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PART I

History and relevance of perfect graphs

PART II

The strong perfect graph conjecture
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χ(H) = minimum number of colors needed

ω(H) = maximum size of a clique

Clearly χ(H) ≥ ω(H). A graph G is perfect if

χ(H) = ω(H) for every induced subgraph H.

DEFINITION A hole is a cycle of length at least four; its

complement is an antihole. A hole/antihole in G is an

induced subgraph that is a hole/antihole.

GRAPHS THAT ARE NOT PERFECT

Odd holes

Odd antiholes

Graphs that have an odd hole or odd antihole
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EXAMPLES OF PERFECT GRAPHS

Bipartite graphs (ω = 2 = χ)

their complements (König, Egerváry 1931)

Line graphs of bipartite graphs (König 1916)

their complements (König 1931)

Etc. . . There are 96 known classes

THE PERFECT GRAPH THEOREM (Lovász 1972) A

graph is perfect ⇔ its complement is perfect.

THE STRONG PERFECT GRAPH CONJECTURE

(SPGC) (Berge 1960)

A graph is perfect ⇔ it has no odd hole and no odd

antihole (“Berge graph”)
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BERGE’S MOTIVATION

Consider a discrete memoryless channel. Elements of a

finite alphabet Σ are transmitted, some pairs of elements

may be confused.

EXAMPLE Σ = {a, b, c, d, e}, ab, bc, cd, de, ea may be

confused. So a, c may be sent without confusion

⇒ 2n n-symbol error-free messages

But ab, bd, ca, dc, ee are pairwise unconfoundable

⇒ 5n/2 = 2(1
2 log 5)n n-symbol error-free messages



12

Let V (G) = Σ, where a, b adjacent if unconfoundable



12

Let V (G) = Σ, where a, b adjacent if unconfoundable

Shannon capacity C(G) := limn→∞
1
n logω(Gn)



12

Let V (G) = Σ, where a, b adjacent if unconfoundable

Shannon capacity C(G) := limn→∞
1
n logω(Gn)

We have ωn(G) ≤ ω(Gn) ≤ χ(Gn) ≤ χn(G)



12

Let V (G) = Σ, where a, b adjacent if unconfoundable

Shannon capacity C(G) := limn→∞
1
n logω(Gn)

We have ωn(G) ≤ ω(Gn) ≤ χ(Gn) ≤ χn(G)
and so if ω(G) = χ(G), then they determine C(G).



12

Let V (G) = Σ, where a, b adjacent if unconfoundable

Shannon capacity C(G) := limn→∞
1
n logω(Gn)

We have ωn(G) ≤ ω(Gn) ≤ χ(Gn) ≤ χn(G)
and so if ω(G) = χ(G), then they determine C(G).

Lovász proved that C(C5) = 1
2 log 5



12

Let V (G) = Σ, where a, b adjacent if unconfoundable

Shannon capacity C(G) := limn→∞
1
n logω(Gn)

We have ωn(G) ≤ ω(Gn) ≤ χ(Gn) ≤ χn(G)
and so if ω(G) = χ(G), then they determine C(G).

Lovász proved that C(C5) = 1
2 log 5, using geometric

representations of graphs (theta function).



12

Let V (G) = Σ, where a, b adjacent if unconfoundable

Shannon capacity C(G) := limn→∞
1
n logω(Gn)

We have ωn(G) ≤ ω(Gn) ≤ χ(Gn) ≤ χn(G)
and so if ω(G) = χ(G), then they determine C(G).

Lovász proved that C(C5) = 1
2 log 5, using geometric

representations of graphs (theta function). C(G) of

many graphs is not known.



12

Let V (G) = Σ, where a, b adjacent if unconfoundable

Shannon capacity C(G) := limn→∞
1
n logω(Gn)

We have ωn(G) ≤ ω(Gn) ≤ χ(Gn) ≤ χn(G)
and so if ω(G) = χ(G), then they determine C(G).

Lovász proved that C(C5) = 1
2 log 5, using geometric

representations of graphs (theta function). C(G) of

many graphs is not known.



