counterexample to Hadwiger for t=6 is apex ($G \setminus v$ is planar for some v)

Hadwiger's conjecture is open for **b**6

- Easy for $t \le 4$, but for $t \ge 5$ implies 4CT.
- For *t*=5 implied by the 4CT by Wagner's structure theorem (1937)
- For *t*=6 implied by the 4CT by

THM (Robertson, Seymour, RT) Every minimal counterexample to Hadwiger for t=6 is apex ($G \setminus v$ is planar for some v)

Theorem implied by

- Easy for $t \le 4$, but for $t \ge 5$ implies 4CT.
- For *t*=5 implied by the 4CT by Wagner's structure theorem (1937)
- For *t*=6 implied by the 4CT by

THM (Robertson, Seymour, RT) Every minimal counterexample to Hadwiger for t=6 is apex ($G \setminus v$ is planar for some v)

Theorem implied by

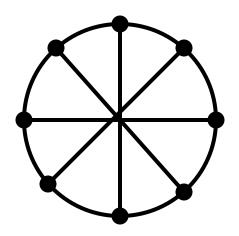
Jorgensen's conjecture: If G is 6-connected and $K_6 \not\leq_m G$, then G is apex.

• $G \not\geq K_3 \Leftrightarrow$ tree-decomposition into bags of size ≤ 2 (tree-width ≤ 1)

- $G \not\geq K_3 \Leftrightarrow$ tree-decomposition into bags of size <2 (tree-width <1)
- $G \not\geq K_4 \Leftrightarrow$ tree-decomposition into bags of size ≤ 3 (tree-width ≤ 2)

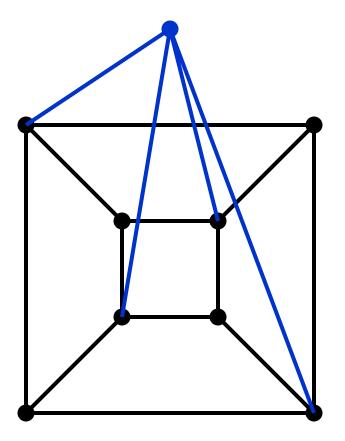
- $G \not\geq K_3 \Leftrightarrow$ tree-decomposition into bags of size ≤ 2 (tree-width ≤ 1)
- G≱K₄ ⇔ tree-decomposition into bags of size
 ≤3 (tree-width ≤2)
 G≱K₅ ⇔ tree-decomposition into planar

graphs and V_8 (Wagner 1937)

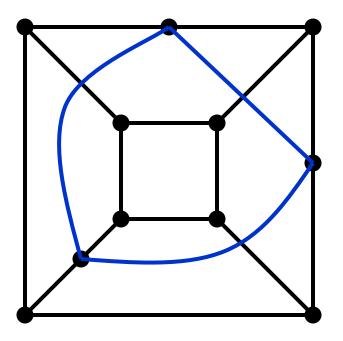


- $G \not\geq K_3 \Leftrightarrow$ tree-decomposition into bags of size ≤ 2 (tree-width ≤ 1)
- $G \not\geq K_4 \Leftrightarrow$ tree-decomposition into bags of size ≤ 3 (tree-width ≤ 2)
- $G \not\geq K_5 \Leftrightarrow$ tree-decomposition into planar graphs and V_8 (Wagner 1937)
- $G \not\geq K_6 \Leftrightarrow ???$

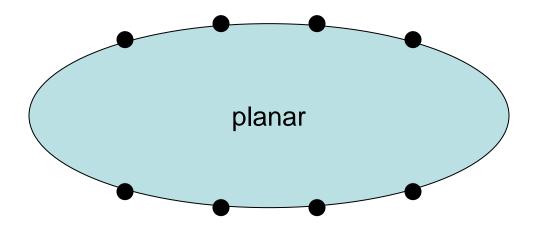
• apex ($G \lor v$ planar for some v)



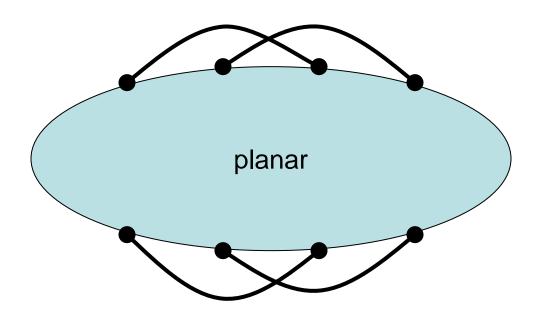
- apex ($G \setminus v$ planar for some v)
- planar + triangle



- apex ($G \setminus v$ planar for some v)
- planar + triangle
- double-cross

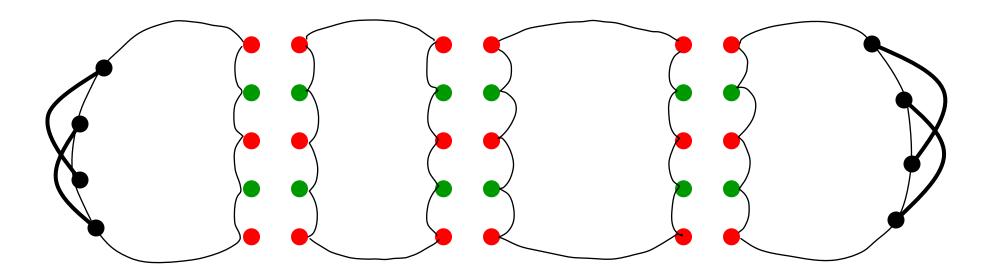


- apex ($G \lor v$ planar for some v)
- planar + triangle
- double-cross



- apex ($G \setminus v$ planar for some v)
- planar + triangle
- double-cross
- hose structure

- apex (G\v planar for some v)
- planar + triangle
- double-cross
- hose structure



• $G \not\geq K_3 \Rightarrow |E(G)| \leq n-1$

- $G \not\geq K_3 \Rightarrow |E(G)| \leq n-1$
- $G \not\geq K_4 \Rightarrow |E(G)| \leq 2n-3$

- $G \not\geq K_3 \Rightarrow |E(G)| \leq n-1$
- $G \not\geq K_4 \Rightarrow |E(G)| \leq 2n-3$
- $G \not\geq K_5 \Rightarrow |E(G)| \leq 3n$ -6 (Wagner)

