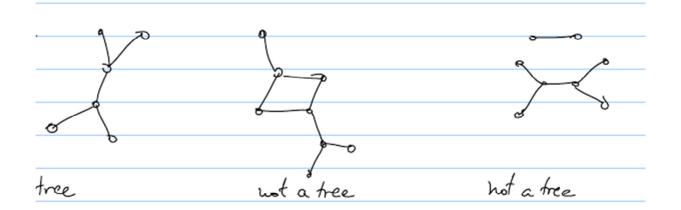
Definition. A *tree* is a connected graph with no cycles.

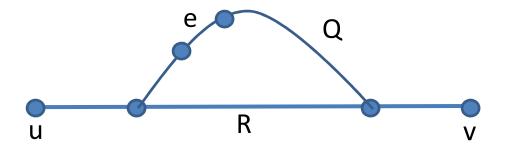
Examples.



Theorem. Let T be a tree. Then

- (i) every two vertices of T are connected by exactly one path
- (ii) if $|V(T)| \ge 2$, then T has at least two vertices of degree one
- (iii) |E(T)| = |V(T)| 1
- (iv) the deletion of any edge results in exactly two components
- (v) if G is the multigraph obtained from T by adding a new edge, then G has exactly one cycle.

Proof. (i) Let $u, v \in V(T)$. There is at least one u-v path because T connected. Suppose P_1, P_2 are two distinct u-v paths in T. Then $\exists e \in E(P_2) - E(P_1)$. The edge e is contained in a subpath Q of P_2 that has both ends in $V(P_1)$ and is otherwise disjoint from P_1 . Let R be the subpath of P_1 that joins the ends of Q. Then $Q \cup R$ is a cycle, a contradiction.



(ii) Take a longest path P in T, and let u, v be its ends.

Then u, v do not have a neighbor outside of P by maximality and each has at most one neighbor in P, because T has no cycles. So u, v are two vertices of degree one ...

... unless u = v.

Since $|V(T)| \ge 2$ and T is connected, P has at least two vertices, and hence $u \ne v$.

(iii) By induction on |V(T)|

(iv), (v) exercise.

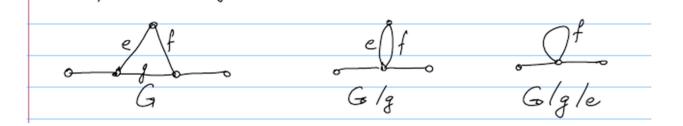
Definition. A *spanning tree* of a graph G is a tree T such that T is a subgraph of G and V(T) = V(G).

Note. *G* has a spanning tree if and only if it is connected.

Note. Knowledge of a minimum weight spanning tree algorithm is assumed.

Let $\tau(G)$ denote the number of spanning trees of *G*.

G/e is the multigraph obtained by **contracting** e; that is, deleting e and identifying its ends. May produce loops or parallel edges:



Proposition. Let G be a multigraph, and let e be an edge that is not a loop. Then

$$\tau(G) = \tau(G \backslash e) + \tau(G/e)$$

Proof. $\tau(G \setminus e) = \#$ spanning trees of G that do not use e

 $\tau(G/e) = \#$ spanning trees of G that use $e.\Box$

Note. This gives exponential algorithm (not a good method). We will see a better way.

Definition. Let G be a multigraph with $V(G) = \{1, 2, ..., n\}$ and let $A = (a_{ij})_{i,j=1}^{n}$ be an $n \times n$ matrix defined by

 $a_{ij} = #$ edges with ends i, j

Then A is called the *adjacency matrix* of G.

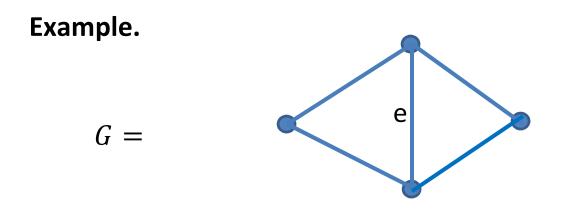
The *Laplacian matrix* of a graph is defined by $L = (\ell_{ij})$ where

$$\ell_{ij} = \begin{cases} \sum_{k \neq i} a_{ik} & \text{if } i = j \\ -a_{ij} & \text{otherwise} \end{cases}$$

Note that rows and columns sum to 0, and hence det L = 0.

