The problem of Zarankiewicz

The problem: What is the maximum number of edges a bipartite
graph G with no K, ; subgraph can have?

Let z(m,n, s, t) denote the maximum number of edges in G with
no such K, subgraph.

Theorem. z(n,n,2,2) < {1+ 24n_3)

and equality holds for
infinitely many n.

Proof. Let z = 2HV4n=3),
) . :

then (z — n)z = n?(n —1). Suppose

G is bipartite with n vertices in each class, no C, and more than z
edges.
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A vee is a pair (x,{y,z}), where x € V; and y,z are distinct
neighbors of x.



Let dq,d,, ..., d, be the degrees of the vertices in V.

There are ). 1(d ) vees, but no two have the same feet. Thus
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a contradiction.
In order to get equality we need:

- V distinct y, z € V, there is a vee with feet y, z
- d1=d2=...=dn
: diy — n(4i
Since (5) = Xi=1(%) = n(%) we have
n=d’—-d;+1=0{W;—1)*+(d;—-1)+1
Call elements of V; points and elements of V, lines and say a point

x belongs to a line L € V, if they are adjacent in G. Thus we arrive
at



Definition. A projective plane of order g is a pair (X, £), where
X 1s a finite set and L 1s a set of subsets of X such that

(1) 1XI=q*+q+1

(2) Lisasetof (q + 1)-element subsets of X

(3) V x,y € X distinct there is a unique L € L such that
x,y €L.

Example. g = 2

& — %

Theorem. (2°) Every point is in exactly g + 1 lines.
(1’) There are g + q + 1 lines.
(3’) Every two lines meet in exactly one point.

Proof. (2°) Let p € X. There are g(q + 1) other points. Each line
through p has g points other than p and so there are g + 1 lines
through p.



(I)LetN = [{(p,L) : p € L}|.

N = z(#lines throughp) = (¢ +q+ 1)(g + 1)
peEX

N = Il =|Ll@+ D)
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(3’)LetL{,L, € L and fixp € Ly — L. For every point x € L,
there is a line containing x, p. That is g + 1 distinct lines, and so
those are all the lines containing p. But L4 is one of those lines,
and so it contains some x € L,. Thus L4, L, intersect. O

Theorem. A projective plane of order g exists whenever q is a
prime power.

Coming back to the case of equality. If a projective plane of
order g exists, then equality holds for some graph ¢ when n =

q° +q+ 1
V; = points, I, = lines, adjacency is containment.

The graph satisfies |E(G)| = z, because equality holds throughout
in the previous calculation. O
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Lemma. Let I/ be an n-dimensional vector space over a finite field
F with g elements. Then there are

q"-D@"—q) @ —q“ "

ordered k-tuples of linearly independent elements of V and there
are

q"-D@"—q) (@ —q“ "
(@ —1)(q* —q) - (g* — q*1)

k-dimensional subspaces of V.

Theorem. A projective plane of order g exists whenever q is a
prime power.

Proof. Let F be the finite field with g elements and let V' be the 3-
dimensional vector space over F.

Points = all 1-dimensional subspaces of V
Lines = all 2-dimensional subspaces of V

The number of points is
g’ —1
q—1

=q*+q+1

every line contains
q* -1
q—1

points, and every two distinct points belong to a unique line.
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Corollary. If G is a (not necessarily bipartite) graph with no C,
subgraph, then

[E(G)] < %(1 +V4n —3) = (1 + 0(1))%,13/2

Proof. Construct a bipartite graph H

H has no C, and so

E@)] < 5 |EGH)| < WD)
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Definition. A subdivision of a graph G is any graph obtained
from G by replacing edges by internally disjoint paths with the
same ends.

A K ,-subdivision in G 1s a subgraph of G isomorphic to a
subdivision of K.

Theorem. For every 7 there exists ¢ such that every graph with
average degree = ¢ has a K, subdivision.

Remark. If |V (G)| = n, then
C
|E(G)| = SN = K, subdivision

|E(G)| = ¢'n* = K, subgraph
The theorem will follow from

Theorem. Letp = 3. Forallm=p,p+1, ..., (229) every

connectd graph G of average degree > 2™ has an H-subdivision
for some graph H on p vertices and m edges.
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Proof. Induction on m. For m = p, if G has average degree = 2P,
then it has a subgraph of minimum degree > 2P~ + 1 (keep
deleting vertices of degree < 2P~1). But2? '+ 1 >p + 1, and
hence G has a cycle on = p vertices.

Suppose m = p + 1 and the theorem holds for smaller m. Take a
maximal set X € V(@) such that G[X] is connected and
avdeg(G/X) = 2™. Let H := G[N(X)].

H

Claim. H has min degree > 2™m"1,

Proof. Suppose degy(v) < 2™ 1 Let X' :== X U {v}.
H

L~ \/

G/X W<'
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G /X' is obtained from G /X by contracting wv. In the process we
lose 1 vertex, the edge wv and all edges of H incident with v and

only those edges. So we lose < 2™~ 1 edges.
avdeg(G/X) = 2™ & edge-density (G/X) = 2™1

The edge-density of G/X'is = 2™~ 1, because we lost 1 vertex and
< 2™m~1 edges, contrary to the choice of X. This proves the claim.

By induction H has an H'-subdivision, where H' has p vertices and

m — 1 edges.
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Let X, ¥ be non-adjacent vertices of ﬁ’, and let x, y be the
corresponding vertices of H. Join x, y by a path through X. o
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