- $G \not\geq K_3 \Rightarrow |E(G)| \leq n-1$
- $G \not\geq K_4 \Rightarrow |E(G)| \leq 2n-3$
- $G \not\geq K_5 \Rightarrow |E(G)| \leq 3n$ -6 (Wagner)
- $G \not\geq K_6 \Rightarrow |E(G)| \leq 4n-10$ (Mader)

- $G \not\geq K_3 \Rightarrow |E(G)| \leq n-1$
- $G \not\geq K_4 \Rightarrow |E(G)| \leq 2n-3$
- $G \not\geq K_5 \Rightarrow |E(G)| \leq 3n-6$ (Wagner)
- $G \not\geq K_6 \Rightarrow |E(G)| \leq 4n-10$ (Mader)
- $G \not\geq K_7 \Rightarrow |E(G)| \leq 5n-15$ (Mader)

- $G \not\geq K_3 \Rightarrow |E(G)| \leq n-1$
- $G \not\geq K_4 \Rightarrow |E(G)| \leq 2n-3$
- $G \not\geq K_5 \Rightarrow |E(G)| \leq 3n-6$ (Wagner)
- $G \not\geq K_6 \Rightarrow |E(G)| \leq 4n-10$ (Mader)
- $G \not\geq K_7 \Rightarrow |E(G)| \leq 5n-15$ (Mader)

So

• $G \not\geq K_t \Rightarrow |\mathsf{E}(G)| \leq (t-2)n-(t-1)(t-2)/2$ for $t \leq 7$

Extremal results for K_t • $G \not\geq K_t \Rightarrow |\mathsf{E}(G)| \leq (t-2)n-(t-1)(t-2)/2$ for $t \leq 7$ • $G \not\geq K_8 \Rightarrow |\mathsf{E}(G)| \leq 6n-21$, because of $K_{2,2,2,2,2}$ Extremal results for K_t • $G \not\geq K_t \Rightarrow |\mathsf{E}(G)| \leq (t-2)n-(t-1)(t-2)/2$ for $t \leq 7$ • $G \not\geq K_8 \Rightarrow |\mathsf{E}(G)| \leq 6n-21$, because of $K_{2,2,2,2,2}$ Extremal results for K_t • $G \not\geq K_t \Rightarrow |\mathsf{E}(G)| \leq (t-2)n-(t-1)(t-2)/2$ for $t \leq 7$ • $G \not\geq K_8 \Rightarrow |\mathsf{E}(G)| \leq 6n-21$, because of $K_{2,2,2,2,2}$

• $G \not\geq K_t \Rightarrow |E(G)| \leq \operatorname{ct}(\log t)^{1/2} \mathsf{n}$ (Kostochka, Thomason)

- $G \not\geq K_t \Rightarrow |\mathsf{E}(G)| \leq (t-2)n-(t-1)(t-2)/2$ for $t \leq 7$
- • $G \not\geq K_8 \Rightarrow |E(G)| \leq 6n-21$, because of $K_{2,2,2,2,2}$
- • $G \not\geq K_t \Rightarrow |E(G)| \leq \operatorname{ct}(\log t)^{1/2} n$ (Kostochka, Thomason)
- CONJ (Seymour, RT) $G \not\geq K_t \Rightarrow |\mathsf{E}(G)| \leq (t-2)n-(t-1)(t-2)/2$

- $G \not\geq K_t \Rightarrow |\mathsf{E}(G)| \leq (t-2)n-(t-1)(t-2)/2$ for $t \leq 7$
- • $G \not\geq K_8 \Rightarrow |E(G)| \leq 6n-21$, because of $K_{2,2,2,2,2}$
- • $G \not\geq K_t \Rightarrow |E(G)| \leq \operatorname{ct}(\log t)^{1/2} \mathsf{n}$ (Kostochka, Thomason)
- CONJ (Seymour, RT) G is (t-2)-connected, big $G \not\geq K_t \Rightarrow |E(G)| \leq (t-2)n-(t-1)(t-2)/2$

- $G \not\geq K_t \Rightarrow |\mathsf{E}(G)| \leq (t-2)n-(t-1)(t-2)/2$ for $t \leq 7$
- • $G \not\geq K_8 \Rightarrow |E(G)| \leq 6n-21$, because of $K_{2,2,2,2,2}$
- • $G \not\geq K_t \Rightarrow |E(G)| \leq \operatorname{ct}(\log t)^{1/2} \mathsf{n}$ (Kostochka, Thomason)
- CONJ (Seymour, RT) G is (t-2)-connected, big $G \not\geq K_t \Rightarrow |\mathsf{E}(G)| \leq (t-2)n-(t-1)(t-2)/2$
- $G \not\geq K_8 \Rightarrow |E(G)| \leq 6n-21$, unless G is a $(K_{2,2,2,2,2},5)$ -cockade (Jorgensen)

- $G \not\geq K_t \Rightarrow |\mathsf{E}(G)| \leq (t-2)n-(t-1)(t-2)/2$ for $t \leq 7$
- • $G \not\geq K_8 \Rightarrow |E(G)| \leq 6n$ -21, because of $K_{2,2,2,2,2}$
- • $G \not\geq K_t \Rightarrow |E(G)| \leq \operatorname{ct}(\log t)^{1/2} \mathsf{n}$ (Kostochka, Thomason)
- CONJ (Seymour, RT) G is (t-2)-connected, big $G \not\geq K_t \Rightarrow |\mathsf{E}(G)| \leq (t-2)n-(t-1)(t-2)/2$
- $G \not\geq K_8 \Rightarrow |E(G)| \leq 6n-21$, unless G is a $(K_{2,2,2,2,2},5)$ -cockade (Jorgensen)
- $G \not\geq K_9 \Rightarrow |\mathsf{E}(\mathsf{G})| \leq 7n-28$, unless.... (Song, RT)

Jorgensen's conjecture: If G is 6-connected and $K_6 \not\leq_m G$, then G is apex.

Jorgensen's conjecture: If G is 6-connected and $K_6 \not\leq_m G$, then G is apex.

MAIN THM True for big graphs:

Jorgensen's conjecture: If G is 6-connected and $K_6 \not\leq_m G$, then G is apex.

