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An edge-coloring of � is a mapping �: ���� → �, where � is some 

set, such that ��
� � ���� for every two adjacent edges 
, �.  It is a 

-edge-coloring if |�| � .  The edge-chromatic number  or 

chromatic index of �, denoted by �′���, is the least integer  

such that � has a -edge-coloring.   

Clearly ∆��� � �′��� and ����� � �������. 

Observation. ����� � ������� � Δ������ � 1 � 2Δ��� � 1 

 

Theorem  (Vizing)  For every simple graph ����� � ∆��� � 1. 

 

Example.   

 |����| � 3 

 ∆��� � 2 

 ����� � 3 

 

Proof.  By induction on |����|. By induction we can color all but 

one edge of � using ∆��� � 1 colors. Let ��  be the uncolored 

edge. For every ! ∈ #��� there is a “missing color” at !; that is, a 

color not used by any edge incident with !.   
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Construct this for as long as $ , … , $& are pairwise distinct and the 

edges ��' exist. 

Case 1.  $& is missing at �. Color ��' using $' for ( � 1,2, … , . 

  

x y1 

y2 

y3 

yk-1 
yk 

t1 

t2 
tk-2 

tk-1 . . . 

t1 missing 
s missing 

t2 missing 

t3 missing 

tk-1 missing tk missing 
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Construct this for as long as $ , … , $& are pairwise distinct and the 

edges ��' exist. 

Case 1.  $& is missing at �. Color ��' using $' for ( � 1,2, … , . 

Case 2.  $& � $) for some * � 1,2, … ,  � 1.   

Let + be the subgraph of � consisting of edges colored , or $&. 

Notice that if we swap , and $& in any component of + we get a 

valid edge-coloring.  Either (� and �)� or (� and �&) are not in the 

same component of +. 

Case 2a.  �, �) are not in the same component of + 

Swap ,, $& � $) in the component of + containing �).  Color ��) 

using ,, color ��' using $' for ( � 1,2, … , * � 1. 

Case 2b.  Analogous (replace * by ).  □ 

x y1 

y2 

yj 

yk-1 
yk 

t1 

tj-1 
tk-2 

tk-1 . . . 

t1 missing 
s missing 

t2 missing 

tj missing 

tk-1 missing tk missing 

. . . 
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A communication model 

Input alphabet Σ, output alphabet Σ./0 

 

On input 1 we might receive 1  or  12 or 13 or  ⋯ 

On input 5 we might receive 5  or  52 or 53 or  ⋯ 

On input � we might receive �  or  �2 or �3 or  ⋯ 

1, 5 are confoundable if 1) � 5' for some (, *. 

 

Example.  ∑ � 71, 5 , �, 8, 
9 

The graph indicates confoundable pairs. 
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Two sequences �� , … , �:�, �� , … , �:� of elements of Σ are 

confoundable if  ∀( � 1,2, … , $ either �' � �' or �' , �' are 

confoundable. 

Objective. A set of pairwise unconfoundable sequences of length $ 

Example 1. Any sequence of 1’s and �’s of length $. That is a 

family of 2: pairwise unconfoundable sequences of length $.   

Example 2. A bigger family.  Notice that  

11, 58, �5, 8
, 
� 

are pairwise unconfoundable.  Take any sequence of these of 

length $/2.  That will give a collection of pairwise unconfoundable 

words of size 5:/2 � �2>.? @�
A
B � 2� /2 >.? @�:. 

 

Fekete’s lemma. If �1:�:C  is a sequence of positive real numbers 

satisfying  
1EF: ≥ 1E � 1: 

then lim:→K
 
:

1: exists and is equal to sup:C 
 
:

1:. 
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Definition.  For graphs O, � we define their product O ⊠ � by 

#�O ⊠ �� � #�O� Q #��� and 

� , ℓ �~�2, ℓ2� if   

• � , ℓ � � �2, ℓ2� and  

•  � 2 or  ~2 in O and  

• ℓ � ℓ2 or ℓ ~ℓ2 in � 

Example.  O2 ⊠ O2 

 

Example.  W@ ⊠ W@ 
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Let X��� ≔ ���Z� � min # of cliques covering the vertices of �.  

Observations:  (1) \�� ⊠ �2� ≥ \�� �\��2� 

(2) \�W@ ⊠ W@� � 5 

 (3) X�� �X��2� ≥ X�� ⊠ �2� 

Proof of (3).  Let O , … , O] be a cover by cliques of � . 

Let � , … , �E be a cover by cliques of �2. 

Then 7O' Q �): 1 � ( � ^, 1 � * � ,9 is a cover of � ⊠ �2 by ^, 

cliques, as desired. 

 

Let �: ≔ � ⊠ � ⊠ ⋯ ⊠ � ($ times). The Shannon capacity of � 

is defined as 

lim
:→K

1
$

log \ ��:� 

 

By (1),  \��EF:� ≥ \��E�\��:� 

log \ ��EF:� ≥ log \ ��E� � log \ ��:� 

By Fekete’s lemma lim:→K
 
:

log \ ��:� exists and is equal to 

sup:C 
 
:

log \ ��:�. 
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If \��� � X���, then 

�X����: ≥ X��:� ≥ \��:� ≥ �\����: 

and so equality holds throughout. Thus the Shannon capacity of � 

is log \ ���.   

What are the minimal graphs that do not satisfy \��� � X���?  

Those are precisely minimally imperfect graphs. 

 

Theorem  (Lovász) The Shannon capacity of W@ is �log 5�/2.   

 

We do not know the Shannon capacity of W` or other odd holes or 

odd antiholes.   


