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 The clique number of a random graph in �(�, 1 2⁄ )  
Let 	
(�) ≔ #�
-subgraphs in �  

�	
 = ��
�2����� =: �(�)  
We will be interested in � s.t. �(�)~1. To gain some intuition note 

�(�)~�
2�
� �� = 2
 � !��
� ��
 

and so �~2 log �. Now let us work rigorously. 

�(�)�(� + 1) = ��
�2������ �
&'�2���()� � = 

 

= �! (� + 1)! (� − � − 1)!�! (� − �)�! 2(
&')
� �
(
�')� = � + 1� − � ∙ 2
 

 

This is > 1 if 2
 ≥ �. Thus if � ≥ log �, then �(�) is decreasing. 

Definition.  Choose �/ ≥ log� such that �(�/) ≥ log � > �(�/ + 1) 
Exercise.  �/ = 2 log � + 0(log log �)  
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Theorem.  (Bollobás, Erdős, Matula 1976)  The clique number of 

a.e. graph in �(�, 1 2⁄ ) is either �/ or �/ + 1. 

½ of Proof.  

�	
1&� = �(�/ + 2) = �(�/ + 2)�(�/ + 1) �(�/ + 1) < 

< � − �/ − 1�/ + 2 2�
1�' log � ≤ 

≤ �2 log � + 0(log log �) ∙ 2�� � !�&4(� ! � !�	) log � →0 

 

By Markov’s inequality 8[	
1&� ≥ 1] ≤ �	
1&� → 0 as � → ∞.  

Thus a.e. graph in �(�, 1 2⁄ ) has clique number ≤ �/ + 1.   

For the other “half” of the proof we must show 

8<	
1 = 0= → 0	as	� → ∞ 

Let � ≔ �/.  

8[	
 = 0] ≤ 8[|	
 − �	
| ≥ �	
] ≤ �	
� − ��	
��	
  

�	
� =	?											
 = B CD|D|E
  

where CD = F1	if	I	is	a	clique0						otherwise		 
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�	
� = � R B CD|D|E
 S� = �TB CDCU(D,U) V = B �(CDCU)(D,U)
=B B �(CDCU) =B���� W�ℓY W� − �� − ℓY2������&�ℓ��



ℓE/(D,U)|D∩U|Eℓ



ℓE/  

It can be shown that 
[\���[�\�[�\� → 0, but the calculations are not 

pleasant. Please refer to Bollobás, Modern Graph Theory. 
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The chromatic number of graphs in �(�, 1 2⁄ ). 
The previous theorem gives 8[](�) < �/] → 0		as			� → ∞ 

It can be shown using the so-called generalized Jansen’s inequality 

that 

(∗) 8[](�) < �/ − 4] ≤ 2���`a 
holds for all b > 0 and all sufficiently large �. See [Alon-Spencer, 

Probabilistic methods]. 

Theorem  (Bollobás)  For a.e. graph in �(�, 1 2⁄ ). 
c(�) = (1 + d(1)) �2log�� 

Proof.  We have shown  8[e(�) ≤ �/ + 1] = 8[](�) ≤ �/ + 1] → 1		as		� → ∞ 

Since �/ = 2 log� + 0(log log �) 8[e(�) ≤ (2 + b) log �] → 1		as			� → ∞ 

Therefore 

c(�) ≥ �e(�) ≥ �(2 + b) log �	 
with probability approaching 1 as � → ∞. 

For the upper bound we show  



10 

 

Claim. Let f ≔ g �log��h. Then a.e. � ∈ �(�, 1 2⁄ ) satisfies: 

(∗∗) every f-element subset of j(�) has an independent set of size k ≔ �/ − 4. 

Proof.   8[e(�[l]) < �/ − 4	for	some	f	element	set	l ⊆ j(�)] ≤ 

≤ ��f�8[e(�[l/]) < �/ − 4] ≤ ��f�2�p�`a ≤ 2� ∙ 2�p�`a ≤ 

≤ 2p)(q�p�`a → 0 

This proves the claim. 

Pick a graph � that satisfies (∗∗).  Pull out disjoint independent sets 

of size �/ − 4 until there is none left.  Each such independent set 

will be a color class.  When no independent set of size �/ − 4 is left, 

then there are < f vertices left. Give each of these vertices different 

color.  Thus 

c(�) ≤ r ��/ − 4s + f ≤ �(2 − b′) log � + d W �log�Y= (1 + d)) �2 log � 

  □ 
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Planar graphs 

Definition. A set I ⊆ u� homeomorphic to [0,1] that is a union of 

finitely many straight line segments is called a polygonal arc. 

 

 

A polygon is a set 8 ⊆ u� homeomorphic to 

v' ≔ w(x, y) ∈ u�: x� + y� = 1z 
that is a union of finitely many straight line segments. 