13

THE RELEVANCE OF PERFECT GRAPHS
• Generalizations of classical theorems about graphs



13

THE RELEVANCE OF PERFECT GRAPHS
• Generalizations of classical theorems about graphs

• Communication theory (Shannon capacity, entropy)



13

THE RELEVANCE OF PERFECT GRAPHS
• Generalizations of classical theorems about graphs

• Communication theory (Shannon capacity, entropy)

• Sorting (Kahn and Kim)



13

THE RELEVANCE OF PERFECT GRAPHS
• Generalizations of classical theorems about graphs

• Communication theory (Shannon capacity, entropy)

• Sorting (Kahn and Kim)

• Polyhedral combinatorics



13

THE RELEVANCE OF PERFECT GRAPHS
• Generalizations of classical theorems about graphs

• Communication theory (Shannon capacity, entropy)

• Sorting (Kahn and Kim)

• Polyhedral combinatorics

• Relation to integrality of polyhedra



13

THE RELEVANCE OF PERFECT GRAPHS
• Generalizations of classical theorems about graphs

• Communication theory (Shannon capacity, entropy)

• Sorting (Kahn and Kim)

• Polyhedral combinatorics

• Relation to integrality of polyhedra

• Geometric algorithms of Grötschel, Lovász, Schrijver



13

THE RELEVANCE OF PERFECT GRAPHS
• Generalizations of classical theorems about graphs

• Communication theory (Shannon capacity, entropy)

• Sorting (Kahn and Kim)

• Polyhedral combinatorics

• Relation to integrality of polyhedra

• Geometric algorithms of Grötschel, Lovász, Schrijver

• χ(G) and ω(G) poly-time computable for perfect G



13

THE RELEVANCE OF PERFECT GRAPHS
• Generalizations of classical theorems about graphs

• Communication theory (Shannon capacity, entropy)

• Sorting (Kahn and Kim)

• Polyhedral combinatorics

• Relation to integrality of polyhedra

• Geometric algorithms of Grötschel, Lovász, Schrijver

• χ(G) and ω(G) poly-time computable for perfect G

• Semi-definite programming



13

THE RELEVANCE OF PERFECT GRAPHS
• Generalizations of classical theorems about graphs

• Communication theory (Shannon capacity, entropy)

• Sorting (Kahn and Kim)

• Polyhedral combinatorics

• Relation to integrality of polyhedra

• Geometric algorithms of Grötschel, Lovász, Schrijver

• χ(G) and ω(G) poly-time computable for perfect G

• Semi-definite programming

• Stable matchings (Gale, Shapley)



13

THE RELEVANCE OF PERFECT GRAPHS
• Generalizations of classical theorems about graphs

• Communication theory (Shannon capacity, entropy)

• Sorting (Kahn and Kim)

• Polyhedral combinatorics

• Relation to integrality of polyhedra

• Geometric algorithms of Grötschel, Lovász, Schrijver

• χ(G) and ω(G) poly-time computable for perfect G

• Semi-definite programming

• Stable matchings (Gale, Shapley)

• Radio channel assignment problem (McDiarmid)



13

THE RELEVANCE OF PERFECT GRAPHS
• Generalizations of classical theorems about graphs

• Communication theory (Shannon capacity, entropy)

• Sorting (Kahn and Kim)

• Polyhedral combinatorics

• Relation to integrality of polyhedra

• Geometric algorithms of Grötschel, Lovász, Schrijver

• χ(G) and ω(G) poly-time computable for perfect G

• Semi-definite programming

• Stable matchings (Gale, Shapley)

• Radio channel assignment problem (McDiarmid)

• Municipal routing



13

THE RELEVANCE OF PERFECT GRAPHS
• Generalizations of classical theorems about graphs

• Communication theory (Shannon capacity, entropy)

• Sorting (Kahn and Kim)

• Polyhedral combinatorics

• Relation to integrality of polyhedra

• Geometric algorithms of Grötschel, Lovász, Schrijver

• χ(G) and ω(G) poly-time computable for perfect G

• Semi-definite programming

• Stable matchings (Gale, Shapley)

• Radio channel assignment problem (McDiarmid)

• Municipal routing

• Fundamental and beautiful open problems



14

THEOREM (Lovász) Let A be a 0, 1-matrix. For every

non-negative objective function c the LP

max cTx subject to x ≥ 0 and Ax ≤ 1

has integral optimum ⇔ the undominated rows of A

form the vertex versus maximal cliques incidence matrix

of some perfect graph.
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PART II
The Strong Perfect Graph Conjecture
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THE PERFECT GRAPH THEOREM (Lovász 1972) A

graph is perfect ⇔ its complement is perfect.

