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The problem of Zarankiewicz 

The problem: What is the maximum number of edges a bipartite 

graph � with no ��,� subgraph can have? 

 

Let ���, 	, 
, �� denote the maximum number of edges in � with 

no such ��,� subgraph. 

Theorem. ��	, 	, 2,2� � ����√�����
�  and equality holds for 

infinitely many 	. 

Proof.  Let � � ����√�����
� ; then �� � 	�� � 	��	 � 1�.  Suppose 

� is bipartite with 	 vertices in each class, no �� and more than � 

edges.   

 

A vee is a pair ��, ��, ���, where � ∈  � and �, � are distinct 

neighbors of �.   
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Let !�, !�, … , !� be the degrees of the vertices in  �.   

There are ∑ $%&� '�()�  vees, but no two have the same feet. Thus 
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a contradiction. 

In order to get equality we need: 

- ∀ distinct �, � ∈  � there is a vee with feet �, � 

- !� � !� � ⋯ � !� 

Since $��' � ∑ $%&� '�()� � 	$%&� ' we have  

	 � !(� � !( + 1 � �!( � 1�� + �!( � 1� + 1 

Call elements of  � points and elements of  � lines and say a point 

� belongs to a line 6 ∈  � if they are adjacent in �. Thus we arrive 

at  
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Definition.  A projective plane of order 7 is a pair �8, 9�, where 

8 is a finite set and 9 is a set of subsets of 8 such that 

(1) |8| � 7� + 7 + 1 

(2) 9 is a set of �7 + 1�-element subsets of 8 

(3) ∀	�, � ∈ 8 distinct there is a unique 6 ∈ 9 such that 

�, � ∈ 6. 

Example.  7 � 2        

 

Theorem.  (2’) Every point is in exactly 7 + 1 lines. 

(1’) There are 7� + 7 + 1 lines. 

(3’) Every two lines meet in exactly one point. 

Proof. (2’) Let ; ∈ 8. There are 7�7 + 1� other points. Each line 

through ; has 7 points other than ; and so there are 7 + 1 lines 

through ;. 
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(1’) Let < � |��;, 6� ∶ 	; ∈ 6�|. 
< � -�#lines	through	;� � �7� + 7 + 1��7 + 1�

J∈K
 

< �-|6| � |
L∈9

9|�q + 1� 

(3’) Let 6�, 6� ∈ 9 and fix ; ∈ 6� � 6�. For every point � ∈ 6� 

there is a line containing �, ;. That is 7 + 1 distinct lines, and so 

those are all the lines containing ;. But 6� is one of those lines, 

and so it contains some � ∈ 6�. Thus 6�, 6� intersect.               □ 

Theorem. A projective plane of order 7 exists whenever 7 is a 

prime power.  

Coming back to the case of equality. If a projective plane of 

order 7 exists, then equality holds for some graph � when 	 �
7� + 7 + 1: 

 � � points,  � � lines, adjacency is containment. 

The graph satisfies |1���| � �, because equality holds throughout 

in the previous calculation.  □ 
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Lemma. Let   be an 	-dimensional vector space over a finite field 

Ϝ with 7 elements. Then there are  

�7� � 1��7� � 7�⋯�7� � 7O��� 
ordered P-tuples of linearly independent elements of   and there 

are 

�7� � 1��7� � 7�⋯�7� � 7O���
�7O � 1��7O � 7�⋯�7O � 7O��� 

P-dimensional subspaces of  . 

Theorem. A projective plane of order 7 exists whenever 7 is a 

prime power.  

Proof.  Let Ϝ be the finite field with 7 elements and let   be the 3-

dimensional vector space over Ϝ. 

Points � all 1-dimensional subspaces of V 

Lines � all 2-dimensional subspaces of V 

The number of points is 	
7� � 1
7 � 1 � 7� + 7 + 1 

every line contains 

7� � 1
7 � 1 � 7 + 1 

points, and every two distinct points belong to a unique line. 
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Corollary.  If � is a (not necessarily bipartite) graph with no �� 

subgraph, then 

|1���| � 	
4 $1 + √4	 � 3' � �1 + S�1�� 12 	

�/� 

Proof.  Construct a bipartite graph U 

 

U has no �� and so 

|1���| � 1
2 |1�U�| �

1
2
	�1 + √4	 � 3�

2  
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Definition.  A subdivision of a graph � is any graph obtained 

from � by replacing edges by internally disjoint paths with the 

same ends. 

 

 

A VW-subdivision in � is a subgraph of � isomorphic to a 

subdivision of �X. 

Theorem. For every Y there exists Z such that every graph with 

average degree ≥ Z has a �X subdivision. 

Remark. If | ���| � 	, then  

|1���| ≥ Z
2 	 ⇒ �X 	subdivision 

|1���| ≥ Z′	� ⇒ �X	subgraph 

The theorem will follow from 

Theorem.  Let ; ≥ 3.  For all � � ;, ; + 1,… , $J�' every 

connectd graph � of average degree ≥ 2b has an Uc-subdivision 

for some graph Uc on ; vertices and � edges. 
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Proof.  Induction on �.  For � � ;, if � has average degree ≥ 2J, 

then it has a subgraph of minimum degree ≥ 2J�� + 1 (keep 

deleting vertices of degree � 2J��). But 2J�� + 1 ≥ ; + 1, and 

hence � has a cycle on ≥ ; vertices.  

Suppose � ≥ ; + 1 and the theorem holds for smaller �.  Take a 

maximal set 8 ⊆  ��� such that �[8] is connected and   

avdeg	��/8� ≥ 2b. Let U ≔ �[<�8�].   
 

 

 

 

 

 

Claim. U has min degree ≥ 2b��. 

Proof.  Suppose degh�i� < 2b��. Let 8k ≔ 8 ∪ �i�. 
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�/8′ is obtained from �/8 by contracting mi.  In the process we 

lose 1 vertex, the edge mi and all edges of U incident with i and 

only those edges. So we lose � 2b�� edges. 

avdeg��/8� ≥ 2b ⇔ edge-density 	��/8� ≥ 2b��  

The edge-density of �/8′ is ≥ 2b��, because we lost 1 vertex and 

� 2b�� edges, contrary to the choice of 8. This proves the claim. 

By induction U has an U′o-subdivision, where U′o has ; vertices and 

� � 1 edges.  

 

Let �p, �p be non-adjacent vertices of U′o, and let �, � be the 

corresponding vertices of U.  Join �, � by a path through 8. □ 
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