## Random graphs

Let 0 , it may depend on <math>n. Let  $\mathcal{G}(n, p)$  be the probability space of all graphs G with  $V(G) = \{1, 2, ..., n\}$ , where G has probability

$$p^{|E(G)|}(1-p)^{\binom{n}{2}-|E(G)|}$$

Edges exist with probability p, independently of each other.

**Definition.** We say that a.e. graph in  $\mathcal{G}(n, p)$  has property  $\Pi$  if

$$\lim_{n\to\infty} P[G \text{ has } \Pi] = 1$$

**Theorem.** Let  $0 be fixed. Let <math>k, \ell$  be fixed. Then a.e. graph G in G(n, p) has the property that for all distinct vertices  $x_1, x_2, ..., x_k, y_1, y_2, ..., y_\ell$  there exists a vertex  $v \in V(G) \{x_1, x_2, ..., x_k, y_1, y_2, ..., y_\ell\}$  such that v is adjacent to  $x_1, x_2, ..., x_k$  and not adjacent to  $y_1, y_2, ..., y_\ell$ .

**Proof.** For fixed  $x_1, ..., x_k, y_1, ..., y_\ell$  let us say that v works if  $v \in V(G) - \{x_1, ..., x_k, y_1, ..., y_\ell\}$ , and v is adjacent to  $x_1, ..., x_k$  and not adjacent to  $y_1, ..., y_\ell$ .

The probability that a given v works is  $p^k(1-p)^\ell$ .

The probability it does not work is  $1 - p^k (1 - p)^{\ell}$ .

The probability that no v works is  $(1 - p^k (1 - p)^\ell)^{n-k-\ell}$ .

The probability that  $\exists x_1, ..., x_k, y_1, ..., y_\ell$  such that no v works is

$$\leq n^{k+\ell} (1-p^k (1-p)^\ell)^{n-k-\ell} \to 0$$

as  $n \to \infty$ .

**Consequences.** When *p* is fixed:

- (1) a.e. graph in  $\mathcal{G}(n, p)$  has diameter  $\leq 2$
- (2) for fixed k a.e. graph in G(n, p) is k-connected.

**Proof.** If *G* is not *k*-connected, then  $\exists a, b, y_1, ..., y_\ell$  where  $\ell < k$ , such that  $\nexists a - b$  path in  $G \setminus \{y_1, y_2, ..., y_\ell\}$ . Apply theorem to  $a, b, y_1, y_2, ..., y_\ell$ .  $\exists v$  adjacent to a, b, not equal to  $a, b, y_1, ..., y_\ell$ , a contradiction.

(3) For every fixed graph *H*, a.e. graph in  $\mathcal{G}(n, p)$  has an induced subgraph isomorphic to *H*.

**Proof.** Pick  $v \in V(H)$ . By induction a.e. graph in  $\mathcal{G}(n, p)$  has an induced subgraph isomorphic to  $H \setminus v$ . Let  $x_1, \ldots, x_k$  be the vertices of  $H \setminus v$  adjacent to v and let  $y_1, \ldots, y_\ell$  be the vertices of  $H \setminus v$  not adjacent to v. Apply the theorem.

**Markov's inequality.** Let *X* be a non-negative random variable on a probability space with  $0 < EX < \infty$ . Then for all t > 0

$$P[X \ge tEX] \le \frac{1}{t}$$

Proof.

$$EX = \int X \, dP \ge \int_{[X \ge tEX]} X \, dP \ge tEX \int_{[X \ge tEX]} 1 \, dP =$$

$$= tEX \cdot P[X \ge tEX]$$

and so  $P[X \ge tEX] \le \frac{1}{t}$ .

**Corollary.**  $P[X \ge z] \le \frac{EX}{z}$  for every z > 0.

**Proof.** Let z = tEX.

**Theorem** (Erdös 1959) For every two integers k, l there exists a graph G with  $\chi(G) \ge k$  and no cycles of length at most l.

**Proof.** We will consider  $\mathcal{G}(n, p)$ , where p = p(n) will be determined later. We first prove that for a suitable choice of p a.e. graph in  $\mathcal{G}(n, p)$  has few short cycles. Let  $X_i(G)$  be the number of cycles in G of length exactly i. Then

$$X(G) \coloneqq \sum_{i=3}^{l} X_i(G)$$

is the number of cycles in G of length at most l. Now

$$EX = \sum_{i=3}^{l} EX_i = \sum_{i=3}^{l} \sum_{|A|=i} \sum_{\sigma} P[\sigma \text{ determines a cycle}] =$$

$$= \sum_{i=3}^{l} \binom{n}{i} \frac{1}{2} (i-1)! \, p^{i} \le \frac{1}{2} \sum_{i=3}^{l} \frac{n^{i}}{i!} (i-1)! \, p^{i} \le \sum_{i=3}^{l} (np)^{i}$$

