Ramsey theory

Observation. Out of 6 people at a party, either some 3 know each other, or some 3 don't know each other.

In other words, if |V(G)| = 6, then either $\omega(G) \ge 3$ or $\alpha(G) \ge 3$.

Here 6 is best possible:

In general, is it true that for every value of "3" there is a value of "6" such that the above holds?

Definition. Given integers k, ℓ let $r(k, \ell)$ denote the smallest integer *N* such that every graph *G* on *N* vertices has either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

Theorem (Special case of Ramsey's theorem). For all integers $k, \ell \ge 2$ the number $r(k, \ell)$ is well-defined and

$$r(k,\ell) \le r(k,\ell-1) + r(k-1,\ell)$$

Examples. $r(k, \ell) = r(\ell, k)$

r(k, 1) = 1

 $r(k,2) = k \text{ if } k \ge 2$

Proof. By induction on $k + \ell$. Need to show that every *G* on $N \coloneqq r(k, \ell - 1) + r(k - 1, \ell)$ vertices satisfies $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

Pick $v \in V(G)$. Either v has $\geq r(k, \ell - 1)$ non-neighbors, or it has $\geq r(k - 1, \ell)$ neighbors.

Case 1. v has $\ge r(k, \ell - 1)$ non-neighbors. Let *H* be the subgraph of *G* induced by the non-neighbors of *v*.

By induction *H* has a clique of size k or an independent set of size $\ell - 1$. In the latter case add v.

Case 2 is analogous

Notation: $[X]^2 \coloneqq$ all 2-element subsets of *X*.

Restatement: For all $k, \ell \ge 2$ there exists an integer *N* such that for every "coloring" $c: [\{1, 2, ..., N\}]^2 \to \{0, 1\}$ there exists either

- a set $A \subseteq \{1, 2, ..., N\}$ of size k such that $c(X) = 0 \forall X \in [A]^2$, or
- a set $B \subseteq \{1, 2, ..., N\}$ of size ℓ such that $c(X) = 1 \forall X \in [B]^2$.

Definition. For $n \ge 2$ let $r_n(k, \ell)$ be the least integer N such that for every $c: [\{1, 2, ..., N\}]^n \to \{0, 1\}$ there exists either

- a set $A \subseteq \{1, 2, ..., N\}$ of size k such that $c(X) = 0 \forall X \in [A]^n$ or
- a set $B \subseteq \{1, 2, ..., N\}$ of size ℓ such that $c(X) = 1 \forall X \in [B]^n$

We will say that *A* is **0-monochromatic** and that *B* is **1-monochromatic**.

Remark. $r_1(k, \ell) = k + \ell - 1$

Theorem (Ramsey 1930) Let k, ℓ, n be integers with $1 < n < \min\{k, \ell\}$. Then $r_n(k, \ell)$ is well-defined and

$$r_n(k,\ell) \le r_{n-1}(r_n(k-1,\ell),r_n(k,\ell-1)) + 1$$

Proof. By induction *n*, and, subject to that, on $k + \ell$. Let $N \coloneqq r_{n-1}(r_n(k-1,\ell),r_n(k,\ell-1))$. Must show for every coloring $c : [\{1,2,\ldots,N,N+1\}]^n \to \{0,1\}$ there exists either a 0-monochromatic set of size *k*, or a 1-monochromatic set of size ℓ .

Define $d: [\{1, 2, ..., N\}]^{n-1} \to \{0, 1\}$ by

$$d(X) = c(X \cup \{N+1\})$$

By induction on *n* applied to $\{1, ..., N\}$ and the coloring *d* there is either

- a set $A \subseteq \{1, ..., N\}$ of size $r_n(k 1, \ell)$ such that d(X) = 0for every $X \in [A]^{n-1}$ or
- a set $B \subseteq \{1, ..., N\}$ of size $r_n(k, \ell 1)$ such that d(X) = 1for every $X \in [B]^{n-1}$.

Case 1. Suppose A exists. Apply induction on $k + \ell$ to the coloring *c* and set *A*. We get either:

- $C \subseteq A$ of size k - 1 such that c(X) = 0 for every $X \in [C]^n$, or

- $D \subseteq A$ of size ℓ such that c(X) = 1 for every $X \in [D]^n$.

If *D* exists, then it is as desired.

So WMA *C* exists. Let $E \coloneqq C \cup \{N + 1\}$. We claim that *E* is as desired. To see that we need to show that

$$c(Y) = 0 \forall Y \in [E]^n$$

That is true if $Y \subseteq C$. If $N + 1 \in Y$, then

$$c(Y) = d(Y - \{N + 1\}) = 0$$

and by the definition of d and the choice of A, as desired.

Case 2. The case when *B* exists is analogous.

 $[A]^n \coloneqq$ all *n*-element subsets of A

 $[A]^{<\omega} \coloneqq$ all finite subsets of A

Ramsey's theorem (restated) $\forall n \forall k \exists N \forall \mathcal{F} \subseteq [\{1, ..., N\}]^n$ $\exists A \subseteq \{1, 2, ..., N\}$ of size k such that either $[A]^n \subseteq \mathcal{F}$ or $[A]^n \cap \mathcal{F} = \emptyset$.