MAIN THM True for big graphs: There exists N such that every 6-connected graph $G \not\geq_m K_6$ on $\geq N$ vertices is apex. Jorgensen's conjecture: If G is 6-connected and $K_6 \not\leq_m G$, then G is apex.

MAIN THM True for big graphs: There exists N such that every 6-connected graph $G \not\geq_m K_6$ on $\geq N$ vertices is apex.

Why easier for big graphs?

Jorgensen's conjecture: If G is 6-connected and $K_6 \not\leq_m G$, then G is apex.

MAIN THM True for big graphs: There exists N such that every 6-connected graph $G \geq_m K_6$ on $\geq N$ vertices is apex.

Why easier for big graphs? Our method affords Principle (P): If a non-planarity occurs, then it occurs many times

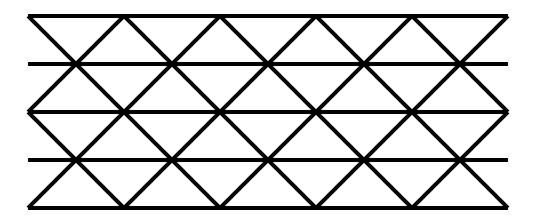
MAIN THM

There exists N such that every 6-connected graph $G \geq_m K_6$ on $\geq N$ vertices is apex.

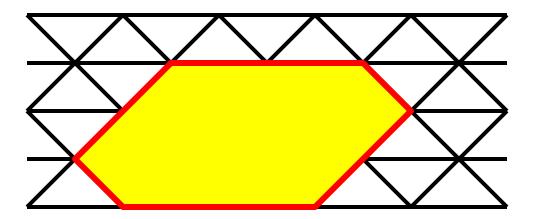
STEPS OF THE PROOF:

- 1. Non-planar extensions of planar graphs
- 2. Bounded tree-width
- 3. Societies with leaps
- 4. Societies with no large transaction

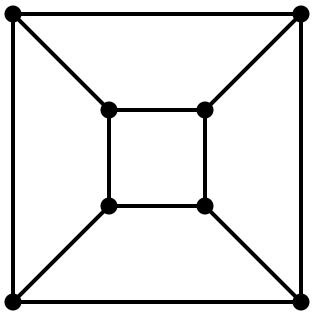
THM (DeVos, Seymour) If G is drawn in a disk with at most k vertices on the boundary and every interior vertex has degree ≥ 6 , then G has $\leq f(k)$ vertices. THM (DeVos, Seymour) If G is drawn in a disk with at most k vertices on the boundary and every interior vertex has degree ≥ 6 , then G has $\leq f(k)$ vertices.



THM (DeVos, Seymour) If G is drawn in a disk with at most k vertices on the boundary and every interior vertex has degree ≥ 6 , then G has $\leq f(k)$ vertices.

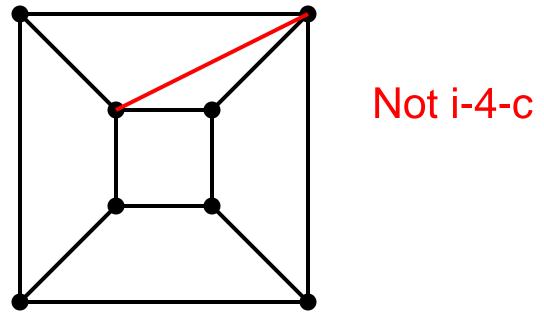


G is internally 4-connected if 3-connected and for every separation of order 3 one side has ≤ 3 edges.



Roughly, G is 4-connected, except for degree three vertices with stable neighborhoods.

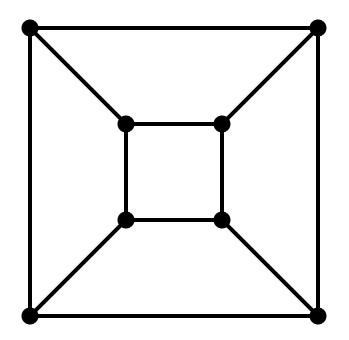
G is internally 4-connected if 3-connected and for every separation of order 3 one side has ≤ 3 edges.



Roughly, G is 4-connected, except for degree three vertices with stable neighborhoods.

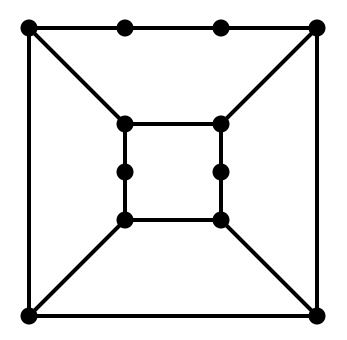
 $G \leq_t H$ means a subdivision of G isomorphic to a subgraph of H.

 $G \leq_t H \Rightarrow G \leq_m H$, but converse false.

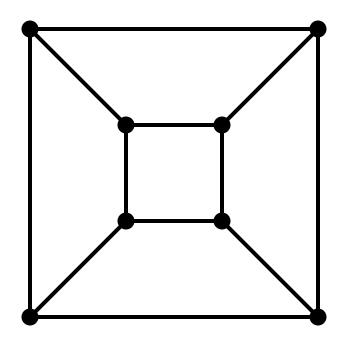


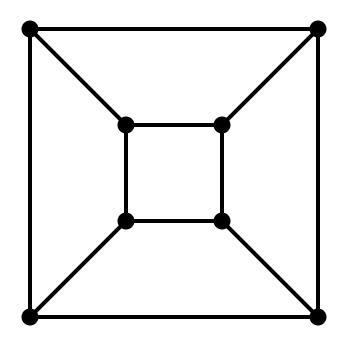
 $G \leq_t H$ means a subdivision of G isomorphic to a subgraph of H.

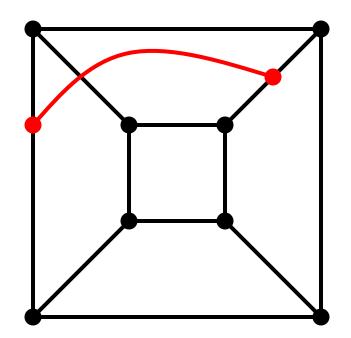
 $G \leq_t H \Rightarrow G \leq_m H$, but converse false.

