Extremal problems
How many edges can a triangle-free graph on n vertices have?
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Theorem (Matel) If G has no triangle and n = |V (G)|, then
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Fix r. What 1s the maximum number of edges a graph with no K.
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An extremal graph T,_;(n), “the Turdn graph”, is the complete

subgraph can have?

multipartite graph with r — 1 parts that are as close as possible to
each other in size. It has all edges between different parts. Each

part has size {L‘ or [L :
r—1 r—1

If r — 1 divides n, then
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Theorem (Turan) If G is a graph on n vertices with no K-
subgraph, then

E(G)| < |E(Tr—1(0))]
with equality if and only if G is isomorphic to T,_; (n).

Proof #1. Let G have no K,-subgraph and maximum number of
edges. We claim G is complete multipartite. If not, then + is not
transitive, and so there exist x, y, z:
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If deg(x) > deg(y), then deleting y and cloning x produces a
graph with no K,-subgraph and > |E(G)| edges, a contradiction.
So WMA deg(x) < deg(y) and similarly deg(z) < deg(y). Now
deleting both x and z and cloning y twice produces a graph with
no K,-subgraph and > |E'(G)| edges, a contradiction. This proves
our claim that G 1s complete multipartite.

The maximality of G implies that G is isomorphic to Ty (n) for
some k. Since G has no K,-subgraph it follows that k < r — 1, and
by comparing the degrees of vertices in Ty, (n) and T,_; (n) we
conclude that the maximality of G implies that k = r — 1.



Lemma.
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a(6) = Z )deg(v) +1’

VeV (G
with equality if and only if G is a disjoint union of cliques.

Proof. Let < be a linear ordering of V(G).
I(L):={veV(G):Vw vweE(G) = v <w}
Then I(<) is independent. Now choose < uniformly at random.

X(<)=I(Q)] = Z Lver

veV(G)

EX = z Elen = Z Plvell = Z deg(§)+1

VeV (G) veV(G) veV(G)

There exists < such that |I(<)| = EX; then I(<) is an independent

: 1 :
set of size = Yyev (o) deair & required.

Assume now G is not a union of cliques. We will prove inequality
is strict. = 3 x,y, z:




Define
<{: XV, Z, e
<51 X, Z,Y, e un

Then I(<y) = {x,---}and I(<,) = {x,z,:-- }, and so
|1(<;)| < |I(<3)]. Thus X is not constant, and hence there
exists a linear ordering < such that X(<) > EX, and so
1 .
a(G) > ZvEV(G)m, as desired. O

Corollary. If G has n vertices and e edges, then
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Proof. If a; + --- + a,, = const, then /- ; — 1s minimized when

the a;’s are equal. Thus
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Theorem 2. Let H be a graph on n vertices such that |[E(H)| =
E(Tf-1(n))|. Then a(H) = r — 1 with equality if and only if
H=T";(n).

Proof of Turan’s theorem, assuming Theorem 2. Let G have n
vertices and no K, subgraph. WMA

E(G)| = |E(T,—1(n)],

for otherwise we are done. Let H be a spanning supergraph of G°
with |E(T¢-;(n))| edges. Then a(H) < r — 1. By Theorem 2
a(H) =2r—1,and so H = T°_;(n). Thus G has a spanning
subgraph isomorphic to T,_;(n), and hence ¢ = T,_;(n), because
adding any edge to T,_; (n) creates a K,.-subgraph. 0

Proof of Theorem 2. By the lemma
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a(H) = =r—1

The second inequality holds because the previous expression is
minimized when the degrees are as close to each other as possible.

Equality in 15 inequality & H is a union of cliques.

Equality in 279 inequality < degrees are as close to each other as
possible.

= Equality in Theorem 2 if and only H = T,*_; (n). 0



