Definition. A tree is a connected graph with no cycles.

Examples.
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Theorem. Let T be a tree. Then

(i) every two vertices of T are connected by exactly
one path

(ii) if |V(T)| = 2, then T has at least two vertices of
degree one

(i) [ECT)| = |V(T)| -1

(iv) the deletion of any edge results in exactly two
components

(V) if G is the multigraph obtained from T by adding a
new edge, then G has exactly one cycle.

Proof. (i) Letu,v € V(T). There is at least one u-v path
because T connected. Suppose P;, P, are two distinct u-v
pathsin T.Then3Je € E(P,) — E(P;). The edge e is
contained in a subpath Q of P, that has both ends in

V' (P;) and is otherwise disjoint from P;. Let R be the
subpath of P; that joins the ends of Q. Then Q U R is a
cycle, a contradiction.




(ii) Take a longest path P in T, and let u, v be its ends.
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Then u, v do not have a neighbor outside of P by
maximality and each has at most one neighbor in P,
because T has no cycles. So u, v are two vertices of
degree one ...

...unlessu = v.

Since |V(T)| = 2 and T is connected, P has at least two
vertices, and hence u # v.

(iii) By induction on |V (T)]|

(iv), (v) exercise.



Definition. A spanning tree of a graph G is a tree T such
that T is a subgraph of G and V(T) =V (G).

Note. G has a spanning tree if and only if it is connected.

Note. Knowledge of a minimum weight spanning tree
algorithm is assumed.

Let 7(G) denote the number of spanning trees of G.

G /e is the multigraph obtained by contracting e; that is,
deleting e and identifying its ends. May produce loops or
parallel edges:
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Proposition. Let G be a multigraph, and let e be an edge
that is not a loop. Then

7(G) = 1(G\e) + 1(G/e)
Proof. (G \e) = # spanning trees of G that do not use e
T(G /e) = # spanning trees of G that use e.O0

Note. This gives exponential algorithm (not a good
method). We will see a better way.



Definition. Let G be a multigraph with V'(G) = {1,2, ..., n}
and let A = (a;5); =, be an n X n matrix defined by

a;; = # edges with ends i, j
Then A is called the adjacency matrix of G.

The Laplacian matrix of a graph is defined by L = (fl-j)

Zaik ifi =]
¢

ij =) k=i
—a;; otherwise

where

Note that rows and columns sum to 0, and hence
det L = 0.

Theorem (Kirchhoff’s Matrix Tree Theorem). Let G be a
multigraph, let L be its Laplacian matrix, let k €
{1,2,...,n}, and let L(k) denote the matrix obtained
from L by deleting the k" row and k" column. Then

7(6) = det L(k).

Notice that det L(k) = 0 if G is disconnected.



Example.

7(G) = 8 (4 spanning trees containing e, 4 not containing
e).

3 -1 -1 -1
-1 3 -1 -1

L={_1 21 2 o
1 -1 0 2

3 -1 -1
LUJ::<—1 2 0
10 2

detL(1)=3X2%x2—2—-2=8



What is det(M + E,,,)? WMA v = 1.

n
det(M + E;;) = Z sgn (o) H(M + E11)ia(i) =
=1

o

n
— sgn (6) (M, + 1) HMia(i) +
=2

o:0(1)=1
n
+ 2 sgn(a)ﬂMio—(i)=
o:0(1)#1 i=1

n n
= z sgn (0) 1_[ Mig @iy + z sgn(o) 1_[ Mioy =
i=1 =1 (=2

o o:0(i)

= det(M) + det M(1)



Kirchhoff’s Matrix Tree Theorem. Let G be a multigraph, let L be
its Laplacian matrix, let k € {1,2, ...,n}, and let L(k) denote the

matrix obtained from L by deleting the k" row and kt"* column.
Then t(G) = det L(k).

Proof. If G is disconnected, then 7(G) = 0 = det L(k).
WMA ¢ 1s connected and loopless.
If |[E(G)| =0, then (G) = 1 = det L(k).
We proceed by induction on |E(G)].
Recall

7(G) = 1(G\e) + t(G/e)
Enough to show

(%) detLg (u) = detLg\, (u) + detLg . (W)
where e = uv and w is the new vertex of G /e
Le(u) = Le\e(u) + Eyy

detL; (u) = dEt[LG\e (w) + Epy]
— det LG\e (u) + det LG\e (ur U)
= detLg\, (1) + detLg,, (W)

This proves (*), and hence the theorem. O



Theorem. (Cayley) 7(K,,) = n™ 2. In other words there are
exactly n*~2 trees with vertex-set {1,2, ..., n}.

Proof. By Kirchhoff’s Matrix Tree Theorem

n-1 -1 -1
T(Kn)=det<"1 n-1 _1>}n—1=

-1 -1 n-1
[by adding rows 2,3, ...,n — 1 to row 1]

1 1 1 1
—get| "L m-1 -1 -1

—1 -1 n-—1

[by adding row 1 to all other rows]

1 1 1
= det n 0 |= n—2
0 n



Definition. Let G, H be multigraphs. A mapping f:V(G) = V(H)
is an isomorphism if it is a bijection and for every two vertices

u, v € V(G) the number of edges with ends u, v in G is the same as
the number of edges with ends f(u), f(v) in H.

Necessary conditions: |V(H)| = |V(G)|, |E(H)| = |E(G)|, same
degree sequence.

E.Xéw.,a&o !

<

azf]'aw 0‘27 3 s pech W dg 3 el cz(:?’a:uuf

-0

b«'(aﬁ('i le | ast 5~'ref"f-"[€




