An edge-coloring of G is a mapping c: E(G) — S, where S is some
set, such that c(e) # c(f) for every two adjacent edges e, f. Itis a
k-edge-coloring if |S| < k. The edge-chromatic number or
chromatic index of G, denoted by y'(G), is the least integer k
such that G has a k-edge-coloring.

Clearly A(G) < x'(G) and x'(G) = x(L(G)).
Observation. y'(G) = )((L(G)) < A(L(G)) +1<2A(G) -1

Theorem (Vizing) For every simple graph y'(G) < A(G) + 1.

Example.
|E(G)| = 3k
A
A(G) = 2k
b (o}
x'(G) =3k

Proof. By induction on |E(G)|. By induction we can color all but
one edge of G using A(G) + 1 colors. Let xy; be the uncolored
edge. For every v € V(&) there is a “missing color” at v; that is, a
color not used by any edge incident with v.
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S missing —@ y, timissing

Yy, tymissing

‘ Y3 t3missing

Yk
t, missing

Yk-1
ty .1 missing

Construct this for as long as t4, ..., tj, are pairwise distinct and the
edges xy; exist.

Case 1. t; is missing at x. Color xy; using t; fori = 1,2, ..., k.
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S missing —@ y, timissing

Yy, tymissing

& Yj tjmissing
Yk . Yk-1
t, missing ty.1 missing

Construct this for as long as t4, ..., tj, are pairwise distinct and the
edges xy; exist.

Case 1. t; is missing at x. Color xy; using t; fori = 1,2, ..., k.
Case 2. t, =t; forsomej=1,2,..,k—1.
Let H be the subgraph of G consisting of edges colored s or t.

Notice that if we swap s and t; in any component of H we get a
valid edge-coloring. Either (x and y;) or (x and yy) are not in the

same component of H.

Case 2a. x,y; are not in the same component of H

Swap s, t; = t; in the component of H containing y;. Color xy;

using s, color xy; using t; fori = 1,2, ...,j — 1.

Case 2b. Analogous (replace j by k). O
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A communication model

Input alphabet X, output alphabet X, ¢

Y
/ \

On input a we might receive a, or a, or az or -
On input b we might receive b, or b, or b3 or -
On input ¢ we might receive ¢; or ¢, Or €3 Or ---

a, b are confoundable if a; = b; for some i, j.

Example. ), = {a,b,c,d, e}

The graph indicates confoundable pairs.
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Two sequences (xq, ..., xX¢), (Y4, ..., ¥¢) of elements of T are
confoundable if Vi =1,2,...,t either x; = y; or x;, y; are
confoundable.

Objective. A set of pairwise unconfoundable sequences of length ¢

Example 1. Any sequence of a’s and ¢’s of length t. That is a
family of 2¢ pairwise unconfoundable sequences of length t.

Example 2. A bigger family. Notice that
aa, bd, cb, de, ec

are pairwise unconfoundable. Take any sequence of these of
length t/2. That will give a collection of pairwise unconfoundable

words of size 5t/% = (21°g5)§ = 2(1/2log5)t

Fekete’s lemma. If (a;);> is a sequence of positive real numbers
satisfying
A4t = Qg + Ay

: 1 : : 1
then lim;_, — Qg exists and 1s equal to sup;sq -0
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Definition. For graphs K, L we define their product K X L by
VIKXIL) =V(K) x V(L) and

(k1» 31)"'(]{2; fz) if

® (ki,%1) # (k2,¥2) and
L d kl — kz or k1~k2 in K and
L d '81 :'gz Orf1~fz in L

Example. K, X K,

Example. C; X Cs
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Let y(G) :== y(G¢) = min # of cliques covering the vertices of G.
Observations: (1) a(G; X G,) = a(G1)a(G,)

2) a(Cs X Cs5) =5

3) v(Gy(Gz) 2 v(G1 X G3)

Proof of (3). Let K3, ..., K,- be a cover by cliques of G;.

Let L4, ..., Ls be a cover by cliques of G,.

Then{K; X Li:1<i<r,1<j<s}isacoverof G; X G, by s

cliques, as desired.

Let Gt := G X G X - X G (t times). The Shannon capacity of G
1s defined as

1
lim —loga (GY)

tooo t

By (1), a (G5t = a(GHa(GH)
loga (G5*%) > loga (G5) + loga (GY)
By Fekete’s lemma lim;_, o, %log a (GY) exists and is equal to

1
supez1;log @ (6°).
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If a(G) = y(G), then

() zy(G*) = a(G*) = (a(6))*

and so equality holds throughout. Thus the Shannon capacity of G
is loga (G).

What are the minimal graphs that do not satisfy a(G) = y(G)?
Those are precisely minimally imperfect graphs.

Theorem (Lovasz) The Shannon capacity of Cs is (log5)/2.

We do not know the Shannon capacity of C; or other odd holes or
odd antiholes.
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