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Coloring 

A coloring (vertex-coloring) of � is a function � that maps ���� 

to some set � in such a way that if �~	, then ���� 
 ��	�.   We 

say � is a �-coloring if |�| 
 �.  The chromatic number of �, 

denoted by ����, is the least integer � such that � has a �-

coloring. 

 

���� 
 1 ⇔ ���� � ∅ 

���� 
 2 ⇔ �	is	bipartite 

Deciding ���� 
 3 is NP-hard. 

A greedy algorithm: Order the vertices 	�, 	!, … , 	#. Having 

colored 	�, … , 	$%� color 	$ using the least available color. 

Theorem.  Let � ≔ max)⊆+ ,�-�. Then ���� 
 � . 1. 

Corollary.  ���� 
 ∆��� . 1. 
[Reminder: ∆��� �  maximum degree] 
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How to compute max)⊆+ ,�-�? 

 

Algorithm. 

Input: A graph � and integer � ≥ 1 

Output: Either a subgraph - of � with ,�-� ≥ �, or a valid 

statement that no such subgraph exists  

Description: 

If � is null answer “no” 

If ,��� ≥ �, then return � 

Otherwise pick 	 ∈ ���� of degree < � and apply the algorithm 

recursively to �\	 
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Theorem (Brooks) If � is connected, not complete and not an odd 

cycle, then ���� 
 ∆���.   

Proof.  WMA ∆��� ≥ 3. WMA � is ∆-regular. 

If we can find a linear ordering  

 

then the greedy algorithm succeeds. 

Need 	�, 	!, 	# ∈ ���� distinct such that:  

	�~	#, 	!~	#, 	� ≁ 	! and �\6	�, 	!7 is connected. 

 

If � is 3-connected, then 	�, 	!, 	# exist, because ~ is not 

transitive (because � is not complete). 
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If � is not 2-connected, then it can be 

 

written as � � �� ∪ �!, where |����� ∩ ���!�| � 1. 

By induction 

����� 
 ∆���� 
 ∆��� 

���!� 
 ∆��!� 
 ∆���	
and hence ���� 
 ∆���, as desired.  
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So WMA � is 2-connected, but not 3-connected.  So ∃	# ∈ ���� 

such that �\	# is connected, but not 2-connected. 

 

By the block structure of �\	# there are two distinct end-blocks ;�, ;!.  Since � is 2-connected, for < � 1,2 there is a neighbor 	$ 
of 	# in ;$ that is not a cut vertex of �\	#.  

Then 	�, 	!, 	# are as desired.     □ 
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=��� � size of a maximum clique. 

clique = vertex-set of a complete subgraph. Clearly 

���� ≥ =��� 

 

 

In general, χ��� could be big, =��� small.  In fact, there exist 

graphs with =��� � 2 and ���� arbitrarily big.  (Problem sets) 

In fact, ∀	�, ℓ	∃ graph � with no cycles of length 
 ℓ and ���� ≥� (existence later). 
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Definition.  A graph � is called perfect if ��-� � =�-� for every 

induced subgraph - of  �. 

Example. 

 

Example.  Bipartite graphs are perfect (easy). 

Example.  Complements of bipartite graphs are perfect (exercise). 

Definition. The line graph of � is a graph @ defined by 

��@� � ���� 

A, B ∈ ��@� are adjacent in @ if they are adjacent in �. 
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Example.  Line graphs of bipartite graphs are perfect (exercise). 

Example.  Complements of line graphs of bipartite graphs are 

perfect (exercise). 

Sample argument: @ � Line graph ���, � bipartite.  

Enough to show ��@� � =�@�: 

=�@� � ∆��� 

��@� � edge-chromatic number of � � �′���. 

Example. Odd cycles of length ≥ 5 are not perfect. 

Example. Complements of odd cycles of length ≥ 5 are not 

perfect . 

 

  

                                                        ��E!FG�H � � � . 1  

                                                        =�E!FG�H � � �  
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I��� � size of maximum independent set 

=��� � size of maximum clique 

=��� � I��H� 

Lemma.  |��-�| 
 ��-�I�-� for every graph -. 