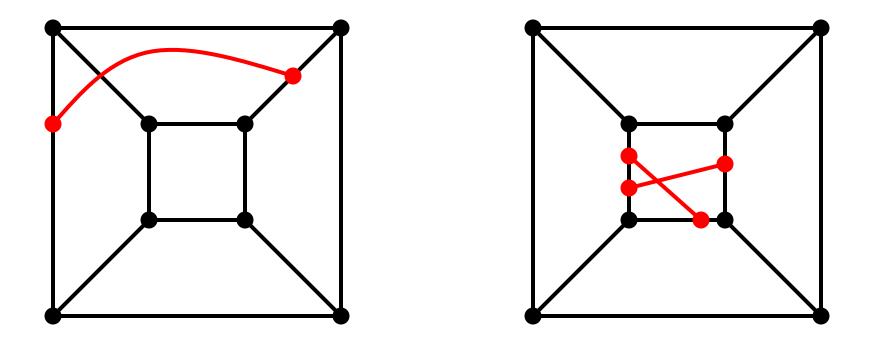


THM (Robertson, Seymour, RT) $G \leq_t H$ internally 4-connected, G planar, H not. Then $G+?? \leq_t H$.





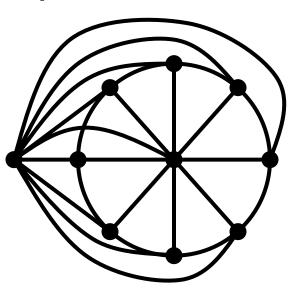


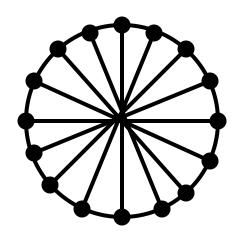


Extensions

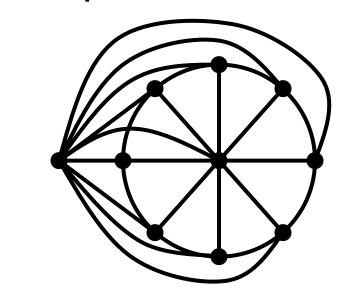
- Rooted graphs
- Graphs on surfaces
- Apex graphs
- Minors

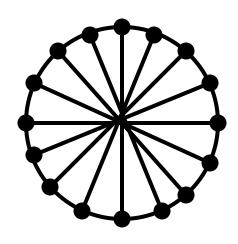
THM (Ding, Oporowski, Vertigan, RT) Every huge 4-connected non-planar graph has a minor isomorphic to of one of:





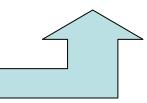
THM (Ding, Oporowski, Vertigan, RT) Every huge 4-connected non-planar graph has a minor isomorphic to of one of:



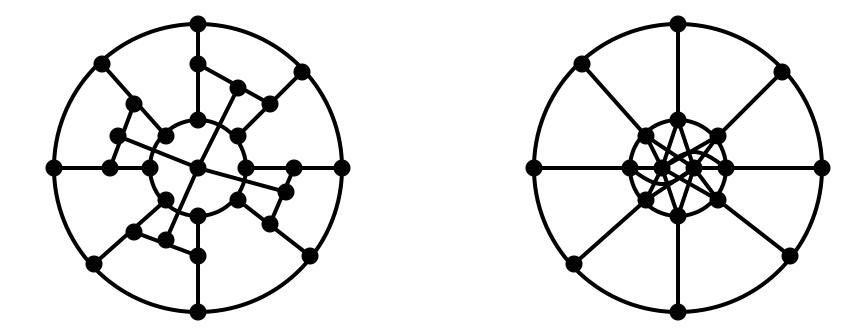


COR Every huge minimal graph of crossing number ≥ 2 contains

 $K_{4 t}$



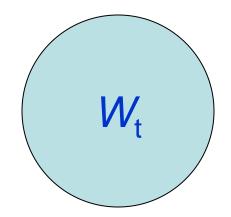
THM A 5-connected graph $G \not\geq_m K_6$ contains a subdivision of a graph below \Rightarrow *G* is apex.

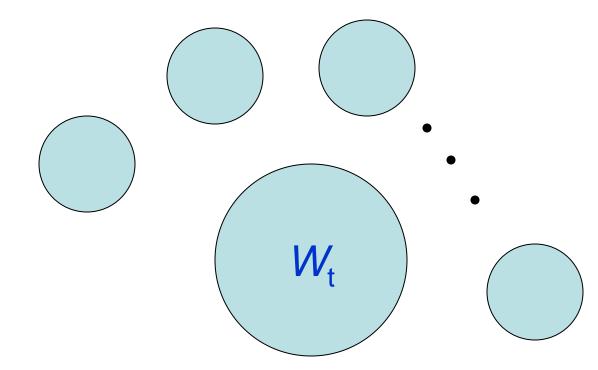


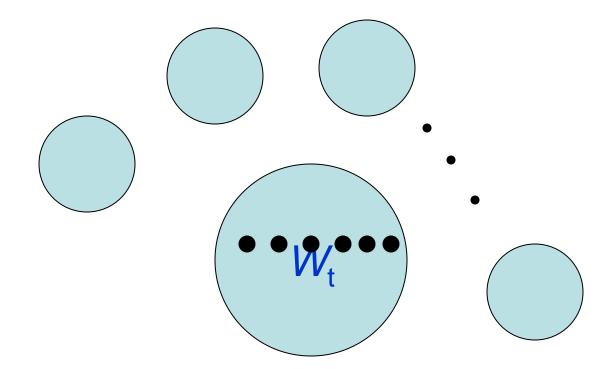
Bounded tree-width

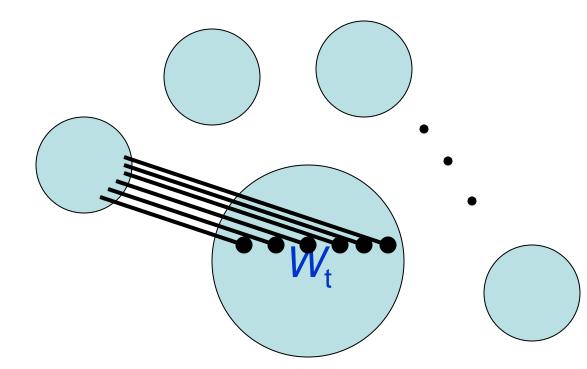
G has tree-width <k if it has a tree-decomposition into pieces of size \leq k.

