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Graphs have vertices



Graphs have vertices and edges

A perfect matching consists of independent
edges saturating all the vertices
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The Pfaffian of a skew symmetric matrix A
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the summation over all partitions {{i1,j1},{i2,j2},...,{in,jn}}
of [2n] into unordered pairs.

Lemma Pf2(A)=det(A)
In particular, Pf(A) can be computed efficiently.
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DEF An orientation D of a graph G is Pfaffian if
sgnD(M)=sgnD(M’) for every two perfect matchings M,M’.

In that case the number of perfect matchings can be 
efficiently calculated.



⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

nn jiji
nn

sign
...

212...21

11
Pf(A)=∑

DEF An orientation D of a graph G is Pfaffian if
sgnD(M)=sgnD(M’) for every two perfect matchings M,M’.

Equivalently: Every even cycle C such that G\V(C) has 
a perfect matching (“central cycle”) has an odd number 
of edges directed in either direction (is “oddly oriented”).

Equivalently: Either G has no perfect matching, or for 
some perfect matching M, every M-alternating cycle is 
oddly oriented.
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Example:

Oddly oriented



Example:



Example:

Not oddly oriented



Origins: Kasteleyn, Fisher, Temperley & Fisher

The number of perfect matchings is ηN(1+o(1)).



THM (Kasteleyn 1963) Every planar graph has a Pfaffian
orientation.

PROOF Orient G so that ∀ cycle C: 
C is clockwise odd ⇔ C encloses even number of 
vertices of G.



Six equivalent problems



Let A=(ai,j)i j=1,..,n be a 0,1-matrix.

det(A)= Σ sgn(σ) a1σ(1)a2σ(2)
...anσ (n)

per(A)= Σ a1σ(1)a2σ(2)
...anσ (n)

PROBLEM 1(Polya 1913) Given a square 0,1-
matrix A, does there exist a 0,1,-1-matrix B
obtained from A by changing some of the 1’s to 
-1’s in such a way that

per A = det B?



1 1 1
EXAMPLE Not true for J =   1 1 1
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PROOF

1=∏ sgn(σ) b1σ(1)b2σ(2)b3σ(3) = (-1)3 b11b12b13 b33= -1Σ
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PROBLEM 2 Given a bipartite graph, does it have 
a Pfaffian orientation?

PROBLEM 3 Given a directed graph, does it 
have no even directed cycle?

PROBLEM 3’ Given a directed graph, is there a 
function w:E(D)->Z such that no directed cycle 
has even total weight?
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A real nxn matrix A is sign-nonsingular if every 
real nxn matrix B with the same sign pattern is 
nonsingular.

PROBLEM 4. Given a square matrix, is it sign-
nonsingular?

Application to sign-solvability. Given Ax=b, is 
the sign pattern of x uniquely determined by
the sign patterns of A and x?
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AN APPLICATION
Economic model of a banana trade: 
S supply of bananas        D demand for bananas
p unit price of bananas    t people’s taste for bananas
Then
(1) 
Equilibrium equations and (1) imply that as people’s 
taste for bananas increases, so do the price and 
supply(=demand). The general question leads to sign-
solvability.
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THEOREM. It is NP-hard to decide if a 
hypergraph is bipartite. It is NP-hard to decide 
if a hypergraph is minimally non-bipartite.

THEOREM (Seymour) If a hypergraph is 
minimally non-bipartite, then |E|≥ |V|.

PROBLEM 5. Given a hypergraph (V,E) with 
|V|=|E| is it minimally non-bipartite?
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Matrices to bipartite graphs to digraphs

1 0 0 0
1 1 1 0
0 1 1 1
0 0 1 1

Polya matrix iff Pfaffian orientation    iff ∃ w:E(D)->Z
no even cycle
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THEOREM (Little 1975) A bipartite graph G has a 
Pfaffian orientation ⇔ G has no K3,3 matching minor.

G is a matching minor of H if G can be obtained from 
a central subgraph of H by bicontracting.

Characterizing bipartite Pfaffian graphs



30

G

&G 1
G 2

A cut C in G is tight if |C∩M|=1 ∀ perfect matching M.
Tight cut decomposition:

Bipartite graphs with no tight cut are braces, nonbipartite
are called bricks.

WMA every edge belongs to a perfect matching
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The Heawood graph:
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THEOREM (McCuaig; Robertson,Seymour,RT) A 
brace has a Pfaffian orientation ⇔ it either is 
isomorphic to the Heawood graph, or can be obtained 
by repeatedly C4-summing, starting from planar 
braces.

COROLLARY. There is an O(n2) algorithm to solve 
the six problems mentioned earlier.

=+
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Pfaffian orientations in general graphs



34

Theorem (Kasteleyn): Every planar graph is Pfaffian. 

Theorem (Norine) A graph is Pfaffian if and only if it can be 
drawn in the plane (possibly with crossings) so that every perfect 
matching intersects itself an even number of times.

Drawing Drawing PfaffianPfaffian GraphsGraphs
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Theorem (Kasteleyn): Every planar graph is Pfaffian. 

Theorem (Norine) A graph is Pfaffian if and only if it can be 
drawn in the plane (possibly with crossings) so that every perfect 
matching intersects itself an even number of times.
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S⊆E(G) is a Pfaffian marking of a drawing of G in the 
plane if for every perfect matching M of G the parity of 
self intersections of M is equal to the parity of |M∩S|.

Theorem: For a graph G , the following are equivalent:
1.G is Pfaffian
2.Some drawing of G in the plane has a Pfaffian marking
3.Every drawing of G in the plane has a Pfaffian marking
4.There exists a drawing of G in the plane such that 

every perfect matching intersects itself even number 
of times.

