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A minor of G Is obtained by taking subgraphs
and contracting edges.

e Preserves planarity and other properties.

* G has an H minor (H<,, G) If G has a minor
Isomorphic to H.

e A K minor:
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Jorgensen’s conjecture: If G Is 6-connected and
KeZG, then G is apex.
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» G#K; < tree-decomposition into planar
graphs and Vg (Wagner 1937)

e GFK, & 2?7
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CONJ (Seymour, RT) G Is (t-2)-connected, big
G2K, = |E(G)|< (t-2)n-(t-1)(t-2)/2

* G¥Kg = |[E(G)|< 6n-21, unless G is a
(K555, ,,5)-cockade (Jorgensen)

* G#Ky= |[E(G)|< 7n-28, unless.... (Song, RT)
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Jorgensen’s conjecture: If G Is 6-connected and
KeZG, then G is apex.

MAIN THM True for big graphs:

There exists N such that every 6-connected
graph G %, K on >N vertices is apex.

Why easier for big graphs? Our method affords

Principle (P): If a non-planarity occurs, then it
occurs many times



MAIN THM
There exists N such that every 6-connected
graph G %, K on >N vertices is apex.

STEPS OF THE PROOQOF:

1. Non-planar extensions of planar graphs
2. Bounded tree-width

3. Societies with leaps
4. Socleties with no large transaction
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Not 1-4-C

Roughly, G Is 4-connected, except for degree
three vertices with stable neighborhoods.
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Extensions

e Rooted graphs

e Graphs on surfaces
* Apex graphs

e Minors
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THM (Ding, Oporowski, Vertigan, RT) Every
huge 4-connected non-planar graph has a
minor iIsomorphic to of one of:

K4,t

COR Every huge minimal graph EAS
of crossing number >2 contains
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Applications

THM A 5-connected graph G K, contains a
subdivision of a graph below = G Is apex.
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= G has a big planar grid minor

Let’s look at the outside of the grid minor




DEF A society Is a pair (G,Q), where Gis a
graph and Q is a cyclic ordering of a subset
V(Q)C V(G).
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THM For a soclety (G,Q2) with a 4-leap,
the following are equivalent:
(1) No planar enlargement has a K; minor

(2) (G,Q2) has no minor Isomorphic to

=

(3) (G,Q2) Is apex, planar+triangle or
planar

contains no %




THM (Robertson & Seymour, Graph Minors |X)
Every society satisfies one of the following:
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e S

no large transaction




THM Every internally 6-connected non-apex society
with “many legs” and no large transaction contains:

plus 2 small variations
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SUMMARY

MAIN THM Jorgensen’s conjecture holds for big
graphs:

There exists N such that every 6-connected
graph G %, K, on >N vertices is apex.

CONJ G is t-connected, big, GZK, = G\X is
planar for some XC V(G) of size <t-5.

CONJ (Seymour, RT) G Is (t-2)-connected, big
G2K, = |E(G)|< (t-2)n-(t-1)(t-2)/2