Proof.   

 

 

� is perfect if ��-� � =�-� for every induced subgraph - of �. 

 

The weak perfect graph theorem  (Lovász)  � is perfect ⇔ �H is perfect. 

This is a deep theorem. A proof will follow from  

Theorem  (Lovász) A graph � is perfect 

⇕ 

|��-�| 
 I�-�=�-� for every induced subgraph of �. 
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Proof.  ⇓: Let � be perfect, and let - be an induced subgraph. 

|��-�| 
 ��-�I�-� � =�-�I�-� 

by the lemma and perfection of �. 

⇑ : Follows from next thm. 

Theorem If � is minimally imperfect, then |����| � I���=��� . 1 

Def.  � is minimally imperfect if � is not perfect and �\	 is 

perfect for every 	 ∈ ����. 

Observations.  If � is minimally imperfect and =: � =���, then 

(a) ���� � = . 1, and  

(b) if � ⊆ ���� is independent, then =��\�� � =. 

Proof. (a) ���� > =, because ��-� � =�-� for every proper 

induced subgraph - of �. ���� 
 ���\	� . 1 � =��\	� . 1 
 = . 1 

(b) If ���\�� � =��\�� < =, then color �\� using 
 = − 1 

colors and add � to get an =-coloring of �, contrary to (a). 
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Theorem If � is minimally imperfect, then |����| � I���=��� . 1 

Proof.  
: easy and not needed (exercise). 

≥: Let P: � |����|, I: � I��� and =: � =���. We must show that P ≥ I= . 1. We will do so by constructing I= . 1 linearly 

independent vectors in 	ℝ#. 

Let �R: � 6	�, 	!, … , 	S7 be a maximum independent set.   

For < � 1,2, … , I pick an =-coloring of �\	$: 
��$%��TG�, ��$%��TG!, … , ��$%��TGT                          �∗� 

�\	� has =-coloring ��, �!, … , �T 

�\	! has =-coloring �TG�, �TG!, … , �!T                      

�\	$	has =-coloring   ��$%��TG�, ��$%��TG!, … , ��$%��TGT 

�\	S has =-coloring ��S%��TG�, ��S%��TG!, … , �ST 

Thus we have I= . 1 independent sets �R, ��, … , �ST. 

Claim.  Each maximum clique is disjoint from exactly one �$.   
Pf.  Let V be a maximum clique.  If 	$ ∉ V, then V is an =-clique 

in �\	$.  Since �∗� is an =-coloring of �\	$, V intersects all those 

independent sets. 
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If �R ∩ V � ∅, then �R is the unique �$ disjoint from V. 

Otherwise 	$ ∈ V for some < and V − 6	$7 is an �= − 1�-clique in �\	$ and so V intersects all but one of the sets in �∗�.  This proves 

the claim. 

WMA ���� � 61, … , P7.  I claim XYZ , XY[ , … , XY\]  are linearly 

independent. Note that =��\�$� � = for all < � 0,1, … , I= by 

Observation. Thus there exists a maximum clique V$ disjoint from �$. We have 

XY_ ∙ Xab � c�$ ∩ Vdc � e0, < � f1, < 
 f 

Suppose ∑ h$XY_ � 0. Then 

0 � ij h$XY_
ST

$kR
l ∙ Xab � j h$ mXY_ ∙ Xabn

ST

$kR
� ij h$

ST

$kR
l − hd 

for every f � 0,1, … , I=.  Thus hR � h� � ⋯ � hST � �∑ h$ST$kR �, 

and so they are all 0.   □ 
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The Strong Perfect Graph Theorem 

A hole in a graph is an induced cycle of length at least 4. An 

antihole is the complement of a hole. 

Strong Perfect Graph Theorem.  A graph is perfect if and only if 

it has no odd hole and no odd antihole. 

Implies the Weak Perfect Graph Theorem. 

  