Proof:Proof:



1 2 3 4

Standard DrawingStandard Drawing
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if and only if edges k and l intersect.

Standard DrawingStandard Drawing
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In a standard drawing of a graph 
with a Pfaffian orientation, the 
set of backward edges is a 
Pfaffian marking.

Standard DrawingStandard Drawing

If S is a Pfaffian marking of a 
standard drawing of a graph 
then the orientation in which 
backward edges are exactly the 
edges of S is Pfaffian. 



Event 2

Event 3

Event 1

Changing The DrawingChanging The Drawing
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Changing The DrawingChanging The Drawing



1 3 4

Changing The DrawingChanging The Drawing
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Norine proved a more general theorem aboutT-joins.  Corollaries:

TT--joins and Crossing Numbersjoins and Crossing Numbers

•Theorem (Hannani, Tutte) If G can be drawn in the plane
in such a way that every two edges cross even number of 
times, then G is planar.

•Theorem (Kleitman): Let G=K2j+1 or G=K2j+1,2k+1. Then the 
parity of the total number of crossings of non-adjacent edges is 
independent of the choice of the drawing of G in the plane.

• Purely combinatorial reformulation of Turan’s brickyard 
problem (the problem of estimating the crossing number of a 
complete bipartite graph).



A labeled graph G is k-Pfaffian if there exist orientations 
D1,D2, …,Dk of G and real numbers α1,α2, …,αk, such 
that for every perfect matching M of G

∑i=1 αi sgnDi(M) = 1.
k

Theorem(Gallucio, Loebl; Tesler, 1999): Every graph that 
can be embedded in the surface of genus g is 4 - Pfaffian.g

Theorem (Norine) Every 3-Pfaffian graph is Pfaffian.
Theorem (Norine) A graph is 4-Pfaffian if and only if it 
can be drawn on the torus (possibly with crossings) so 
that every perfect matching intersects itself an even 
number of times.
Theorem (Norine) Every 5-Pfaffian graph is 4-Pfaffian.



A labeled graph G is k-Pfaffian if there exist orientations 
D1,D2, …,Dk of G and real numbers α1,α2, …,αk, such 
that for every perfect matching M of G

∑i=1 αi sgnDi(M) = 1.
k

Theorem(Gallucio, Loebl; Tesler, 1999): Every graph that 
can be embedded in the surface of genus g is 4 - Pfaffian.g

Conjecture: For a graph G and integer g≥0 TFAE:
1. There exists a drawing of G on an orientable surface of genus g

such that every perfect matching intersects itself an even 
number of times.

2. G is 4g -Pfaffian.
3. G is (4g+1-1)-Pfaffian.



PfaffianPfaffian LabelingsLabelings and Signs of Edge Coloringsand Signs of Edge Colorings
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A graph G is k-edge-choosable if for every set system 
{Se: e∈ E(G)} such that |Se|=k there exists a proper 
edge-coloring c with c(e) ∈ Se for every e ∈ E(G).

List Edge Coloring Conjecture: Every k-edge 
colorable graph is k-edge-choosable.

THM (Ellingham,Goddyn, based on Alon,Tarsi)
True for k-regular planar graphs
THM (Norine,RT, based on Alon,Tarsi)
True for k-regular Pfaffian graphs 

The proof uses “signs” of edge-colorings, and in a 
sense the method works only for Pfaffian graphs
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A graph G is k-edge-choosable if for every set system 
{Se: e∈ E(G)} such that |Se|=k there exists a proper 
edge-coloring c with c(e) ∈ Se for every e ∈ E(G).

List Edge Coloring Conjecture: Every k-edge 
colorable graph is k-edge-choosable.

THM (Ellingham,Goddyn, based on Alon,Tarsi)
True for k-regular planar graphs
THM (Norine,RT, based on Alon,Tarsi)
True for k-regular Pfaffian graphs 

CONJECTURE Every 2-connected 3-regular Pfaffian
graph is 3-edge-colorable (Implies the 4-color theorem)



PfaffianPfaffian LabelingsLabelings

Let Γ be an Abelian group, we assume 1,-1 ∈ Γ.

Let G be a graph. V(G)={1,2, …, 2n}.

l: E(G) → Γ is a Pfaffian labeling of G if for every perfect matching

M={{ i1 , j1 }, { i2 , j2 }, …, { in , jn }},  ik<jk
we have
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The previous theorem holds more generally for graphs that admit a 
Pfaffian labeling, but those are not much different from Pfaffian graphs
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THEOREM (Fischer, Little) A near-bipartite graph G
has a Pfaffian orientation ⇔ G has no matching minor 
isomorphic to K3,3, Γ1, or Γ2.

THEOREM (Little 1975) A bipartite graph G has a 
Pfaffian orientation ⇔ G has no K3,3 matching minor.

G is a matching minor of H if G can be obtained 
from a central subgraph of H by bicontracting.

For general graphs need to add infinitely many graphs.



Basic classes of Pfaffian graphs:

• Planar graphs

• Graphs which have “even-faced” embeddings in the Klein bottle

Is there a decomposition theorem?

Structure of Pfaffian graphs

Obstacle: dense Pfaffian bricks
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2n-2 vertices
(n 2 +5n-12)/2 edges
Kn subgraph

Dense Dense PfaffianPfaffian BricksBricks
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The tightness of a cut C in a graph G is the 
maximum of |M∩C| over all perfect matchings
M of G.



Tightness leads to the notion of matching-width,
analogous to tree-width.

THM (Norine, RT) Can test in poly time if a graph
of bounded matching-width is Pfaffian

CONJECTURE Huge matching-width ⇒ large 
grid matching minor



SUMMARY

Bipartite Pfaffian graphs are well-understood,
and their characterization solves other problems

General Pfaffian graphs are not, but there are
interesting connections to other areas




