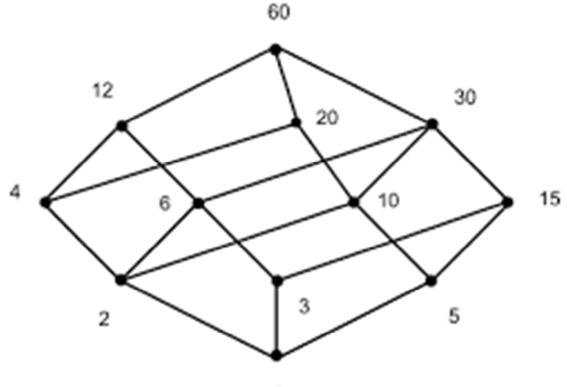
A partially ordered set (poset) is a pair (X, \leq), where X is a (finite) set and \leq is a partial order; that is \leq is

- reflexive: $x \le x \quad \forall x \in X$
- transitive: $x \le y$ and $y \le z \Rightarrow x \le z$ $\forall x, y, z \in X$
- antisymmetric: $x \le y$ and $y \le x \Rightarrow x = y$ $\forall x, y \in X$.

A chain is a set $C \subseteq X$ such that $x \leq y$ or $y \leq x \forall y, x \in C$. An **antichain** is a set $A \subseteq X$ such that $x \leq y$ for all distinct $x, y \in X$.

Hasse diagram:



1

Theorem (Dilworth). Let (P, \leq) be a poset with no antichain of size > k. Then P can be covered by $\leq k$ chains.

Proof will follow from the next theorem.

Given a poset (P, \leq) , define a directed graph *D* by $V(D) \coloneqq P$ and $\overrightarrow{uv} \in E(D)$ if $u \leq v$.

Antichain in $(P, \leq) \leftrightarrow$ independent set in *D*

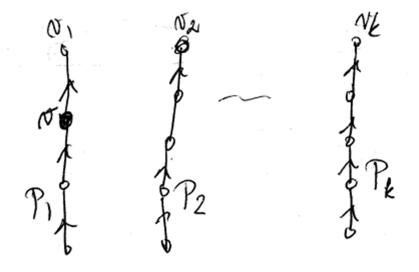
Cover by chains \leftrightarrow cover by (directed) paths in *D*

Theorem (Gallai and Milgram). Every directed graph *D* has a path cover by at most $\alpha(D)$ paths.

 $[\alpha(D) \coloneqq$ size of maximum independent set, path cover means paths P_1, \dots, P_k such that $V(D) = V(P_1) \cup \dots \cup V(P_k)$.

Proof. For sets \mathcal{P}_1 and \mathcal{P}_2 of disjoint paths let $\mathcal{P}_1 < \mathcal{P}_2$ mean that:

- $|\mathcal{P}_1| < |\mathcal{P}_2|$, and
- $\forall P \in \mathcal{P}_1$ the terminus of *P* is a terminus of some path in \mathcal{P}_2 .



Theorem (Dilworth). Let (P, \leq) be a poset with no antichain of size > k. Then P can be covered by $\leq k$ chains.

Proof will follow from the next theorem.

Given a poset (P, \leq) , define a directed graph *D* by $V(D) \coloneqq P$ and $\overrightarrow{uv} \in E(D)$ if $u \leq v$.

Antichain in $(P, \leq) \leftrightarrow$ independent set in *D*

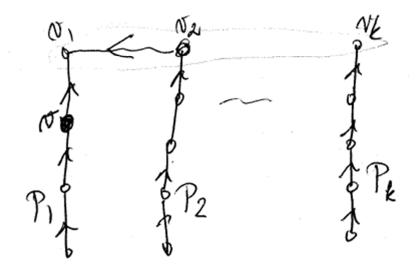
Cover by chains \leftrightarrow cover by paths in *D*

Theorem (Gallai and Milgram). Every directed graph *D* has a path cover by at most $\alpha(D)$ paths.

 $[\alpha(D) \coloneqq$ size of maximum independent set, path cover means paths P_1, \dots, P_k such that $V(D) = V(P_1) \cup \dots \cup V(P_k)]$.

Proof. For sets \mathcal{P}_1 and \mathcal{P}_2 of disjoint paths let $\mathcal{P}_1 < \mathcal{P}_2$ mean that:

- $|\mathcal{P}_1| < |\mathcal{P}_2|$, and
- $\forall P \in \mathcal{P}_1$ the terminus of *P* is a terminus of some path in \mathcal{P}_2 .



Claim. If \mathcal{P} is a <-minimal path cover of D by disjoint paths, then there exists an independent set $\{v_p\}_{P \in \mathcal{P}}$ with $v_p \in V(P)$ for every $P \in \mathcal{P}$.