Theorem (Kirchhoff's Matrix Tree Theorem). Let G be a multigraph, let L be its Laplacian matrix, let $k \in \{1, 2, ..., n\}$, and let L(k) denote the matrix obtained from L by deleting the k^{th} row and k^{th} column. Then $\tau(G) = \det L(k)$.

Notice that det L(k) = 0 if G is disconnected.



 $\tau(G) = 8$ (4 spanning trees containing e, 4 not containing e).

$$L = \begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ -1 & -1 & 0 & 2 \end{pmatrix}$$

$$L(1) = \begin{pmatrix} 3 & -1 & -1 \\ -1 & 2 & 0 \\ -1 & 0 & 2 \end{pmatrix}$$

 $\det L(1) = 3 \times 2 \times 2 - 2 - 2 = 8$

What is $det(M + E_{vv})$? WMA v = 1.

$$\det(M + E_{11}) = \sum_{\sigma} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} (M + E_{11})_{i\sigma(i)} =$$

$$= \sum_{\sigma:\sigma(1)=1} \operatorname{sgn}(\sigma) (M_{11}+1) \prod_{i=2}^{n} M_{i\sigma(i)} + \sum_{\sigma:\sigma(1)\neq 1} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} M_{i\sigma(i)} =$$

$$= \sum_{\sigma} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} M_{i\sigma(i)} + \sum_{\sigma:\sigma(i)=1} \operatorname{sgn}(\sigma) \prod_{i=2}^{n} M_{i\sigma(i)} =$$

 $= \det(M) + \det M(1)$

Kirchhoff's Matrix Tree Theorem. Let G be a multigraph, let L be its Laplacian matrix, let $k \in \{1, 2, ..., n\}$, and let L(k) denote the matrix obtained from L by deleting the k^{th} row and k^{th} column. Then $\tau(G) = \det L(k)$.

Proof. If G is disconnected, then $\tau(G) = 0 = \det L(k)$.

WMA G is connected and loopless.

If |E(G)| = 0, then $\tau(G) = 1 = \det L(k)$.

We proceed by induction on |E(G)|.

Recall

$$\tau(G) = \tau(G \setminus e) + \tau(G/e)$$

Enough to show

(*)
$$\det L_G(u) = \det L_{G\setminus e}(u) + \det L_{G/e}(w)$$

where e = uv and w is the new vertex of G/e

$$L_{G}(u) = L_{G \setminus e}(u) + E_{vv}$$

det $L_{G}(u) = det[L_{G \setminus e}(u) + E_{vv}]$
= det $L_{G \setminus e}(u) + det L_{G \setminus e}(u, v)$
= det $L_{G \setminus e}(u) + det L_{G \setminus e}(w)$

This proves (*), and hence the theorem. \Box

Theorem. (Cayley) $\tau(K_n) = n^{n-2}$. In other words there are exactly n^{n-2} trees with vertex-set $\{1, 2, ..., n\}$.

Proof. By Kirchhoff's Matrix Tree Theorem

$$\tau(K_n) = \det \begin{pmatrix} n-1 & -1 & & -1 \\ -1 & n-1 & & \\ & & & -1 \\ -1 & & -1 & n-1 \end{pmatrix} n - 1 =$$

[by adding rows 2,3, ..., n - 1 to row 1]

$$= \det \begin{pmatrix} 1 & 1 & 1 & 1 \\ -1 & n-1 & -1 & -1 \\ \vdots & & & \\ -1 & & -1 & n-1 \end{pmatrix} =$$

[by adding row 1 to all other rows]

$$= \det \begin{pmatrix} 1 & 1 & & 1 \\ & n & & \\ & & & 0 \\ 0 & & & n \end{pmatrix} = n^{n-2}$$

Definition. Let G, H be multigraphs. A mapping $f: V(G) \rightarrow V(H)$ is an *isomorphism* if it is a bijection and for every two vertices $u, v \in V(G)$ the number of edges with ends u, v in G is the same as the number of edges with ends f(u), f(v) in H.

Necessary conditions: |V(H)| = |V(G)|, |E(H)| = |E(G)|, same degree sequence.