THE STRONG PERFECT GRAPH THEOREM

A graph is perfect ⇔ it has no odd hole and no odd

antihole (“Berge graph”)

We must show that every Berge graph G satisfies

χ(G) = ω(G).

MAIN THEOREM Every Berge graph is either basic, or

has a certain decomposition.
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THE SPGC WAS KNOWN FOR

• planar graphs (Tucker)

• claw-free graphs (Parthasarathy, Ravindra)

• K4-free graphs (Tucker)

• diamond-free graphs (Tucker)

• bull-free graphs (Chvátal, Sbihi)

• dart-free graphs (Sun)

• C4-free graphs (Conforti, Cornuéjols, Vušković)

• “wheel-and-parachute-free” graphs (Conforti,

Cornuéjols)

NOTE All of the above exclude specific graphs.
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To prove the SPGC we must show that every Berge

graph G satisfies χ(G) = ω(G).

REMINDER Berge means no odd hole or antihole

MAIN THEOREM Every Berge graph is either basic, or

has a certain decomposition.
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2-JOIN

A B
A1

A
2

B1

B2
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STAR CUTSETS

A vertex cut X is a star cutset if some v ∈ X is adjacent
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STAR CUTSETS

A vertex cut X is a star cutset if some v ∈ X is adjacent

to every other vertex of X.

L  R

THEOREM (Chvátal) No minimally imperfect graph has

a star cutset.
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B
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SKEW PARTITIONS

L R

T

B

CONJECTURE (Chvátal) No minimally imperfect graph

has a skew partition. (Is implied by SPGC)
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EVEN SKEW PARTITIONS
A skew partition is even if graph stays Berge after adding

a vertex as shown:

R

T

B

L

THM No minimum imperfect graph has an even skew

partition.
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MAIN THEOREM For every Berge graph G, either G or

its complement

(1) is bipartite, or

(2) is a line graph of a bipartite graph, or

(3) is a double split graph, or

(4) has an even skew partition, or

(5) has a 2-join, or

(6) has an M-join.
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A LEMMA ABOUT ODD PATHS

Roussel & Rubio, RST In a Berge graph, if

  coconnected set

     odd path

then
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  coconnected set

     odd path

odd path length 3

     odd antipath
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MAIN CASES

• G contains a “large” line graph of a bipartite graph

• G contains a “wheel”

• neither of the above
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PRISMS

THEOREM If a Berge graph has a prism, then it or its

complement is a line graph of a bipartite graph, is a

double split graph, has skew partition, has a 2-join or has

an M-join (and hence satisfies the conclusion of the main

theorem).
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SECOND STEP: WHEELS
A wheel consists of a hole of length ≥ 6 (“rim”) and a

vertex (“hub”) forming ≥ 2 triangles.

THEOREM If a Berge graph has a wheel, then it or its

complement has a prism, a skew partition or a 2-join.
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common neighbors of hubs. This tends to be a skew
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L

T

R

B
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THIRD STEP

For the SPGC we may assume G has no even pair: a pair

of vertices such that every induced path between them is

even.
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THEOREM If a Berge graph G has no even pair, then G

or its complement has a prism or a wheel.

PROOF WMA G has a hole of length at least six.

xy
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SUMMARY

• Perfect graphs appear in many problems of

mathematics, theoretical computer science and

operations research

• The Strong Perfect Graph Conjecture is now a theorem

• Thus to test perfection it suffices to test Bergeness

(done by Chudnovsky et. al.)

FUTURE WORK
• Structure theorem for perfect graphs

• Optimization on perfect graphs without using the

ellipsoid method

• Unique coloring of perfect graphs


