Theorem (Erdös & Szekerés) For every integer n there exists an integer N such that among any N points in the plane in general position (no 3 on a line) there exist n points that form a convex n-gon.

Lemma. Out of 5 points in the plane in general position some four of them form a convex 4-gon.

Proof. Take the convex hull of the 5 points. WMA it is a triangle.

Proof of theorem. Let $N \coloneqq r_4(n, 5)$. That is, if we color 4-tuples on $\{1, ..., N\}$ red and blue, then either there is a set $A \subseteq \{1, ..., N\}$ of size *n* such that every 4-tuple in *A* is red, or there is a set $B \subseteq \{1, ..., N\}$ of size 5 such that every 4-tuple in *B* is blue. This *N* exists by Ramsey's theorem. Let $X \subseteq \mathbb{R}^2$ be a set of *N* points in general position. Color 4-tuples of *X*

∫ red	if they form a convex 4-gon
lblue	otherwise

By the lemma we must get a set *A* as above.

By Caratheodory's theorem, if some member of *A* is in the convex hull of the others, then it is in the convex hull of 3 other points \Rightarrow it and the 3 other points do not form a convex 4-gon, contrary to the 4-tuple being red.

 $\Rightarrow \text{ The set } A \text{ forms a convex } n\text{-gon.} \qquad \Box$

How big is $r_2(k, \ell)$? We have shown

$$r_2(k, \ell) \le r_2(k-1, \ell) + r_2(k, \ell-1)$$

Corollary:

$$r_2(k,\ell) \le \binom{k+\ell-2}{k-1}$$

Proof. Immediate by induction.

Corollary: $r_2(k,k) \le 4^k$

Theorem (Erdös) $r_2(k, k) \ge 2^{k/2}$ for all $k \ge 2$.

Proof. $r_2(2,2) = 2 \ge 2^{2/2}$. So WMA $k \ge 3$. Let \mathcal{G}_n be the set of all graphs with vertex-set $\{1, 2, ..., n\}$. Then

$$|\mathcal{G}_n| = 2^{\binom{n}{2}}$$

Let $X \subseteq \{1, 2, ..., n\}$ have size k. How many graphs in \mathcal{G}_n have X as a clique: $2^{\binom{n}{2} - \binom{k}{2}}$

How many graphs in G_n have a clique of size k:

$$\leq \binom{n}{k} 2^{\binom{n}{2} - \binom{k}{2}}$$

We need to show that for every $n < 2^{k/2}$ there exists a graph on n vertices with no clique or independent set of size k. The proportion of graphs in \mathcal{G}_n that have a clique of size k is

$$\leq \frac{\binom{n}{k}2^{\binom{n}{2}-\binom{k}{2}}}{2^{\binom{n}{2}}} \leq \frac{n^{k}}{k!}2^{-\binom{k}{2}} < \frac{\binom{2^{\frac{k}{2}}}{k!}^{k}2^{-\binom{k}{2}}}{k!} = \frac{2^{\frac{k^{2}}{2}-\frac{k^{2}}{2}+\frac{k}{2}}}{k!} =$$

$$=\frac{2^{k/2}}{k!}=\frac{\left(\sqrt{2}\right)^{3}}{2\cdot 3}\cdot\frac{\sqrt{2}}{4}\cdot\frac{\sqrt{2}}{5}\cdot\dots\cdot\frac{\sqrt{2}}{k}<\frac{1}{2}$$

Thus $< \frac{1}{2}$ graphs in \mathcal{G}_n have a clique of size k. Similarly $< \frac{1}{2}$ graphs in \mathcal{G}_n have an independent set of size k. Therefore there exists a graph that has neither.

So
$$2^{k/2} \le r_2(k,k) \le 4^k$$

Does $\lim_{k\to\infty} (r_2(k,k))^{1/k}$ exist, and if so, what is it? If it exists, it is between $\sqrt{2}$ and 4.

For $r_n(k, k)$ the bounds are

$$2^{2^{\cdot 2^{c_1k}}} \left\{ n-2 \le r_n(k,k) \le 2^{2^{\cdot 2^{c_2k}}} \right\} \quad n-1$$