Coloring

A coloring (vertex-coloring) of *G* is a function *c* that maps V(G) to some set *S* in such a way that if $u \sim v$, then $c(u) \neq c(v)$. We say *c* is a *k*-coloring if $|S| \leq k$. The chromatic number of *G*, denoted by $\chi(G)$, is the least integer *k* such that *G* has a *k*-coloring.

 $\chi(G) \le 1 \Leftrightarrow E(G) = \emptyset$

 $\chi(G) \leq 2 \Leftrightarrow G$ is bipartite

Deciding $\chi(G) \leq 3$ is NP-hard.

A greedy algorithm: Order the vertices $v_1, v_2, ..., v_n$. Having colored $v_1, ..., v_{i-1}$ color v_i using the least available color.

Theorem. Let $k \coloneqq \max_{H \subseteq G} \delta(H)$. Then $\chi(G) \le k + 1$.

Corollary. $\chi(G) \leq \Delta(G) + 1$.

[Reminder: $\Delta(G)$ = maximum degree]

How to compute $\max_{H \subseteq G} \delta(H)$?

Algorithm.

Input: A graph *G* and integer $k \ge 1$

Output: Either a subgraph *H* of *G* with $\delta(H) \ge k$, or a valid statement that no such subgraph exists

Description:

If G is null answer "no"

If $\delta(G) \ge k$, then return *G*

Otherwise pick $v \in V(G)$ of degree < k and apply the algorithm recursively to $G \setminus v$

Theorem (Brooks) If *G* is connected, not complete and not an odd cycle, then $\chi(G) \leq \Delta(G)$.

Proof. WMA $\Delta(G) \geq 3$. WMA G is Δ -regular.

If we can find a linear ordering

then the greedy algorithm succeeds.

Need $v_1, v_2, v_n \in V(G)$ distinct such that:

 $v_1 \sim v_n$, $v_2 \sim v_n$, $v_1 \neq v_2$ and $G \setminus \{v_1, v_2\}$ is connected.

If G is 3-connected, then v_1, v_2, v_n exist, because ~ is not transitive (because G is not complete).

If G is not 2-connected, then it can be

written as $G = G_1 \cup G_2$, where $|V(G_1) \cap V(G_2)| = 1$. By induction

$$\chi(G_1) \le \Delta(G_1) \le \Delta(G)$$

 $\chi(G_2) \le \Delta(G_2) \le \Delta(G)$

and hence $\chi(G) \leq \Delta(G)$, as desired.

So WMA *G* is 2-connected, but not 3-connected. So $\exists v_n \in V(G)$ such that $G \setminus v_n$ is connected, but not 2-connected.

By the block structure of $G \setminus v_n$ there are two distinct end-blocks B_1, B_2 . Since G is 2-connected, for i = 1,2 there is a neighbor v_i of v_n in B_i that is not a cut vertex of $G \setminus v_n$.

Then v_1 , v_2 , v_n are as desired.

 $\omega(G) = \text{size of a maximum clique.}$

clique = vertex-set of a complete subgraph. Clearly

 $\chi(G) \ge \omega(G)$

In general, $\chi(G)$ could be big, $\omega(G)$ small. In fact, there exist graphs with $\omega(G) = 2$ and $\chi(G)$ arbitrarily big. (Problem sets) In fact, $\forall k, \ell \exists$ graph *G* with no cycles of length $\leq \ell$ and $\chi(G) \geq k$ (existence later). **Definition.** A graph *G* is called **perfect** if $\chi(H) = \omega(H)$ for every **induced** subgraph *H* of *G*.

Example.

Example. Bipartite graphs are perfect (easy).

Example. Complements of bipartite graphs are perfect (exercise).

Definition. The line graph of *G* is a graph *L* defined by

$$V(L) = E(G)$$

 $e, f \in V(L)$ are adjacent in L if they are adjacent in G.

Example. Line graphs of bipartite graphs are perfect (exercise).

Example. Complements of line graphs of bipartite graphs are perfect (exercise).

Sample argument: L = Line graph (G), G bipartite.

Enough to show $\chi(L) = \omega(L)$:

 $\omega(L) = \Delta(G)$

 $\chi(L) =$ edge-chromatic number of $G = \chi'(G)$.

Example. Odd cycles of length \geq 5 are not perfect.

Example. Complements of odd cycles of length \geq 5 are not perfect.

$$\chi(C_{2k+1}^c) = k+1$$

$$\omega(C_{2k+1}^c) = k$$

 $\alpha(G)$ = size of maximum independent set

 $\omega(G) =$ size of maximum clique

 $\omega(G) = \alpha(G^c)$

Lemma. $|V(H)| \le \chi(H)\alpha(H)$ for every graph *H*. **Proof.**

G is **perfect** if $\chi(H) = \omega(H)$ for every induced subgraph *H* of *G*.

The weak perfect graph theorem (Lovász) G is perfect $\Leftrightarrow G^c$ is perfect.

This is a deep theorem. A proof will follow from

Theorem (Lovász) A graph G is perfect

 $\mathbf{\hat{l}}$

 $|V(H)| \leq \alpha(H)\omega(H)$ for every induced subgraph of G.