Def.  Let Ω ⊆ u� be open.  Define x~y for x, y ∈ Ω to mean that 

there exists a polygonal arc with ends x, y.  This is an equivalence 

relation. The equivalence classes are called arcwise connected 

components of Ω.  If x~y for all x, y ∈ Ω, then Ω is called arcwise 

connected.  If | ⊆ u is closed, then an arcwise connected 

component of u� − | is called a face of |. 
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Topological prerequisites: 

(1) If |', |� ⊆ u� are closed and at least one of them is bounded, 

then there exists an } > 0 such that every point of |' is at 

distance at least } from every point of |�. 

(2) For every polygon 8 there exist finitely many open balls ~(x'), ~(x�), … , ~(x�) centered at points x', x�, … , x� ∈ 8 

such that for every � = 1,2,… , k the open ball ~(x�) intersects 

only the segments of 8 that include x� and 8 ⊆ ~(x') ∪ ~(x�) ∪ ⋯∪ ~(x�). 
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Theorem.  (Jordan curve theorem for polygons) Every polygon 8 

has exactly two faces, of which exactly one is bounded.  The 

boundary of each face of 8 is 8.  

Proof.  Let x ∈ u� − 8 and let � be a half-line starting at x.  

Assume � includes no bend of 8.  Let �(x, �) ≔ |8 ∩ �|	(mod	2) 
 

 

 

 

 

 

 

 �(x, �) can be defined for all � so that it does not depend on �. Call 

the common value �(x).  So we have defined a function  �:u� − 8 → w0,1z.  This function is continuous and therefore it is 

constant on every arcwise connected component of u� − 8. By 

considering two points on opposite sides of a segment of 8 we find 

that � is onto. Thus 8 has at least two faces. 
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To show there are ≤ 2 faces suppose that x', x�, x� belong to 

different faces.  For � = 1,2,3 do the following: 
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Def.  A plane multigraph is a multigraph � such that  

(i) j(�) ⊆ u� 

(ii) For every non-loop edge � ∈ �(�) with ends �, � there 

exists a polygonal arc I with ends �, � such that  � = I − w�, �z ⊆ u� − j(�). 
(iii) for every loop � incident with � ∈ j(�) there exists a 

polygon 8 containing � such that  � = 8 − w�z ⊆ u� − j(�), and 

(iv) if �, �′ ∈ �(�) are distinct, then � ∩ �� = ∅. 

 

Def.  A graph is planar if it is isomorphic to a plane graph Γ.  We 

say Γ is a planar drawing of �.  For a plane multigraph �, the point 

set of � is ⋃ ��∈[(�) ∪ j(�).  We will denote it by �.  The set of 

faces of � is denoted by |(�). 
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Lemma 1.6.  Let � be a plane multigraph, let � ∈ �(�), let x', x� ∈u� − � be two points such that the straight-line segment x'x� 

intersects � exactly once and is otherwise disjoint from �.  Let �� be 

the face of � containing x�.  Then � is a subset of the boundary of 

both �' and ��, and is disjoint from the boundary of every other face 

of �. Furthermore, if � is a cycle, then �' � ��. 

Proof. Similar to the Jordan curve theorem.   

 

Corollary.  The boundary of a face of � is the point set of a 

subgraph of �. 

Def.  If �, �', �� are as in the lemma, then we say that �', �� are the 

two faces incident with �.  Possibly �' = ��. 

  



18 

 

Lemma.  Let � be a plane multigraph that is a forest.  Then ||(�)| = 1. 

 

 

Proof.  Induction on the number of bends.  □ 
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Lemma 1.10.  Let �′ be a subgraph of a plane multigraph �. Then  

(i) every face of � is a subset of a face of �′ 
(ii) if � ∈ |(�) and ��(�) ⊆ �′, then � ∈ |(��) 
(iii) if �′ ∈ |(��) is disjoint from �, then �′ ∈ |(�).   

 

Proof.  (i) easy 

(ii) Let � ∈ |(�).  By (i) ∃	�′ ∈ |(��), � ⊆ �′.  WMA � ⫋ �′, for 

o.w. � = �′ ∈ |(��).  So ∃	x� ∈ �� − �.  Pick x ∈ � and a polygonal 

arc I ⊆ �′ with ends x, x′.  Since I ⊈ �	∃	� ∈ I ∩ ��(�).  But � ∈ I ⊆ �′, and hence � ∉ �′.  So ��(�) ⊈ �′, a contradiction. 

(iii) Let �′ ∈ |(��) be disjoint from �.  Thus �′ is an arcwise-

connected subset of u� − �, and hence �′ ⊆ � for some � ∈ |(�).  
By (i) � ⊆ �′′ for some �′′ ∈ |(��).  But �� ⊆ � ⊆ ��� and so �� = �′′, because both are faces of �′. Now �� ⊆ � ⊆ ��� = �′, and 

so �� = � ∈ |(�), as desired.                                                □ 