Infinite Ramsey's theorem $\forall n \forall \mathcal{F} \subseteq [\{1,2,...\}]^n$ \exists an infinite set $A \subseteq \{1,2,...\}$ such that either

 $[A]^n \subseteq \mathcal{F} \text{ or } [A]^n \cap \mathcal{F} = \emptyset.$

For n = 2 this says: Every infinite graph has either an infinite clique or an infinite independent set.

The proof we did can be adapted to prove the infinite version.

Application to number theory

Let f(S, n) denote the number of ways n can be written as n = a + b, where $a, b \in S$.

Open problem. Let $f(A, n) \ge 1$ for all n. Does that imply $\limsup_{n\to\infty} f(A, n) = +\infty$?

Multiplicative analogue:

Definition. $X \subseteq \mathbb{N}$ is a *multiplicative base* if for every $n \in \mathbb{N}$ there exist $x, y \in X$ such that n = xy.

Theorem (Erdös) If *X* is a multiplicative base, then for every ℓ there exists an integer $n \in \mathbb{N}$ that can be expressed as a product of two elements of *X* in at least ℓ ways.

Lemma. Let *A* be an infinite set, and let $\mathcal{F} \subseteq [A]^{<\omega}$ be such that for every $F \in [A]^{<\omega}$ there exist $F_1, F_2 \in \mathcal{F}$ such that $F_1 \cup F_2 = F$ and $F_1 \cap F_2 = \emptyset$. Then for every ℓ there exists $F \in [A]^{<\omega}$ that can be expressed as above in at least ℓ ways.

Proof of Lemma. Let *A* and ℓ be given. By Ramsey there exists an infinite set $A_1 \subseteq A$ such that

$$[A_1]^1 \subseteq \mathcal{F} \text{ or } [A_1]^1 \cap \mathcal{F} = \emptyset$$

By another application of Ramsey's theorem there exists an infinite set $A_2 \subseteq A_1$ such that

$$[A_2]^2 \subseteq \mathcal{F} \text{ or } [A_2]^2 \cap \mathcal{F} = \emptyset$$

By repeating this argument for $i = 3, 4, ... \ell - 1$ we finally arrive at an infinite set $A_{\ell-1}$ such that

$$[A_{\ell-1}]^{\ell-1} \subseteq \mathcal{F} \text{ or } [A_{\ell-1}]^{\ell-1} \cap \mathcal{F} = \emptyset$$

Let $B \coloneqq A_{\ell-1}$. Thus we have for $i = 1, 2, ..., \ell - 1$
(*) either $[B]^i \subseteq \mathcal{F}$ or $[B]^i \cap \mathcal{F} = \emptyset$.
Case 1. $[B]^\ell \subseteq \mathcal{F}$. Pick $F \in [B]^{2\ell}$. Then $F = F_1 \cup F_2$, where
 $F_1 \cap F_2 = \emptyset$, $|F_1| = |F_2| = \ell$ in $\binom{2\ell}{\ell} \ge \ell$ ways and $F_1, F_2 \in [B]^\ell \subseteq \mathcal{F}$.

Case 2. $F \in [B]^{\ell} - \mathcal{F}$. By hypothesis, $F = F_1 \cup F_2$, where $F_1 \cap F_2 = \emptyset$ and $F_1, F_2 \in \mathcal{F}$. In particular, $F_1, F_2 \neq \emptyset$. Let $j = |F_1|$; then $|F_2| = \ell - j$. Since $|F_1| = j$, $F_1 \in [B]^j \cap \mathcal{F}$ and (*) implies that $[B]^j \subseteq \mathcal{F}$. Similarly, $[B]^{\ell-j} \subseteq \mathcal{F}$. Thus for every partition $F = F_1 \cup F_2$, $F_1 \cap F_2 = \emptyset$, $|F_1| = j$, $|F_2| = \ell - j$ we have $F_1, F_2 \in \mathcal{F}$. So there are $\binom{\ell}{j} \ge \ell$ ways to express F in the desired way. \Box **Proof of theorem, assuming lemma:** Let *A* be the set of all primes and let *X* be a multiplicative base. Define

$$\mathcal{F} \coloneqq \{\{p_1, p_2, \dots, p_k\}: p_1, p_2, \dots, p_k \text{ are distinct primes}, p_1 p_2 \cdots p_k \in X\}$$

To apply the lemma we need to show: \forall finite set *F* of primes

 $\exists F_1, F_2 \in \mathcal{F}$ such that $F_1 \cup F_2 = F$ and $F_1 \cap F_2 = \emptyset$.

Let $n = \prod_{p \in F} p$. Then $\exists x, y \in X$ such that n = xy.

Let F_1 be the prime divisors of x.

Let F_2 be the prime divisors of y.

Then F_1 , F_2 are as desired. Thus the hypothesis of the lemma is satisfied .

Let *F* be as in Lemma and let $n \coloneqq \prod_{p \in F} p$. Then *n* is as desired.