Coloring

A coloring (vertex-coloring) of G is a function ¢ that maps V' (G)
to some set S in such a way that if u~v, then c(u) # c(v). We
say c is a k-coloring if |S| < k. The chromatic number of G,
denoted by y(G), is the least integer k such that G has a k-
coloring.

X(G) <19 EG)=0
x(G) < 2 © G is bipartite
Deciding y(G) < 3 is NP-hard.

A greedy algorithm: Order the vertices v, v,, ..., V. Having
colored vy, ..., v;_4 color v; using the least available color.

Theorem. Let k := maxycg 6(H). Then y(G) < k + 1.
Corollary. y(G) < A(G) + 1.

[Reminder: A(G) = maximum degree]



How to compute maxyc; 6 (H)?

Algorithm.
Input: A graph G and integer k > 1

Output: Either a subgraph H of G with §(H) = k, or a valid
statement that no such subgraph exists

Description:
If G 1s null answer “no”
If §(G) = k, then return G

Otherwise pick v € V' (G) of degree < k and apply the algorithm
recursively to G\v



Theorem (Brooks) If G is connected, not complete and not an odd
cycle, then y(G) < A(G).

Proof. WMA A(G) = 3. WMA G is A-regular.

If we can find a linear ordering

then the greedy algorithm succeeds.
Need v, vy, v, € V(G) distinct such that:

V1 ~Vp, UVa~Vyp, V1 * U, and G\{v4, v, } is connected.

If G 1s 3-connected, then v, v,, v, exist, because ~ is not
transitive (because G is not complete).



If G 1s not 2-connected, then it can be

written as G = G, U G,, where |V(G) NV (G,)| = 1.
By induction

x(G1) < A(Gy) < A(G)

x(Gz) = A(Gz) = A(G)
and hence y(G) < A(G), as desired.



So WMA G is 2-connected, but not 3-connected. So 3v,, € V(G)
such that G'\v,, is connected, but not 2-connected.

By the block structure of G'\v,, there are two distinct end-blocks
B4, B,. Since G is 2-connected, for i = 1,2 there is a neighbor v;
of v, in B; that is not a cut vertex of G\v,,.

Then v, v,, v, are as desired. O



w(G) = size of a maximum clique.

clique = vertex-set of a complete subgraph. Clearly

x(G) 2 w(G)

In general, y(G) could be big, w(G) small. In fact, there exist
graphs with w(G) = 2 and y(G) arbitrarily big. (Problem sets)

In fact, V k, £ 3 graph G with no cycles of length < £ and y(G) =
k (existence later).



Definition. A graph G is called perfect if y(H) = w(H) for every
induced subgraph H of G.

Example.

Y
‘, 7

Example. Bipartite graphs are perfect (easy).
Example. Complements of bipartite graphs are perfect (exercise).
Definition. The line graph of G 1s a graph L defined by

V(L) = E(G)

e,f € V(L) are adjacent in L if they are adjacent in G.




Example. Line graphs of bipartite graphs are perfect (exercise).

Example. Complements of line graphs of bipartite graphs are
perfect (exercise).

Sample argument: L = Line graph (G), G bipartite.
Enough to show y(L) = w(L):

w(L) = A(G)

x(L) = edge-chromatic number of G = ' (G).
Example. Odd cycles of length = 5 are not perfect.

Example. Complements of odd cycles of length = 5 are not
perfect .

o~ X(Core1) =k +1

o W(CSpar) =k



a(G) = size of maximum independent set
w(G) = size of maximum clique

w(G) = a(G)
Lemma. |V(H)| < y(H)a(H) for every graph H.

Proof.

G is perfect if y(H) = w(H) for every induced subgraph H of G.

The weak perfect graph theorem (Lovasz)
G is perfect & G€ is perfect.

This is a deep theorem. A proof will follow from
Theorem (Lovasz) A graph G is perfect

)
IV(H)| < a(H)w(H) for every induced subgraph of G.



Proof. U: Let G be perfect, and let H be an induced subgraph.
[V(H)| < x(H)a(H) = w(H)a(H)

by the lemma and perfection of G.

1 : Follows from next thm.

Theorem If G is minimally imperfect, then
V(O] =a(@)w(G) +1

Def. G is minimally imperfect if G is not perfect and G\v is
perfect for every v € V(G).

Observations. If G is minimally imperfect and w: = w(G), then

(a) y(G) =w+1,and
(b) if S € V(G) is independent, then w(G\S) = w.

Proof. (a) y(G) > w, because y(H) = w(H) for every proper
induced subgraph H of G.
xG) < yG\v)+1=w(G\v)+1<w+1

(b) If ¥(G\S) = w(G\S) < w, then color G\S using < w — 1
colors and add S to get an w-coloring of G, contrary to (a).
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Theorem If G is minimally imperfect, then
V(O] =a(@)w(G) +1

Proof. <: easy and not needed (exercise).

>: Letn: = |V(G)|, a: = a(G) and w: = w(G). We must show that
n = aw + 1. We will do so by constructing aw + 1 linearly
independent vectors in R™.

Let Sy: = {v4, vy, ..., U, } be a maximum independent set.
Fori = 1,2, ..., a pick an w-coloring of G\v;:

Si-Daw+1 S (—Dw+2r = S(i-Dw+w (*)
G \v; has w-coloring Sy, S5, ..., Sy,
G\v, has w-coloring S,,11,Sw+2, 320
G\v; has w-coloring  S¢i_1yw+1,S(i-1)w+2) = S(i-Dw+w
G\v, has w-coloring Sig—1)w+1, S(a=1)w+2r 1 Saw
Thus we have aw + 1 independent sets Sy, S1, -, Sgpe-
Claim. Each maximum clique is disjoint from exactly one S;.

Pf. Let Q be a maximum clique. If v; € Q, then Q is an w-clique
in G\v;. Since (*) 1s an w-coloring of G\v;, Q intersects all those
independent sets.
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If Sy N Q = @, then S, is the unique S; disjoint from Q.

Otherwise v; € Q for some i and Q — {v;} is an (w — 1)-clique in
G\v; and so Q intersects all but one of the sets in (*). This proves
the claim.

WMA V(G) = {1, ...,n}. Iclaim1g,1g, .., 15 are linearly
independent. Note that w(G\S;) = w foralli = 0,1, ..., aw by

Observation. Thus there exists a maximum clique Q; disjoint from
S;. We have

B (0, i=j
ﬂSi.]le_|Sian|_{]_’ i £
Suppose }; A;1s, = 0. Then

aw aw aw
0= (Z Al-]lsl) g, = Z A (15, - 1q, ) = (Z Ai> ¥
i=0 =0 =0

forevery j = 0,1, ...,aw. Thus g = A1 = -+ = A4, = 70 A1),
and so they are all 0. O

12



The Strong Perfect Graph Theorem

A hole in a graph is an induced cycle of length at least 4. An
antihole is the complement of a hole.

Strong Perfect Graph Theorem. A graph is perfect if and only if
it has no odd hole and no odd antihole.

Implies the Weak Perfect Graph Theorem.
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