Application to Algebra

A **ring** is $(R, +, \cdot, 0, 1)$, where

- (R, +) is an abelian group with identity 0
- a(bc) = (ab)c and 1 is a multiplicative identity
- (a+b)c = ac + bc and c(a+b) = ca + cb

Examples. (i) Z

(ii) Matrices over any ring

The *commutator* in a ring is [a, b] = ab - ba. More generally,

$$[a_1, a_2, \dots, a_k] = \sum_{\sigma} \operatorname{sgn}(\sigma) a_{\sigma(1)} a_{\sigma(2)} \cdots a_{\sigma(k)}$$

where the summation is over all permutations σ of $\{1, 2, ..., k\}$. If $[a_1, a_2, ..., a_k] = 0$ for all $a_i \in R$, then R is said to satisfy the k^{th} polynomial identity.

THEOREM (Amitsur, Levitzky) The ring of $k \times k$ matrices over a commutative ring R satisfies the $(2k)^{\text{th}}$ polynomial identity. In other words, if A_1, A_2, \dots, A_{2k} are $k \times k$ matrices with entries in R, then $[A_1, A_2, \dots, A_{2k}] = 0$.

Proof. Since $[A_1, A_2, ..., A_{2k}]$ is linear in each variable, it suffices to prove the theorem for matrices of the form E_{ij} (each entry 0, except $e_{ij} = 1$). So we must show

$$[E_{i_1j_1}, E_{i_2j_2}, \dots, E_{i_{2k}j_{2k}}] = 0.$$

Define a directed multigraph D by $V(D) = \{1, 2, ..., k\}$ and $E(D) = \{e_1, e_2, ..., e_{2k}\}$, where $e_t = i_t j_t$. Then

$$E_{\sigma(e_1)}E_{\sigma(e_2)}\cdots E_{\sigma(e_{2k})}\neq 0$$

if and only if $\sigma(e_1), \sigma(e_2), \dots, \sigma(e_{2k})$ is the edge-set of an Euler trail in D. So

$$[E_{i_1j_1}, E_{i_2j_2}, \dots, E_{i_{2k}j_{2k}}] = [E_{e_1}, E_{e_2}, \dots, E_{e_{2k}}] =$$

$$\sum_{\sigma} \operatorname{sgn}(\sigma) E_{\sigma(e_1)} E_{\sigma(e_2)} \cdots E_{\sigma(e_{2k})} = \sum_{W} \operatorname{sgn}(W) E_{xy}$$

where are the last summation is over all Euler trails, sgn(W) is the sign of the permutation of E(D) determined by W, x is the origin of W and y is its terminus. Furthermore,

$$\sum_{W} \operatorname{sgn}(W) E_{xy} = \sum_{x,y \in V(D)} \left(\sum_{W} \operatorname{sgn}(W) \right) E_{xy}$$

where the last summation is over all Euler trails from x to y.

Lemma. Let *D* be a directed multigraph with $|E(D)| \ge 2|V(D)|$ and the let $x, y \in V(D)$. Then

$$\varepsilon(D, x, y) \coloneqq \sum_{W} \operatorname{sgn}(W) = 0$$

where the summation is over all Euler trails from x to y.

Proof. Let n = |V(D)| and m = |E(D)|. WMA no isolated vertices.

Step 1. We show that it suffices to prove the theorem for x = yand m = 2n. We construct a directed multigraph D' by adding a new vertex z, an edge yz and a path $z \rightarrow x$ of length m + 1 - 2n.

Then |V(D')| = n + m + 1 - 2n = m + 1 - n|E(D')| = m + m + 1 - 2n + 1 = 2(m + 1 - n) $|\varepsilon(D, x, y)| = |\varepsilon(D', z, z)|$ We proceed by induction on *n*. WMA *D* has a closed Euler trail, for otherwise $\varepsilon(D, z, z) = 0$. Thus deg⁺(v) = deg⁻(v) for all $v \in V(D)$.

Step 2. If *D* has a parallel edge, then $\varepsilon(D, z, z) = 0$.

Step 3. If *D* has a vertex $b \neq z$ of degree 2 with one neighbor

Delete *b* and go by induction

Step 4. If *D* has a vertex $b \neq z$ of degree 2 with two neighbors

Define

Then

$$|\varepsilon(D, z, z)| = \left|\sum_{i=1}^{t} \varepsilon(D_i, z, z)\right|$$

Step 5. If *D* has a loop at a vertex $b \neq z$ of degree 4

 $|\varepsilon(D, z, z)| = |\varepsilon(D', z, z)|$

Step 6. If none of the above apply, then either

- $\deg^+(v) = \deg^-(v) = 2$ for all $v \in V(D)$, or
- $\deg^+(z) = 1$, $\deg^+(w) = 3$, $\deg^+(v) = 2$ for other v.

Step 7. There exist two adjacent vertices of outdegree two (exercise)

 $\varepsilon(D, z, z) = \varepsilon(D_1, z, z) + \varepsilon(D_2, z, z) - \varepsilon(D_6, z, z) - \varepsilon(D_7, z, z)$

Question. Is the bound $|E(D)| \ge 2|V(D)|$ in the lemma best possible?