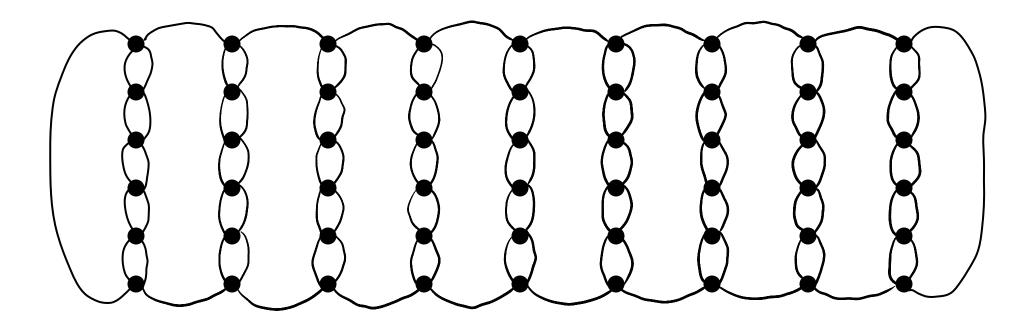
THM \forall k \exists N \forall 6-connected G of tree-width <*k* on \geq N vertices is apex.

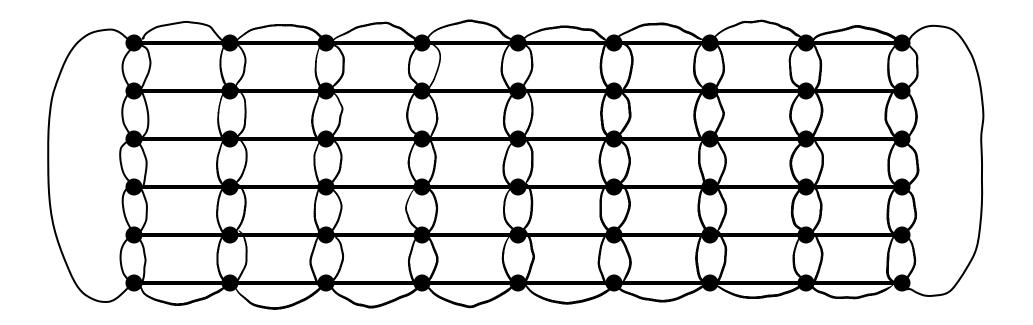


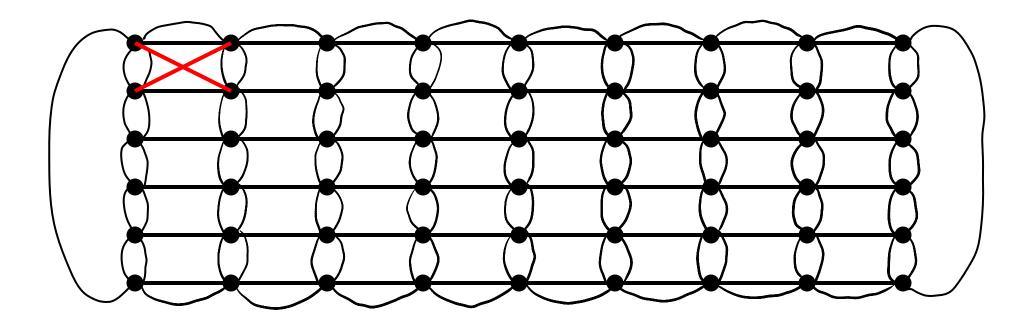


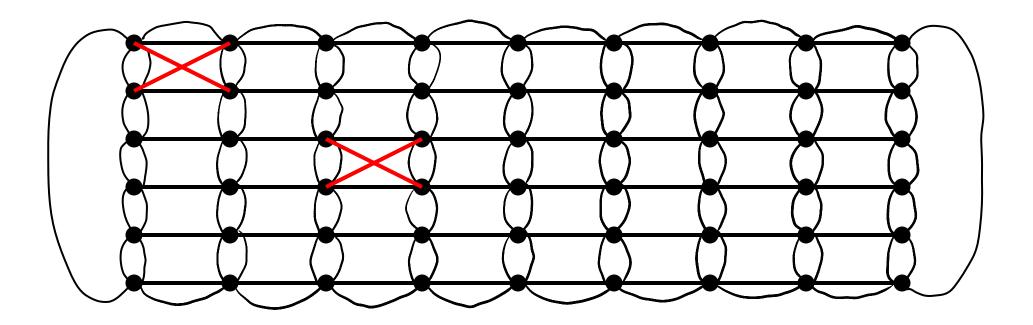


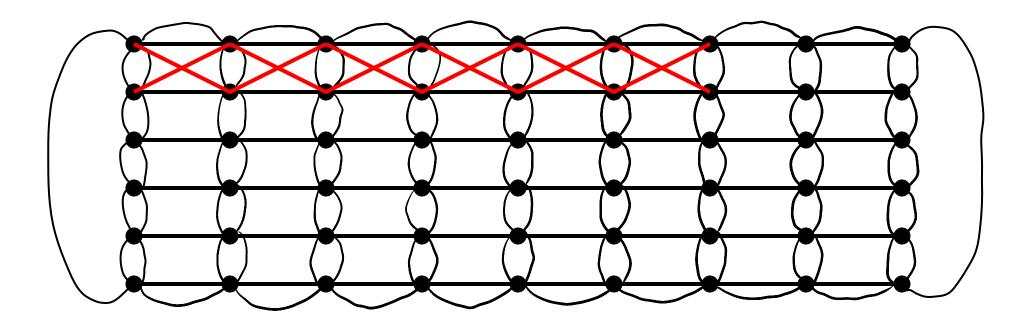


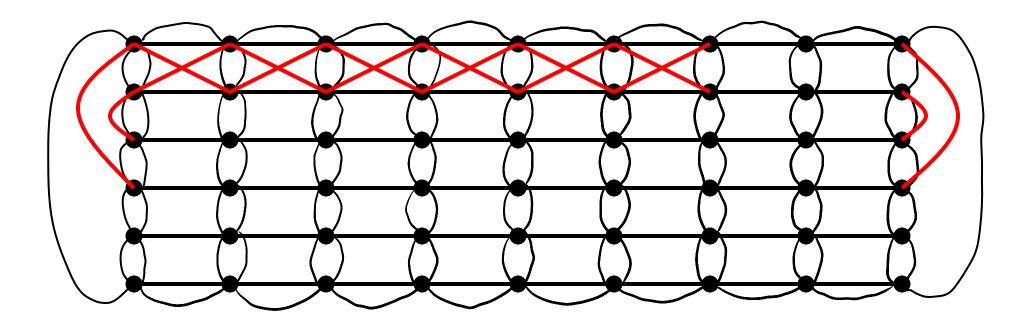






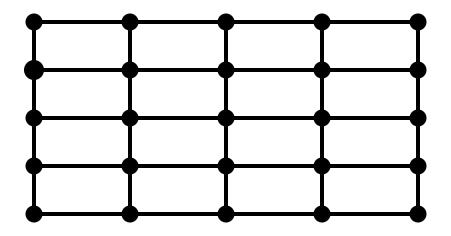






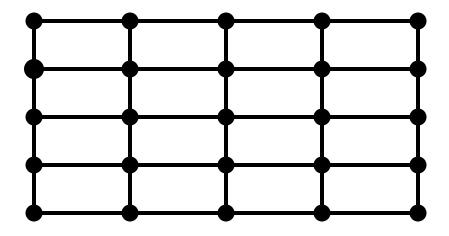
Huge tree-width

THM (Robertson & Seymour) G has huge t.w. \Rightarrow G has a large grid minor

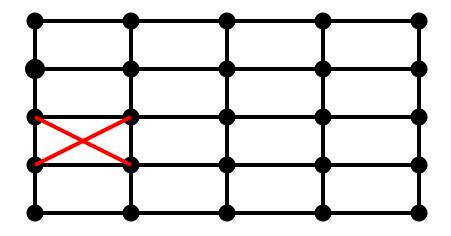


Huge tree-width

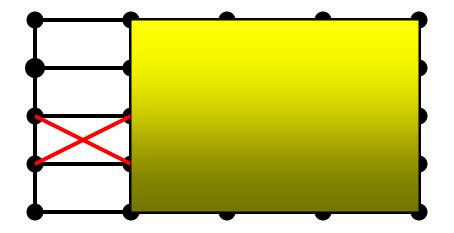
- THM (Robertson & Seymour) G has huge t.w. \Rightarrow G has a large grid minor
- \Rightarrow G has a big planar grid minor or K_6 minor



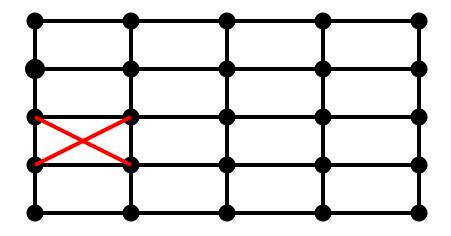
- THM (Robertson & Seymour) G has huge t.w. \Rightarrow G has a large grid minor
- \Rightarrow G has a big planar grid minor or K_6 minor



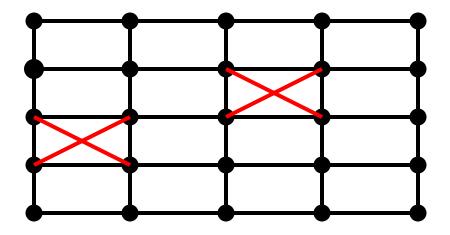
