## The problem of Zarankiewicz

**The problem:** What is the maximum number of edges a bipartite graph *G* with no  $K_{s,t}$  subgraph can have?



Let z(m, n, s, t) denote the maximum number of edges in G with no such  $K_{s,t}$  subgraph.

**Theorem.**  $z(n, n, 2, 2) \le \frac{n(1+\sqrt{4n-3})}{2}$  and equality holds for infinitely many *n*.

**Proof.** Let  $z = \frac{n(1+\sqrt{4n-3})}{2}$ ; then  $(z - n)z = n^2(n - 1)$ . Suppose *G* is bipartite with *n* vertices in each class, no  $C_4$  and more than *z* edges.



A vee is a pair  $(x, \{y, z\})$ , where  $x \in V_1$  and y, z are distinct neighbors of x.

Let  $d_1, d_2, \dots, d_n$  be the degrees of the vertices in  $V_1$ .

There are  $\sum_{i=1}^{n} \binom{d_i}{2}$  vees, but no two have the same feet. Thus

$$\binom{n}{2} \ge \sum_{i=1}^{n} \binom{d_i}{2} = \frac{1}{2} \sum_{i=1}^{n} d_i^2 - \frac{1}{2} \sum_{i=1}^{n} d_i \ge \frac{1}{2n} \left(\sum d_i\right)^2 - \frac{1}{2} \sum_{i=1}^{n} d_i = \frac{1}{2n} \left(\sum d_i\right)^2 - \frac{1}{2} \sum_{i=1}^{n} d_i = \frac{1}{2n} \left(\sum d_i\right)^2 - \frac{1}{2n} \sum_{i=1}^{n} d_i = \frac{1}{2n}$$

$$=\frac{1}{2n}|E(G)|^2 - \frac{1}{2}|E(G)| = \frac{|E(G)|(|E(G)| - n)}{2n} > \frac{z(z - n)}{2n} =$$

$$=\frac{n^2(n-1)}{2n}=\binom{n}{2},$$

a contradiction.

In order to get equality we need:

-  $\forall$  distinct  $y, z \in V_2$  there is a vee with feet y, z

$$- d_1 = d_2 = \dots = d_n$$

Since 
$$\binom{n}{2} = \sum_{i=1}^{n} \binom{d_i}{2} = n\binom{d_i}{2}$$
 we have  
 $n = d_i^2 - d_i + 1 = (d_i - 1)^2 + (d_i - 1) + 1$ 

Call elements of  $V_1$  points and elements of  $V_2$  lines and say a point x belongs to a line  $L \in V_2$  if they are adjacent in G. Thus we arrive at

**Definition.** A **projective plane** of order q is a pair  $(X, \mathcal{L})$ , where X is a finite set and  $\mathcal{L}$  is a set of subsets of X such that

- (1)  $|X| = q^2 + q + 1$
- (2)  $\mathcal{L}$  is a set of (q + 1)-element subsets of X
- (3)  $\forall x, y \in X$  distinct there is a **unique**  $L \in \mathcal{L}$  such that  $x, y \in L$ .

**Example.** q = 2



**Theorem.** (2') Every point is in exactly q + 1 lines.

(1') There are  $q^2 + q + 1$  lines.

(3') Every two lines meet in exactly one point.

**Proof.** (2') Let  $p \in X$ . There are q(q + 1) other points. Each line through p has q points other than p and so there are q + 1 lines through p.

(1') Let 
$$N = |\{(p, L) : p \in L\}|.$$
  

$$N = \sum_{p \in X} (\# \text{lines through } p) = (q^2 + q + 1)(q + 1)$$

$$N = \sum_{L \in L} |L| = |\mathcal{L}|(q + 1)$$

(3') Let  $L_1, L_2 \in \mathcal{L}$  and fix  $p \in L_1 - L_2$ . For every point  $x \in L_2$  there is a line containing x, p. That is q + 1 distinct lines, and so those are all the lines containing p. But  $L_1$  is one of those lines, and so it contains some  $x \in L_2$ . Thus  $L_1, L_2$  intersect.  $\Box$ 

**Theorem.** A projective plane of order q exists whenever q is a prime power.

**Coming back to the case of equality.** If a projective plane of order *q* exists, then equality holds for some graph *G* when  $n = q^2 + q + 1$ :

 $V_1$  = points,  $V_2$  = lines, adjacency is containment.

