EXTRA CREDIT PROBLEM #3 Math 6014

Let $k \geq 2$ be an integer, let G be a k-connected graph on n vertices, let v_1, v_2, \ldots, v_k be distinct vertices of G and let n_1, n_2, \ldots, n_k be positive integers with $n_1 + n_2 + \cdots + n_k = n$. Prove that G has disjoint connected subgraphs G_1, G_2, \ldots, G_k such that for $i = 1, 2, \ldots, k$ the graph G_i has n_i vertices and $v_i \in V(G_i)$.

For k = 2 this is not hard and can serve as an additional weekly problem, but for $k \ge 3$ it is substantially harder. I will award $1/2^{k-3}$ units of extra credit for a proof for every $k \ge 3$. Thus a proof for all $k \ge 3$ will earn you double the usual extra credit.

Instructions: Homework rules apply, including an honor pledge, except that you may collaborate with students in the same class by submitting a joint paper. A paper with k authors will earn each author 1/k of the credit. Only complete solutions will be accepted. To claim credit please submit a pdf file by e-mail on or before November 25.