Now it seems sensible to choose p = p(n) so that  $np = n^{\theta}$  for some  $\theta > 0$ . Thus the above is equal to

$$\sum_{i=3}^{l} n^{\theta i} \le l n^{\theta l}$$

for *n* sufficiently large. If we choose  $\theta < 1/l$ , then EX = o(n). By Markov's inequality

$$P[X \ge n/2] \le \frac{2EX}{n} = o(1)$$

and so for all sufficiently large n we have  $P[X \ge n/2] < 1/2$ . That is,

(1) the probability that  $G \in \mathcal{G}(n, p)$  has  $\geq n/2$  cycles of length  $\leq l$  is strictly less than  $\frac{1}{2}$ 

Next we give a lower bound on  $\chi(G)$ . For that we will use the inequality  $\chi(G)\alpha(G) \ge n$ . So we need an upper bound on  $\alpha(G)$  and so we need an upper bound on  $P[\alpha(G) \ge t]$ .

 $P[\alpha(G) \ge t] = P[G \text{ has an independent set of size } t] \le t$ 

$$\sum_{A} P[A \text{ is an independent set in } G] = \binom{n}{t} (1-p)^{\binom{t}{2}} < n^{t} (1-p)^{\binom{t}{2}} \le n^{t} e^{-p\binom{t}{2}} = \left[ne^{-p(t-1)/2}\right]^{t}$$

where the second inequality uses  $1 + x \le e^x$ .

If 
$$t - 1 = \frac{3}{p} \log n$$
, then  
 $\left[ ne^{-p(t-1)/2} \right]^t = \left[ n \cdot n^{-3/2} \right]^t = o(1)$ 

Thus for  $t = \frac{3}{p} \log n$  and sufficiently large n

(2)  $P[\alpha(G) \ge t] < 1/2$ 

By (1) and (2) there exists a graph on *n* vertices with  $\leq n/2$  cycles of length  $\leq l$  and  $\alpha(G) \leq t$ . By deleting one vertex from each cycle of length  $\leq l$  we arrive at an induced subgraph *G*' on at least n/2 vertices with no cycle of length  $\leq l$  and  $\alpha(G') \leq t$ . Now

$$\chi(G') \ge \frac{|V(G')|}{\alpha(G')} \ge \frac{n/2}{t} \ge \frac{n/2}{\frac{3}{p}\log n} = \frac{n}{6n^{1-\theta}\log n} = \frac{n^{\theta}}{6\log n} \to \infty$$

and so for *n* sufficiently large we have  $\chi(G') \ge k$ , as desired.

## The emergence of $K_4$ subgraphs

It is reasonable to expect that for small p a.e. graph in  $\mathcal{G}(n, p)$  has no  $K_4$  subgraph, while for p close to 1 a.e. graph in  $\mathcal{G}(n, p)$  has a  $K_4$  subgraph. It is of interest to see when the change occurs. We will see that there is a sharp the threshold (a "phase transition").

For 
$$A \subseteq \{1, 2, ..., n\}$$
 with  $|A| = 4$  let  

$$X_A(G) = \begin{cases} 1 & \text{if } A \text{ is a clique in } G \\ 0 & \text{otherwise} \end{cases}$$

Then the number of  $K_4$  subgraphs in G is

$$X(G) \coloneqq \sum_{|A|=4} X_A(G)$$

We have

$$EX = \sum_{|A|=4} EX_A = \sum_{|A|=4} P[A \text{ is a clique}] = \binom{n}{4} p^6$$

and so by Markov's inequality

 $P[G \text{ has a } K_4 \text{ subgraph}] = P[X \ge 1] \le EX \le n^4 p^6$ So if  $n^4 p^6 \to 0$ , then a.e. graph in  $\mathcal{G}(n, p)$  has no  $K_4$  subgraph.

## The emergence of $K_4$ subgraphs

It is reasonable to expect that for small p a.e. graph in G(n, p) has no  $K_4$  subgraph, while for p close to 1 a.e. graph in G(n, p) has a  $K_4$  subgraph. It is of interest to see when the change occurs. We will see that there is a sharp the threshold (a "phase transition").

For  $A \subseteq \{1, 2, \dots, n\}$  with |A| = 4 let

$$X_A(G) = \begin{cases} 1 & \text{if } A \text{ is a clique in } G \\ 0 & \text{otherwise} \end{cases}$$

Then the number of  $K_4$  subgraphs in G is

$$X(G) \coloneqq \sum_{|A|=4} X_A(G)$$

We have

$$EX = \sum_{|A|=4} EX_A = \sum_{|A|=4} P[A \text{ is a clique}] = \binom{n}{4} p^6$$

and so by Markov's inequality

 $P[G \text{ has a } K_4 \text{ subgraph}] = P[X \ge 1] \le EX \le n^4 p^6$ So if  $n^4 p^6 \to 0$ , then a.e. graph in G(n, p) has no  $K_4$  subgraph. We will show if  $n^4 p^6 \to \infty$ , then a.e. graph in g(n, p) has a  $K_4$ subgraph. It does not follow from  $EX \to \infty$ !! **Definition.** Let  $f, g: \mathbb{N} \to \mathbb{R}$ . We define  $f \ll g$  to mean that  $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$ .