- THM (Robertson & Seymour) G has huge t.w. \Rightarrow G has a large grid minor
- \Rightarrow G has a big planar grid minor or K_6 minor



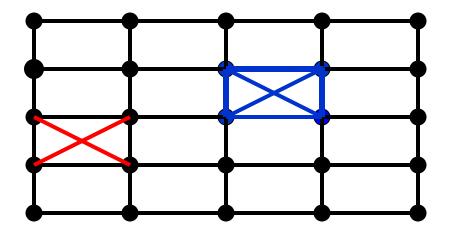
- THM (Robertson & Seymour) G has huge t.w. \Rightarrow G has a large grid minor
- \Rightarrow G has a big planar grid minor or K_6 minor



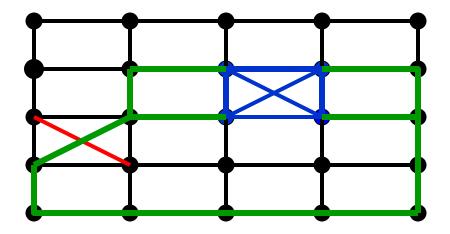
- THM (Robertson & Seymour) G has huge t.w. \Rightarrow G has a large grid minor
- \Rightarrow G has a big planar grid minor or K_6 minor



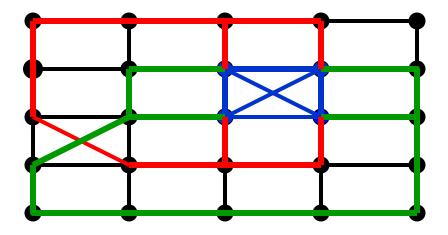
- THM (Robertson & Seymour) G has huge t.w. \Rightarrow G has a large grid minor
- \Rightarrow G has a big planar grid minor or K_6 minor



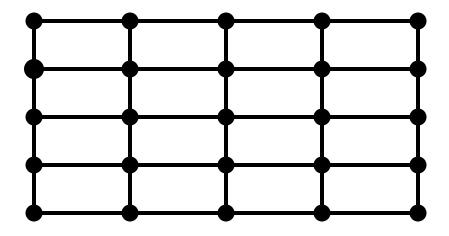
- THM (Robertson & Seymour) G has huge t.w. \Rightarrow G has a large grid minor
- \Rightarrow G has a big planar grid minor or K_6 minor



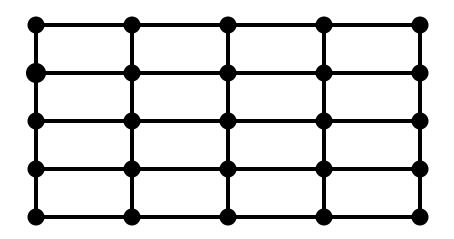
- THM (Robertson & Seymour) G has huge t.w. \Rightarrow G has a large grid minor
- \Rightarrow G has a big planar grid minor or K_6 minor



