An **edge-coloring** of *G* is a mapping $c: E(G) \to S$, where *S* is some set, such that $c(e) \neq c(f)$ for every two adjacent edges *e*, *f*. It is a *k*-edge-coloring if $|S| \leq k$. The **edge-chromatic number** or **chromatic index** of *G*, denoted by $\chi'(G)$, is the least integer *k* such that *G* has a *k*-edge-coloring.

Clearly $\Delta(G) \leq \chi'(G)$ and $\chi'(G) = \chi(L(G))$.

Observation. $\chi'(G) = \chi(L(G)) \le \Delta(L(G)) + 1 \le 2\Delta(G) - 1$

Theorem (Vizing) For every simple graph $\chi'(G) \leq \Delta(G) + 1$.

Example.

Proof. By induction on |E(G)|. By induction we can color all but one edge of *G* using $\Delta(G) + 1$ colors. Let xy_1 be the uncolored edge. For every $v \in V(G)$ there is a "missing color" at v; that is, a color not used by any edge incident with v.

Construct this for as long as $t_1, ..., t_k$ are pairwise distinct and the edges xy_i exist.

Case 1. t_k is missing at x. Color xy_i using t_i for i = 1, 2, ..., k.

Construct this for as long as $t_1, ..., t_k$ are pairwise distinct and the edges xy_i exist.

Case 1. t_k is missing at x. Color xy_i using t_i for i = 1, 2, ..., k.

Case 2. $t_k = t_j$ for some j = 1, 2, ..., k - 1.

Let *H* be the subgraph of *G* consisting of edges colored *s* or t_k .

Notice that if we swap *s* and t_k in any component of *H* we get a valid edge-coloring. Either (*x* and y_j) or (*x* and y_k) are not in the same component of *H*.

Case 2a. x, y_i are not in the same component of H

Swap *s*, $t_k = t_j$ in the component of *H* containing y_j . Color xy_j using *s*, color xy_i using t_i for i = 1, 2, ..., j - 1.

Case 2b. Analogous (replace j by k).

A communication model

Input alphabet Σ , output alphabet Σ_{out}

On input *a* we might receive a_1 or a_2 or a_3 or \cdots On input *b* we might receive b_1 or b_2 or b_3 or \cdots On input *c* we might receive c_1 or c_2 or c_3 or \cdots a, b are confoundable if $a_j = b_i$ for some i, j.

Example. $\sum = \{a, b, c, d, e\}$

The graph indicates confoundable pairs.

Two sequences $(x_1, ..., x_t)$, $(y_1, ..., y_t)$ of elements of Σ are **confoundable** if $\forall i = 1, 2, ..., t$ either $x_i = y_i$ or x_i, y_i are confoundable.

Objective. A set of pairwise unconfoundable sequences of length t

Example 1. Any sequence of a's and c's of length t. That is a family of 2^t pairwise unconfoundable sequences of length t.

Example 2. A bigger family. Notice that

aa, bd, cb, de, ec

are pairwise unconfoundable. Take any sequence of these of length t/2. That will give a collection of pairwise unconfoundable words of size $5^{t/2} = (2^{\log 5})^{\frac{t}{2}} = 2^{(1/2\log 5)t}$.

Fekete's lemma. If $(a_t)_{t \ge 1}$ is a sequence of positive real numbers satisfying

 $a_{s+t} \ge a_s + a_t$

then $\lim_{t\to\infty} \frac{1}{t}a_t$ exists and is equal to $\sup_{t\ge 1} \frac{1}{t}a_t$.

Definition. For graphs *K*, *L* we define their product $K \boxtimes L$ by $V(K \boxtimes L) = V(K) \times V(L)$ and

 $(k_1, \ell_1) \sim (k_2, \ell_2)$ if

- $(k_1, \ell_1) \neq (k_2, \ell_2)$ and
- $k_1 = k_2$ or $k_1 \sim k_2$ in *K* and
- $\ell_1 = \ell_2$ or $\ell_1 \sim \ell_2$ in L

Example. $K_2 \boxtimes K_2$

Example. $C_5 \boxtimes C_5$

Let $\gamma(G) \coloneqq \chi(G^c) = \min \#$ of cliques covering the vertices of G. **Observations:** (1) $\alpha(G_1 \boxtimes G_2) \ge \alpha(G_1)\alpha(G_2)$ (2) $\alpha(C_5 \boxtimes C_5) = 5$ (3) $\gamma(G_1)\gamma(G_2) \ge \gamma(G_1 \boxtimes G_2)$ **Proof of (3).** Let K_1, \dots, K_r be a cover by cliques of G_1 . Let L_1, \dots, L_s be a cover by cliques of G_2 . Then $\{K_i \times L_j : 1 \le i \le r, 1 \le j \le s\}$ is a cover of $G_1 \boxtimes G_2$ by rs cliques, as desired.

Let $G^t \coloneqq G \boxtimes G \boxtimes \cdots \boxtimes G$ (*t* times). The **Shannon capacity** of *G* is defined as

$$\lim_{t\to\infty}\frac{1}{t}\log\alpha\left(G^{t}\right)$$

By (1), $\alpha(G^{s+t}) \ge \alpha(G^s)\alpha(G^t)$ $\log \alpha (G^{s+t}) \ge \log \alpha (G^s) + \log \alpha (G^t)$ By Fekete's lemma $\lim_{t\to\infty} \frac{1}{t} \log \alpha (G^t)$ exists and is equal to $\sup_{t\ge 1} \frac{1}{t} \log \alpha (G^t).$ If $\alpha(G) = \gamma(G)$, then

$$(\gamma(G))^t \ge \gamma(G^t) \ge \alpha(G^t) \ge (\alpha(G))^t$$

and so equality holds throughout. Thus the Shannon capacity of *G* is $\log \alpha$ (*G*).

What are the minimal graphs that do not satisfy $\alpha(G) = \gamma(G)$? Those are precisely minimally imperfect graphs.

Theorem (Lovász) The Shannon capacity of C_5 is $(\log 5)/2$.

We do not know the Shannon capacity of C_7 or other odd holes or odd antiholes.