Thus if  $p \ll \frac{1}{n^{2/3}}$ , then a.e. graph in  $\mathcal{G}(n, p)$  has no  $K_4$  subgraph and we want to show that if  $p \gg \frac{1}{n^{2/3}}$ , then a.e. graph in  $\mathcal{G}(n, p)$  has a  $K_4$  subgraph.

**Lemma** (Chebyshev's inequality) If *X* is a random variable on a probability space, then for all  $\epsilon > 0$ .

$$P[|X - EX| \ge \epsilon] \le \frac{\operatorname{var}(X)}{\epsilon^2}$$

## **Definition.**

$$var(X) \coloneqq E |X - EX|^{2} = E[X^{2} - 2XEX + E^{2}X] =$$
$$= EX^{2} - 2EX \cdot EX + E^{2}X = EX^{2} - E^{2}X.$$

**Proof.** Apply Markov to  $Y \coloneqq |X - EX|^2$ .

**THM.** (a) If  $p \ll \frac{1}{n^{2/3}}$ , then a.e.  $G \in \mathcal{G}(n, p)$  has no  $K_4$  subgraph. (b) If  $\frac{1}{n^{2/3}} \ll p$ , then a.e.  $G \in \mathcal{G}(n, p)$  has a  $K_4$  subgraph.

**Proof.** (a) done

(b) Assume 
$$\frac{1}{n^{2/3}} \ll p$$
. Recall  $EX = \binom{n}{4}p^6 \le \frac{1}{24}n^4p^6$ . Need to show  $P[X = 0] \to 0$  as  $n \to \infty$ 

$$P[X = 0] \le P[|X - EX| \ge EX] \le \frac{\operatorname{var}(X)}{E^2 X} = \frac{EX^2 - E^2 X}{E^2 X}$$

where the second inequality uses Chebyshev's inequality.

$$EX^{2} = E\left(\sum_{|A|=4} X_{A}\right)^{2} = E\left[\sum_{|A|=4} X_{A} + \sum_{\substack{(A,B)\\A\neq B}} X_{A}X_{B}\right] =$$
$$= EX + \sum_{\substack{(A,B)\\A\neq B}} E(X_{A}X_{B}) =$$
$$= EX + \sum_{A\cap B=\emptyset} E(X_{A}X_{B}) + \sum_{|A\cap B|=1} E(X_{A}X_{B}) + \sum_{|A\cap B|=2} E(X_{A}X$$

$$+\sum_{|A\cap B|=3} E(X_A X_B)$$
$$\sum_{A\cap B=\emptyset} E(X_A X_B) = \sum_{A\cap B=\emptyset} p^{12} = \binom{n}{4} \binom{n-4}{4} p^{12} \le E^2 X$$
$$\sum_{|A\cap B|=1} E(X_A X_B) = \sum_{|A\cap B|=1} p^{12} = \binom{n}{4} \cdot 4 \cdot \binom{n-4}{3} p^{12} = o(E^2 X)$$
$$\sum_{|A\cap B|=2} E(X_A X_B) = \sum_{|A\cap B|=2} p^{11} = \binom{n}{4} \binom{4}{2} \binom{n-4}{2} p^{11} = o(E^2 X)$$

$$\sum_{|A \cap B|=3} E(X_A X_B) = \sum_{|A \cap B|=3} p^9 = \binom{n}{4} \binom{4}{3} \binom{n-4}{1} p^9 = o(E^2 X)$$

$$P[X = 0] \le \frac{EX^2 - E^2X}{E^2X} \le \frac{EX + o(E^2X)}{E^2X} = o(1)$$

as desired.

What if we replace  $K_4$  by  $K_t$ ? Let

$$\rho(K_t) = \frac{|E(K_t)|}{|V(K_t)|} = \frac{\binom{t}{2}}{t}$$

Then the threshold will be  $\frac{1}{n^{1/\rho(K_t)}}$ .

What if we replace  $K_t$  by a graph H?

**Example**.  $K_4$  has threshold  $\frac{1}{n^{2/3}}$ .



has  $\rho = 1 + \varepsilon$ . Does that mean the threshold is  $\frac{1}{n^{1/(1+\varepsilon)}}$ ? No!

Note that 
$$\frac{1}{n^{2/3}} \gg \frac{1}{n^{1/(1+\varepsilon)}}$$

**Theorem** (Erdős-Rényi 1960) Let *H* be a fixed graph and let  $\alpha$  be the maximum edge-density among all induced subgraphs of *H*. Then  $p = \frac{1}{n^{1/\alpha}}$  is a threshold for the event that  $G \in \mathcal{G}(n, p)$  contains a subgraph isomorphic to *H*.