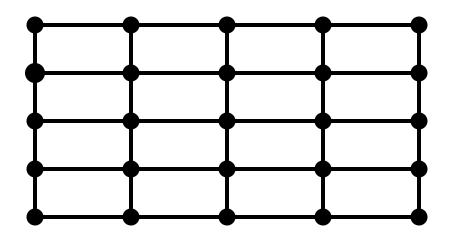
- THM (Robertson & Seymour) G has huge t.w. \Rightarrow G has a large grid minor
- \Rightarrow G has a big planar grid minor or K_6 minor



\Rightarrow G has a big planar grid minor or K_6 minor

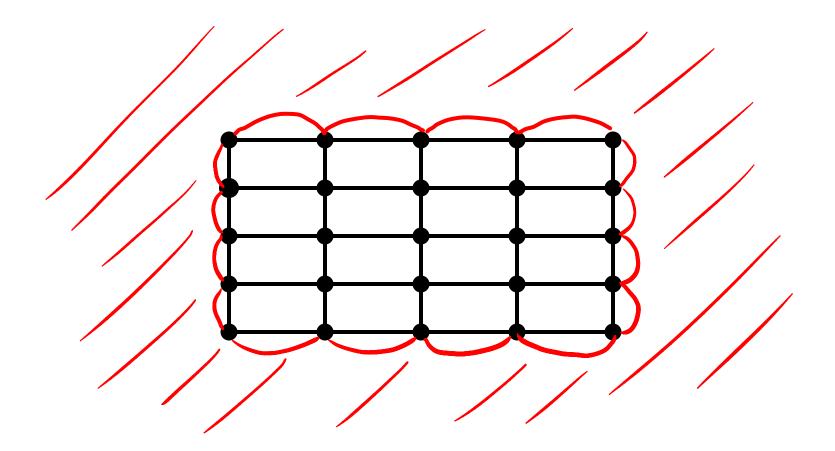


\Rightarrow G has a big planar grid minor

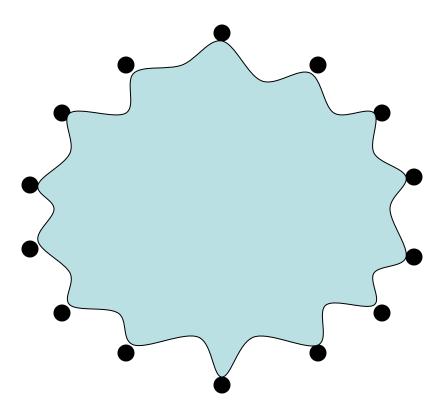


 \Rightarrow G has a big planar grid minor

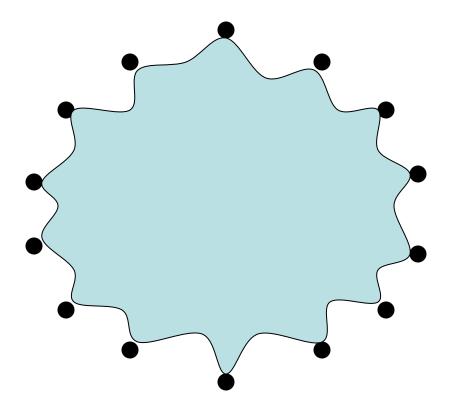
Let's look at the outside of the grid minor



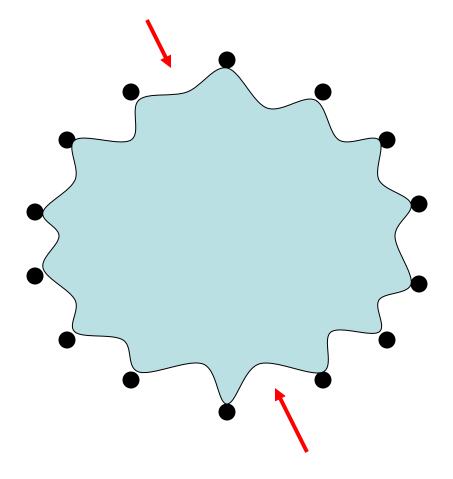
DEF A society is a pair (G,Ω) , where G is a graph and Ω is a cyclic ordering of a subset $V(\Omega) \subseteq V(G)$.



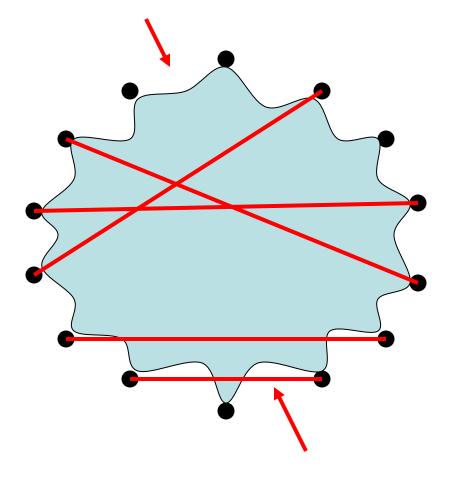
DEF A transaction in a society



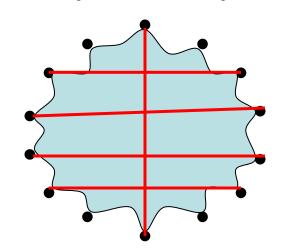
DEF A transaction in a society

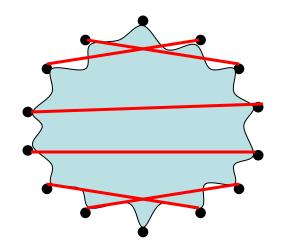


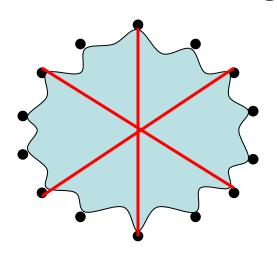
DEF A transaction in a society

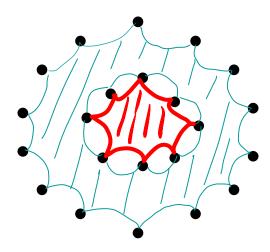


THM (Robertson & Seymour, Graph Minors IX) Every society satisfies one of the following:

