Random graphs

Let 0 < p < 1, it may depend on n. Let G(n,p) be the
probability space of all graphs G with V(G) = {1,2, ...,n},
where G has probability

Edges exist with probability p, independently of each other.

Definition. We say that a.e. graph in G(n, p) has property II if
lim P[G has II] =1

n—>00

Theorem. Let 0 < p < 1 be fixed. Let k, £ be fixed. Then a.e.
graph G in G(n, p) has the property that for all distinct vertices
X1, X2, o) Xpy V1, Va2, -+, Yp there exists a vertex v € V(G) —

{x1, X2, e, Xk, V1, Y2, -, Y} such that v is adjacent to

X1, Xy, ..., X and not adjacent to y4, y,, ..., Y.

Proof. For fixed x4, ..., X%, y1, ..., Vp let us say that v worksif
v €eV(G) — {xq, ..., Xk, V1, -, Y¢}, and v is adjacent to xq, ..., X,
and not adjacent to yy, ..., yy.

The probability that a given v works is p*(1 — p)?.
The probability it does not work is 1 — p*(1 — p)®.
The probability that no v works is (1 — p*(1 — p)?)*~*~*,
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The probability that 3 x4, ..., x¢, ¥4, ..., Yp such that no v works
1S

< nk+€(1 _ pk(l _ p)f)n—k—f -0
asn — oo, O
Consequences. When p is fixed:

(1) a.e. graphin G(n,p) has diameter < 2
(2) for fixed k a.e. graph in G(n, p) is k-connected.

Proof. If G is not k-connected, then 3 a, b, y;, ..., Yy, where £ <
k, such that A a — b path in G\{y4, y,, ..., Ys}. Apply theorem to
a,b,y{,¥,,..,Ye. A vadjacentto a, b, notequal to a, b, y4, ..., ¥y,
a contradiction.

(3) For every fixed graph H, a.e. graph in G(n, p) has an
induced subgraph isomorphic to H.

Proof. Pick v € V(H). By induction a.e. graph in G(n, p) has an
induced subgraph isomorphic to H\v. Let x4, ..., x; be the
vertices of H\v adjacent to v and let y4, ..., y, be the vertices of
H\v not adjacent to v. Apply the theorem.
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Markov’s inequality. Let X be a non-negative random variable
on a probability space with 0 < EX < oo, Then forallt > 0

P[x > tEX] <1/,

Proof.

EijXdPZ J X dP = tEX f 1dP =

[X=tEX] [X=tEX]

= tEX - P[X > tEX]

and so P[X = tEX]| < 1/t'

Corollary. P[X = z] < EX/ 7 forevery z > 0.

Proof. Letz = tEX.
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Theorem (Erdos 1959) For every two integers k, [ there exists a
graph G with y(G) = k and no cycles of length at most .

Proof. We will consider G(n,p), where p = p(n) will be
determined later. We first prove that for a suitable choice of p
a.e. graph in G(n, p) has few short cycles. Let X;(G) be the
number of cycles in G of length exactly i. Then

l
X(@) = ) X(6)
=3

is the number of cycles in G of length at most [. Now

EX = z EX; = 7 7 7 P[o determines a cycle| =

i=3 |A|=i o

= (7)5 G- D’ _22—0—1)' l<Z(np)‘

=3

Now it seems sensible to choose p = p(n) so that np = n? for
some 6 > 0. Thus the above is equal to

n@i < lngl

-

1=3
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for n sufficiently large. If we choose 8 < 1/, then EX = o(n).
By Markov’s inequality

2EX
PIX =2n/2] < T = 0(1)
and so for all sufficiently large n we have P[X > n/2] < 1/2.

That is,

(1) the probability that ¢ € G(n,p) has = n/2 cycles of
length < [ is strictly less than 7

Next we give a lower bound on y(G). For that we will use the
inequality y(G)a(G) = n. So we need an upper bound on a(G)
and so we need an upper bound on P[a(G) = t].

Pla(G) = t] = P[G has an independent set of size t] <
n t
z P[A is an independent setin G| = (t) (1- p)(z) <
A
<nf(1 - p)& < nte Pk = [ne-r-/]"
where the second inequality uses 1 + x < e”.

