The clique number of a random graph in G(n, 1/2)
Let X;(G) = #K -subgraphs in G
_(d
EXq = (1)2 () =. f(d)
We will be interested in d s.t. f(d)~1. To gain some intuition note
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and so d~2logn. Now let us work rigorously.
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This is > 1 if 24 > n. Thus if d > logn, then f(d) is decreasing.

Definition. Choose dy = logn such that

f(dy) =logn > f(dy+1)
Exercise. dy = 2logn + O(loglogn)



Theorem. (Bollobas, Erd0s, Matula 1976) The clique number of
a.e. graph in G(n,1/2) is either dy or d + 1.

15 of Proof.
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By Markov’s inequality P[X4 4+, = 1] < EXy 4, > 0 asn — oo.
Thus a.e. graph in G(n, 1/2) has clique number < d, + 1.

For the other “half” of the proof we must show
P[Xd0 = 0] - 0asn - o
Letd = do.
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It can be shown that — 0, but the calculations are not

E2X4

pleasant. Please refer to Bollobdas, Modern Graph Theory.



The chromatic number of graphs in G(n,1/2).
The previous theorem gives
Plw(G) <dy] - 0 as n—>

It can be shown using the so-called generalized Jansen’s inequality
that

€

(%) Plw(G) < dy—4] <27

holds for all € > 0 and all sufficiently large n. See [Alon-Spencer,
Probabilistic methods].

Theorem (Bollobas) For a.e. graph in G(n,1/2).

X(©) = (1 +o(D) 51—

Proof. We have shown
Pla(G) <dy+ 1] =Plw(G) <dy+1]>1asn—-
Since dy = 2logn + O(loglogn)
Pla(G) < (2+€)logn] -1 as n—» o

Therefore

n__ n
a(G) — (2+¢€)logn

x(G) =

with probability approaching 1 as n — oo,
For the upper bound we show



Claim. Let m := { ‘ Then a.e. G € G(n,1/2) satisfies:

log2n

(x*) every m-element subset of I/(G) has an independent set of size
k = do — 4.

Proof.
Pla(G[S]) < dy — 4 for some m elementset S € V(G)] <

< (Z) Pla(G[S,]) < dy — 4] < C:l) m

2—€ €

< 271 ] Z—mz_ <

1+6 2—€

Szm -m _>0

This proves the claim.

Pick a graph G that satisfies (¥*). Pull out disjoint independent sets
of size dy — 4 until there is none left. Each such independent set
will be a color class. When no independent set of size dy — 4 is left,
then there are < m vertices left. Give each of these vertices different
color. Thus

x(G) < [do 4} tms (2 — en) logn 0 (lo;ln)

= (1+0))

2logn
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Planar graphs

Definition. A set A € R? homeomorphic to [0,1] that is a union of
finitely many straight line segments 1s called a polygonal arc.
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A polygon is a set P € R? homeomorphic to
St = {(x,y) € R%:x*+y? =1}
that 1s a union of finitely many straight line segments.

Def. Let O € R? be open. Define x~y for x,y € () to mean that
there exists a polygonal arc with ends x,y. This is an equivalence
relation. The equivalence classes are called arcwise connected
components of (). If x~vy for all x,y € (), then () is called arcwise
connected. If F € R is closed, then an arcwise connected
component of R? — F is called a face of F.
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Topological prerequisites:

(1) If F;, F, € R? are closed and at least one of them is bounded,
then there exists an € > 0 such that every point of F; is at
distance at least € from every point of F;.

(2) For every polygon P there exist finitely many open balls
B(x1),B(x5;), ..., B(x}) centered at points x1, X5, ..., Xy € P
such that for every i = 1,2, ..., k the open ball B(x;) intersects
only the segments of P that include x; and

P € B(xqy) UB(x;)U--UB(xy).




Theorem. (Jordan curve theorem for polygons) Every polygon P
has exactly two faces, of which exactly one is bounded. The
boundary of each face of P is P.

Proof. Let x € R? — P and let L be a half-line starting at x.
Assume L includes no bend of P. Let

m(x,L) == |P N L| (mod 2)

A\

m(x, L) can be defined for all L so that it does not depend on L. Call
the common value m(x). So we have defined a function

m: R? — P — {0,1}. This function is continuous and therefore it is
constant on every arcwise connected component of R* — P. By
considering two points on opposite sides of a segment of P we find
that 7 1s onto. Thus P has at least two faces.
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To show there are < 2 faces suppose that x4, x5, x5 belong to
different faces. For i = 1,2,3 do the following:
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Def. A plane multigraph is a multigraph G such that

i) V(G) € R?

(ii))  For every non-loop edge e € E(G) with ends u, v there
exists a polygonal arc A with ends u, v such that
e=A—-{uv}cR?-V(G).

(iii)) for every loop e incident with u € V(&) there exists a
polygon P containing u such that
e=P—{u} € R?-V(G), and

(iv) ife,e’ € E(G) are distinct, thene Ne' = @.

Def. A graph is planar if it is isomorphic to a plane graph I'. We
say I' is a planar drawing of . For a plane multigraph G, the point
set of G is Ueeggye U V(G). We will denote it by G. The set of

faces of G is denoted by F(G).
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Lemma 1.6. Let G be a plane multigraph, lete € E(G), let x{,x, €
R? — G be two points such that the straight-line segment x; x,
intersects e exactly once and is otherwise disjoint from G. Let f; be
the face of G containing x;. Then e is a subset of the boundary of
both f; and f,, and is disjoint from the boundary of every other face
of G. Furthermore, if G 1s a cycle, then f; # f,.

Proof. Similar to the Jordan curve theorem.

b

Corollary. The boundary of a face of G is the point set of a

subgraph of G.

Def. If ¢, f;, f, are as in the lemma, then we say that f3, f, are the
two faces incident with e. Possibly f; = f>.
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Lemma. Let G be a plane multigraph that is a forest. Then
|F(G)| = 1.

\ /

Proof. Induction on the number of bends. O
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Lemma 1.10. Let G’ be a subgraph of a plane multigraph G. Then

(1) every face of G is a subset of a face of G’
(i) if f € F(G) and bd(f) S G', then f € F(G")
(iii) if f* € F(G') is disjoint from G, then ' € F(G).

TN

& G
Proof. (1) easy

Gi) Let f € F(G). By ()3 f' € F(G"), f € f'. WMA f & f, for
ow.f=f €F(G"). Soax'"e f'—f. Pickx € f and a polygonal
arc A € f' withends x,x’. Since AZ f3z€ Anbd(f). But
z€AC f,and hence z € G'. So bd(f) € G', a contradiction.

(iii) Let f' € F(G") be disjoint from G. Thus f' is an arcwise-
connected subset of R? — G, and hence f' € f for some f € F(G).
By (i) f € f" for some f" € F(G'). But f' € f € f"" and so

f' = f", because both are faces of G'. Now f' € f € f"" = f', and
so f' = f € F(G), as desired. O
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