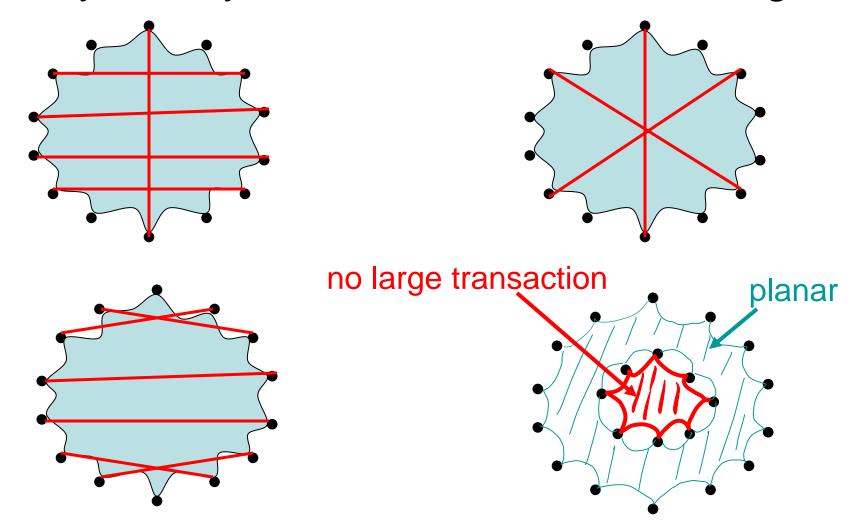


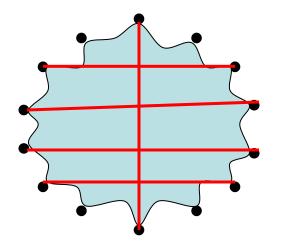




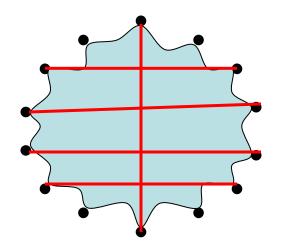


THM (Robertson & Seymour, Graph Minors IX) Every society satisfies one of the following:

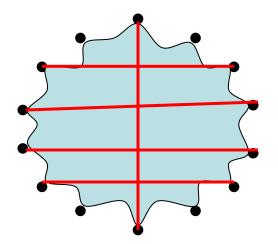




THM For a society (G,Ω) with a 4-leap, the following are equivalent:



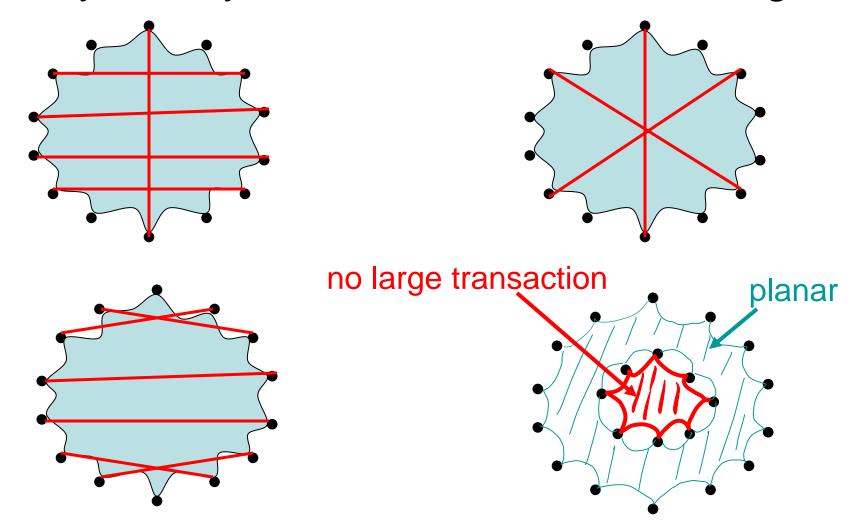
THM For a society (G,Ω) with a 4-leap, the following are equivalent: (1) No planar enlargement has a K_6 minor



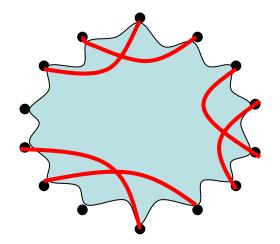
THM For a society (G,Ω) with a 4-leap, the following are equivalent:

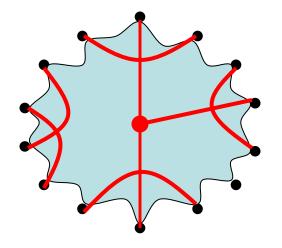
(1) No planar enlargement has a K_6 minor (2) (G, Ω) has no minor isomorphic to THM For a society (G,Ω) with a 4-leap, the following are equivalent: (1) No planar enlargement has a K_{α} minor (2) (G,Ω) has no minor isomorphic to (3) (G, Ω) is apex, planar+triangle or planar contains no

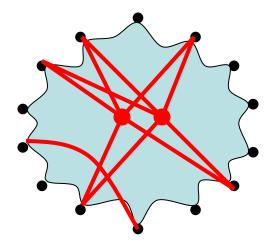
THM (Robertson & Seymour, Graph Minors IX) Every society satisfies one of the following:



THM Every internally 6-connected non-apex society with "many legs" and no large transaction contains:







plus 2 small variations

MAIN THM Jorgensen's conjecture holds for big graphs:

MAIN THM Jorgensen's conjecture holds for big graphs:

There exists N such that every 6-connected graph $G \geq_m K_6$ on $\geq N$ vertices is apex.

MAIN THM Jorgensen's conjecture holds for big graphs:

There exists N such that every 6-connected graph $G \geq_m K_6$ on $\geq N$ vertices is apex.

CONJ G is t-connected, big, $G \not\geq K_t \Rightarrow G \setminus X$ is planar for some $X \subseteq V(G)$ of size $\leq t-5$.

MAIN THM Jorgensen's conjecture holds for big graphs:

There exists N such that every 6-connected graph $G \geq_m K_6$ on $\geq N$ vertices is apex.

CONJ G is t-connected, big, $G \not\geq K_t \Rightarrow G \setminus X$ is planar for some $X \subseteq V(G)$ of size $\leq t-5$.

CONJ (Seymour, RT) G is (t-2)-connected, big $G \not\geq K_t \Rightarrow |E(G)| \leq (t-2)n-(t-1)(t-2)/2$