Note claim implies theorem.

Proof of Claim. Let $\mathcal{P} = \{P_1, \dots, P_k\}$. Let v_i be the terminus of P_i . If $\{v_1, \dots, v_k\}$ is independent, then it satisfies the conclusion of the claim. So WMA $\overrightarrow{v_2v_1} \in E(D)$. Then is $P_1 \setminus v_1$ non-null.

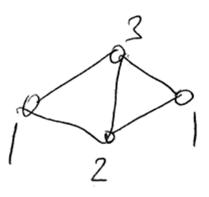
If $\mathcal{P}' \coloneqq \{P_1 \setminus v_1, P_2, \dots, P_k\}$ is <-minimal in $D \setminus v_1$, then done by induction. So WMA \exists path cover \mathcal{P}'' of $D \setminus v_1$ with $\mathcal{P}'' < \mathcal{P}'$.

If v or v_2 is a terminal of a path P in \mathcal{P}'' , then extend P by adding v_1 , obtaining a path cover of D which is $< \mathcal{P}$, contrary to the minimality of \mathcal{P} .

So WMA v and v_2 are not termini of paths in \mathcal{P}'' , and hence $|\mathcal{P}''| \le k - 2$. Add the path with sole vertex v_1 to \mathcal{P}'' to get a path cover that is $< \mathcal{P}$, a contradiction. \Box

Coloring

A coloring (vertex-coloring) of *G* is a function *c* that maps V(G) to some set *S* in such a way that if $u \sim v$, then $c(u) \neq c(v)$. We say *c* is a *k*-coloring if $|S| \leq k$. The chromatic number of *G*, denoted by $\chi(G)$, is the least integer *k* such that *G* has a *k*-coloring.

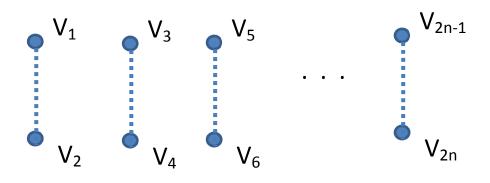


 $\chi(G) \le 1 \Leftrightarrow E(G) = \emptyset$ $\chi(G) \le 2 \Leftrightarrow G \text{ is bipartite}$ $\chi(G) \le 3 \Leftrightarrow ??$

Deciding $\chi(G) \leq 3$ is NP-hard.

A greedy algorithm: Order the vertices $v_1, v_2, ..., v_n$. Having colored $v_1, ..., v_{i-1}$ color v_i using the least available color.

Example.



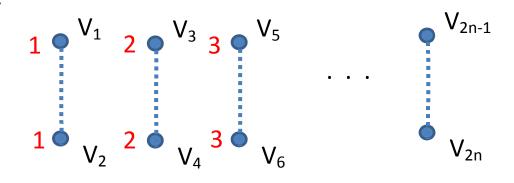
Theorem. Let $k \coloneqq \max_{H \subseteq G} \delta(H)$. Then $\chi(G) \le k + 1$.

Proof. $\delta(G) \leq k$. Let x_n be a vertex of degree $\leq k$. $\delta(G \setminus x_n) \leq k$. Let x_{n-1} be a vertex of degree $\leq k$ in $G \setminus x_n$. $\delta(G \setminus \{x_{n-1}, x_n\}) \leq k$. Let x_{n-2} be a vertex of degree $\leq k$ in $G\{x_{n-1}, x_n\}$.

This constructs a linear ordering $v_1, v_2, ..., v_n$ of V(G).

The greedy algorithm will use $\leq k + 1$ colors. **Corollary.** $\chi(G) \leq \Delta(G) + 1$. [Reminder: $\Delta(G) =$ maximum degree] A greedy algorithm: Order the vertices $v_1, v_2, ..., v_n$. Having colored $v_1, ..., v_{i-1}$ color v_i using the least available color.

Example.



Theorem. Let $k \coloneqq \max_{H \subseteq G} \delta(H)$. Then $\chi(G) \le k + 1$.

Proof. $\delta(G) \leq k$. Let x_n be a vertex of degree $\leq k$. $\delta(G \setminus x_n) \leq k$. Let x_{n-1} be a vertex of degree $\leq k$ in $G \setminus x_n$. $\delta(G \setminus \{x_{n-1}, x_n\}) \leq k$. Let x_{n-2} be a vertex of degree $\leq k$ in $G\{x_{n-1}, x_n\}$.

This constructs a linear ordering $v_1, v_2, ..., v_n$ of V(G).

The greedy algorithm will use $\leq k + 1$ colors. **Corollary.** $\chi(G) \leq \Delta(G) + 1$. [Reminder: $\Delta(G) =$ maximum degree]