Proof. \Downarrow : Let *G* be perfect, and let *H* be an induced subgraph.

 $|V(H)| \le \chi(H)\alpha(H) = \omega(H)\alpha(H)$

by the lemma and perfection of G.

 $\hat{\mathbf{1}}$: Follows from next thm.

Theorem If *G* is minimally imperfect, then $|V(G)| = \alpha(G)\omega(G) + 1$

Def. *G* is minimally imperfect if *G* is not perfect and $G \setminus v$ is perfect for every $v \in V(G)$.

Observations. If *G* is minimally imperfect and $\omega := \omega(G)$, then

- (a) $\chi(G) = \omega + 1$, and
- (b) if $S \subseteq V(G)$ is independent, then $\omega(G \setminus S) = \omega$.

Proof. (a) $\chi(G) > \omega$, because $\chi(H) = \omega(H)$ for every proper induced subgraph *H* of *G*.

 $\chi(G) \le \chi(G \setminus v) + 1 = \omega(G \setminus v) + 1 \le \omega + 1$

(b) If $\chi(G \setminus S) = \omega(G \setminus S) < \omega$, then color $G \setminus S$ using $\leq \omega - 1$ colors and add *S* to get an ω -coloring of *G*, contrary to (a).

Theorem If *G* is minimally imperfect, then $|V(G)| = \alpha(G)\omega(G) + 1$

Proof. \leq : easy and not needed (exercise).

≥: Let n: = |V(G)|, α : = $\alpha(G)$ and ω : = $\omega(G)$. We must show that $n \ge \alpha \omega + 1$. We will do so by constructing $\alpha \omega + 1$ linearly independent vectors in \mathbb{R}^n .

Let S_0 : = { $v_1, v_2, ..., v_\alpha$ } be a maximum independent set. For $i = 1, 2, ..., \alpha$ pick an ω -coloring of $G \setminus v_i$:

$$S_{(i-1)\omega+1}, S_{(i-1)\omega+2}, \dots, S_{(i-1)\omega+\omega}$$
(*)

 $G \setminus v_1$ has ω -coloring $S_1, S_2, \dots, S_{\omega}$

 $G \setminus v_2$ has ω -coloring $S_{\omega+1}, S_{\omega+2}, \dots, S_{2\omega}$

$$G \setminus v_i$$
 has ω -coloring $S_{(i-1)\omega+1}, S_{(i-1)\omega+2}, \dots, S_{(i-1)\omega+\omega}$

$$G \setminus v_{\alpha}$$
 has ω -coloring $S_{(\alpha-1)\omega+1}, S_{(\alpha-1)\omega+2}, \dots, S_{\alpha\omega}$

Thus we have $\alpha \omega + 1$ independent sets $S_0, S_1, \dots, S_{\alpha \omega}$.

Claim. Each maximum clique is disjoint from exactly one S_i .

Pf. Let *Q* be a maximum clique. If $v_i \notin Q$, then *Q* is an ω -clique in $G \setminus v_i$. Since (*) is an ω -coloring of $G \setminus v_i$, *Q* intersects all those independent sets.

If $S_0 \cap Q = \emptyset$, then S_0 is the unique S_i disjoint from Q.

Otherwise $v_i \in Q$ for some *i* and $Q - \{v_i\}$ is an $(\omega - 1)$ -clique in $G \setminus v_i$ and so Q intersects all but one of the sets in (*). This proves the claim.

WMA $V(G) = \{1, ..., n\}$. I claim $\mathbb{1}_{S_0}, \mathbb{1}_{S_1}, ..., \mathbb{1}_{S_{\alpha\omega}}$ are linearly independent. Note that $\omega(G \setminus S_i) = \omega$ for all $i = 0, 1, ..., \alpha \omega$ by Observation. Thus there exists a maximum clique Q_i disjoint from S_i . We have

$$\mathbb{1}_{S_i} \cdot \mathbb{1}_{Q_j} = \left| S_i \cap Q_j \right| = \begin{cases} 0, & i = j \\ 1, & i \neq j \end{cases}$$

Suppose $\sum \lambda_i \mathbb{1}_{S_i} = 0$. Then

$$0 = \left(\sum_{i=0}^{\alpha\omega} \lambda_i \mathbb{1}_{S_i}\right) \cdot \mathbb{1}_{Q_j} = \sum_{i=0}^{\alpha\omega} \lambda_i \left(\mathbb{1}_{S_i} \cdot \mathbb{1}_{Q_j}\right) = \left(\sum_{i=0}^{\alpha\omega} \lambda_i\right) - \lambda_j$$

for every $j = 0, 1, ..., \alpha \omega$. Thus $\lambda_0 = \lambda_1 = \cdots = \lambda_{\alpha \omega} = (\sum_{i=0}^{\alpha \omega} \lambda_i)$, and so they are all 0.

The Strong Perfect Graph Theorem

A hole in a graph is an induced cycle of length at least 4. An **antihole** is the complement of a hole.

Strong Perfect Graph Theorem. A graph is perfect if and only if it has no odd hole and no odd antihole.

Implies the Weak Perfect Graph Theorem.