Ramsey theory

Observation. Out of 6 people at a party, either some 3 know each
other, or some 3 don’t know each other.

In other words, if |V (G)| = 6, then either w(G) = 3 or a(G) = 3.

Here 6 1s best possible:

In general, is it true that for every value of “3” there is a value of
“6” such that the above holds?



Definition. Given integers k, £ let r(k, ) denote the smallest

integer N such that every graph G on N vertices has either
w(G)=kora(G) = 4.

Theorem (Special case of Ramsey’s theorem). For all integers
k,€ = 2 the number r(k, £) is well-defined and

rk,) <rlk,{—1)+rk—1,¢)
Examples. r(k,?) = r (¢, k)
r(k,1) =1
r(k,2) =kifk =2

Proof. By induction on k + £. Need to show that every G on
N :=r(k,£—1)+r(k—1,7) vertices satisfies w(G) = k or
a(G) = 7.

Pick v € V(G). Either v has = r(k, £ — 1) non-neighbors, or it
has = r(k — 1, £) neighbors.

Case 1. v has = r(k, € — 1) non-neighbors. Let H be the subgraph
of G induced by the non-neighbors of v.

| By induction H has a clique of size k
- — ‘ or an independent set of size £ — 1.
~ ] In the latter case add v.

Case 2 is analogous



Notation: [X]* := all 2-element subsets of X.

Restatement: For all k, £ > 2 there exists an integer N such that
for every “coloring” c: [{1,2, ..., N}]* = {0,1} there exists either

e aset A € {1,2,...,N} of size k such that c(X) = 0V X € [4]?,
or
e aset B € {1,2,..., N} of size £ such that c(X) = 1V X € [B]*.

Definition. For n > 2 let r;, (k, £) be the least integer N such that
for every c: [{1,2, ..., N}]" = {0,1} there exists either

e aset A € {1,2,..., N} of size k such that c(X) = 0V X € [A]"
or
e aset B € {1,2,...,N} of size £ such that c(X) =1V X € [B]"

We will say that 4 is 0-monochromatic and that
B is 1-monochromatic.

Illustration. n = 3

= @

N-1 N

Remark.r, (k,?) =k+¢—1



Theorem (Ramsey 1930) Let k, £, n be integers with 1 <n <
min{k, £}. Then 1;,(k,¥) is well-defined and

(e, €) <1 (k= 1,8),1,(k, £ — 1)) + 1

Proof. By induction n, and, subject to that, on k + €. Let

N =1, ;(rnk—-1,7%),r,(k,£—1)). Must show for every
coloring c: [{1,2, ..., N, N + 1}]™ — {0,1} there exists either a O-
monochromatic set of size k, or a 1-monochromatic set of size €.

Define d: [{1,2, ..., N}]*"1 - {0,1} by
d(X) =c(XU{N +1})

By induction on n applied to {1, ..., N} and the coloring d there is
either

e asetAC {1,..,N}of size r;;(k —1,¢) such that d(X) = 0
for every X € [A]" ! or

e aset BC {1,..,N}ofsizer;,(k,£ — 1) such thatd(X) = 1
for every X € [B]" 1.



Case 1. Suppose A exists. Apply induction on k + € to the
coloring ¢ and set A. We get either:

- C € A of size k — 1 such that c(X) = 0 for every X € [C]™, or
- D € A of size £ such that c(X) = 1 for every X € [D]".
If D exists, then it 1s as desired.

So WMA C exists. Let E == C U {N + 1}. We claim that E is as
desired. To see that we need to show that

c(Y)=0VY €[E]"
Thatistrueif Y € C. f N+ 1 €Y, then
cY)=dY—-{N+1}) =0
and by the definition of d and the choice of A, as desired.

Case 2. The case when B exists is analogous. O



[A]" := all n-element subsets of A
[A]=% := all finite subsets of A

Ramsey’s theorem (restated) VnV kI NV F € [{1,...,N}]"
JA c {1,2,..., N} of size k such that either
[A]" € For [A]"NF = Q.

Infinite Ramsey’s theorem V nV F € [{1,2,... }]"
3 an infinite set A € {1,2, ... } such that either
[A]" S For[A]"NF = Q.

For n = 2 this says: Every infinite graph has either an infinite
clique or an infinite independent set.

The proof we did can be adapted to prove the infinite version.



Application to number theory

Let f(S,n) denote the number of ways n can be written as
n=a+b,wherea,b €8S.

Open problem. Let f(A,n) = 1 for all n. Does that imply
limsup, .. f(4,n) = +00?

Multiplicative analogue:

Definition. X € N is a multiplicative base if for every n € N there
exist x,y € X such thatn = xy.

Theorem (Erdos) If X is a multiplicative base, then for every ¢
there exists an integer n € N that can be expressed as a product of
two elements of X in at least € ways.

Lemma. Let A be an infinite set, and let F € [A]<® be such that
for every F € [A]<? there exist F;,F, € F suchthat F; UF, = F
and F; N F, = @. Then for every £ there exists F € [A]~% that can
be expressed as above in at least £ ways.

Proof of Lemma. Let A and € be given. By Ramsey there exists
an infinite set A; € A such that

[Al]l C For [Al]l NF = @

By another application of Ramsey’s theorem there exists an
infinite set A, € A4 such that

[A;]° S For[4,]°NF =0



By repeating this argument for i = 3,4, ...£ — 1 we finally arrive at
an infinite set A,_;such that

[Ap—1]7 S For[Ap ] P nF =0
Let B :=A,_;. Thus we have fori =1,2,...,f —1

(*) either [B]* € F or [B]' N F = 0.

Case 1. [B]* € F. Pick F € [B]?*. Then F = F; UF,, where
FiNnE,=0@,|F]|=|F,=*%in (2{){)) > ¢ ways and F;, F, €

[B]® c F.

Case 2. F € [B]Y — F. By hypothesis, F = F; U F,, where
FiNF,=0QandF;,F, € F. In particular, F;,F, # @. Let

j = |F.|; then |F,| = € —j. Since |F;| = j, F; € [B)Y N F and (*)

implies that [B]) € F. Similarly, [B]*~/ < F. Thus for every
partition F = F; UF,, F;NF, =0, |F,| =j, |F,| = — j we have

F;,F, € F. So there are (f) > £ ways to express F in the desired

way. 0
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Proof of theorem, assuming lemma: Let A be the set of all
primes and let X be a multiplicative base. Define

F = {p1, 02, -, Pr}: P1, D2, -, Dy are distinct primes,

p1P2 - Px € X}

To apply the lemma we need to show: V finite set F of primes
dF,,F, € Fsuchthat F; UF, =Fand F; N F, = Q.

Letn = [[,epp. Then3 x,y € X such thatn = xy.

Let F; be the prime divisors of x.

Let F, be the prime divisors of y.

Then Fy, F, are as desired. Thus the hypothesis of the lemma is
satisfied .

Let F be as in Lemma and let n := [[,cg p. Then n is as desired.

O
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