Ift—1= %logn, then

[ne_p(t_l)/z]t = ['n . n—S/Z]t = 0(1)

Thus for t = %logn and sufficiently large n
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(2) Pla(G) =t] < 1/2

By (1) and (2) there exists a graph on n vertices with < n/2
cycles of length < [ and a(G) < t. By deleting one vertex from
each cycle of length < [ we arrive at an induced subgraph G’ on
at least n/2 vertices with no cycle of length < [ and a(G') < t.
Now

' 2 2 4
N~ IV (G")] >n/ n/ n n

> > "> = = - o
a(G") t 6nl=flogn 6logn

§lon
D g

and so for n sufficiently large we have y(G') = k, as desired.
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The emergence of K4 subgraphs

It is reasonable to expect that for small p a.e. graph in G(n, p)
has no K, subgraph, while for p close to 1 a.e. graph in G(n, p)
has a K, subgraph. It is of interest to see when the change
occurs. We will see that there is a sharp the threshold (a “phase
transition”).

For A € {1,2,...,n} with [A| = 4 let

1 if Aisacliquein G
X,(G) =
a(6) {0 otherwise

Then the number of K, subgraphs in G is

X(G) = z X4(G)
|A|=4

We have

. = n
EX = Z EX, = Z P[A s a clique] = (4)}96
AT=4 |AT=4

and so by Markov’s inequality
P[G has a K, subgraph] = P[X > 1] < EX < n*p®

So if n*p® — 0, then a.e. graph in G(n, p) has no K, subgraph.
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The emergence of K4 subgraphs

[t is reasonable to expect that for small p a.e. graph in G(n, p) has
no K, subgraph, while for p close to 1 a.e. graph in G(n, p) has a
K, subgraph. It is of interest to see when the change occurs. We
will see that there is a sharp the threshold (a “phase transition”).

For A € {1,2,...,n} with |[A| = 4 let

1 if Aisacliquein G
X,(G) =
a(6) {0 otherwise

Then the number of K, subgraphs in G is

X(@) = ) Xa(6)
|AT=4

We have

. [ n
EX = Z EX, = Z P[A s a clique] = (4)}96
|A|=4 |A|=4

and so by Markov’s inequality
P[G has a K, subgraph] = P[X > 1] < EX < n*p°®
Soif n*p® - 0, then a.e. graph in G(n, p) has no K, subgraph.

We will show if n*p® — oo, then a.e. graph in g(n, p) has a K,
subgraph. It does not follow from EX — oo!!



Definition. Let f,g: N - R. We define f < g to mean that

Thus if p < ——, then a.e. graph in G(n, p) has no K, subgraph and

2/3’
we want to show that if p > ——, then a.e. graph in G(n, p) has a K,

2/3’

subgraph.

Lemma (Chebyshev’s inequality) If X is a random variable on a
probability space, then for all € > 0.

var(X)

PIIX—EX| 2 €] < —

Definition.
var(X) := E|X — EX|? = E[X? — 2XEX + E*X] =
= EX* —2EX-EX + E*X = EX* — E*X.
Proof. Apply Markov to Y := |X — EX|?.

THM. (a) Ifp <
(b) If ——

then a.e. G € G(n,p) has no K, subgraph.

2/3’

/3 < p, then a.e. G € G(n,p) has a K, subgraph.

n2

Proof. (a) done

(b) Assume & p. Recall EX = (}})p® < p®. Need to show

2/3

P[X=O]—>0asn—>oo



var(X) EX*—E°X
E2X  E2X

where the second inequality uses Chebyshev’s inequality.

P[X = 0] < P[|X — EX| = EX] <

2
EX2=E<ZXA> =E ZXA-l_zXAXB —
|A|=4 |A|=4 (A,B)
- A+B

— EX + Z E(X,Xp) =

(A4,B)
A#B
ANB=0 |ANB|=1 |ANB|=2
+ ) E(XaXp)
|ANB|=3
_ 12 _ (M (71—4) 12 2
> Exx =y p2=()(", ") <
ANB=0 ANB=0
n n—4
_ 12 _ A 12 _ 2
> B = Y p=(0) 4 (") = 00

|AnNB[=1 |ANB|=1

)
S so= 3 = ()5 e =oteto

|ANB|=2 |ANB|=2



S so= 3 p=())0T Y=o

|ANB|=3 |ANB|=3

EX? — E’X _EX +0(E*X)

X =0l —F7— = — 5z o(1)
as desired.
What if we replace K, by K;? Let
t
ok = EEDL_ )
CUVEDl
: 1
Then the threshold will be TP ED"
What if we replace K; by a graph H?
Example. K, has threshold #
: 1
has p = 1 + €. Does that mean the threshold is m? No!



1
nl/(1+e)

Note that ! >

n2/3

Theorem (Erdds-Rényi 1960) Let H be a fixed graph and let a be
the maximum edge-density among all induced subgraphs of H.

Then p = is a threshold for the event that G € G(n, p) contains

nl/«

a subgraph isomorphic to H.