The graph satisfies |E(G)| = z, because equality holds throughout in the previous calculation.  $\Box$ 

**Lemma.** Let V be an n-dimensional vector space over a finite field F with q elements. Then there are

$$(q^n-1)(q^n-q)\cdots(q^n-q^{k-1})$$

ordered k-tuples of linearly independent elements of V and there are

$$\frac{(q^n - 1)(q^n - q) \cdots (q^n - q^{k-1})}{(q^k - 1)(q^k - q) \cdots (q^k - q^{k-1})}$$

k-dimensional subspaces of V.

**Theorem.** A projective plane of order q exists whenever q is a prime power.

**Proof.** Let F be the finite field with q elements and let V be the 3-dimensional vector space over F.

Points = all 1-dimensional subspaces of V

Lines = all 2-dimensional subspaces of V

The number of points is

$$\frac{q^3 - 1}{q - 1} = q^2 + q + 1$$

every line contains

$$\frac{q^2-1}{q-1} = q+1$$

points, and every two distinct points belong to a unique line.

**Corollary.** If *G* is a (not necessarily bipartite) graph with no  $C_4$  subgraph, then

$$|E(G)| \le \frac{n}{4} \left( 1 + \sqrt{4n-3} \right) = (1+o(1))\frac{1}{2}n^{3/2}$$

**Proof.** Construct a bipartite graph *H* 



*H* has no  $C_4$  and so

$$|E(G)| \le \frac{1}{2}|E(H)| \le \frac{1}{2}\frac{n(1+\sqrt{4n-3})}{2}$$

**Definition.** A **subdivision** of a graph G is any graph obtained from G by replacing edges by internally disjoint paths with the same ends.



A  $K_r$ -subdivision in G is a subgraph of G isomorphic to a subdivision of  $K_r$ .

**Theorem.** For every *r* there exists *c* such that every graph with average degree  $\geq c$  has a  $K_r$  subdivision.

**Remark.** If |V(G)| = n, then

$$|E(G)| \ge \frac{c}{2}n \Rightarrow K_r$$
 subdivision  
 $|E(G)| \ge c'n^2 \Rightarrow K_r$  subgraph

The theorem will follow from

**Theorem.** Let  $p \ge 3$ . For all  $m = p, p + 1, ..., {p \choose 2}$  every connectd graph *G* of average degree  $\ge 2^m$  has an  $\widetilde{H}$ -subdivision for some graph  $\widetilde{H}$  on *p* vertices and *m* edges.

**Proof.** Induction on *m*. For m = p, if *G* has average degree  $\ge 2^p$ , then it has a subgraph of minimum degree  $\ge 2^{p-1} + 1$  (keep deleting vertices of degree  $\le 2^{p-1}$ ). But  $2^{p-1} + 1 \ge p + 1$ , and hence *G* has a cycle on  $\ge p$  vertices.

Suppose  $m \ge p + 1$  and the theorem holds for smaller m. Take a maximal set  $X \subseteq V(G)$  such that G[X] is connected and  $\operatorname{avdeg}(G/X) \ge 2^m$ . Let  $H \coloneqq G[N(X)]$ .



**Claim.** *H* has min degree  $\geq 2^{m-1}$ .

**Proof.** Suppose deg<sub>*H*</sub>(v) < 2<sup>*m*-1</sup>. Let  $X' \coloneqq X \cup \{v\}$ .



G/X' is obtained from G/X by contracting wv. In the process we lose 1 vertex, the edge wv and all edges of H incident with v and only those edges. So we lose  $\leq 2^{m-1}$  edges. avdeg $(G/X) \geq 2^m \Leftrightarrow$  edge-density  $(G/X) \geq 2^{m-1}$ 

The edge-density of G/X' is  $\geq 2^{m-1}$ , because we lost 1 vertex and  $\leq 2^{m-1}$  edges, contrary to the choice of *X*. This proves the claim.

By induction H has an  $\widetilde{H'}$ -subdivision, where  $\widetilde{H'}$  has p vertices and m-1 edges.



Let  $\tilde{x}, \tilde{y}$  be non-adjacent vertices of  $\tilde{H'}$ , and let x, y be the corresponding vertices of H. Join x, y by a path through X.  $\Box$ 

