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Lemma 1.6.  Let � be a plane multigraph, let � ∈ ����, let 

��, �
 ∈ �
 � � be two points such that the straight-line segment 

���
 intersects � exactly once and is otherwise disjoint from �.  

Let � be the face of � containing ��.  Then � is a subset of the 

boundary of both � and 
, and is disjoint from the boundary of 

every other face of �. Furthermore, if � is a cycle, then � � 
. 

Proof. Similar to the Jordan curve theorem.   

 

Corollary.  The boundary of a face of � is the point set of a 

subgraph of �. 

Def.  If �, �, 
 are as in the lemma, then we say that �, 
 are the 

two faces incident with �.  Possibly � � 
. 
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Lemma.  Let � be a plane multigraph that is a forest.  Then 

|����| � 1. 

 

 

Proof.  Induction on the number of bends.  □ 
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Lemma 1.10.  Let �′ be a subgraph of a plane multigraph �. Then  

(i) every face of � is a subset of a face of �′ 
(ii) if  ∈ ���� and ���� ⊆ �′, then  ∈ ����� 
(iii) if ′ ∈ ����� is disjoint from �, then ′ ∈ ����.   

 

Proof.  (i) easy 

(ii) Let  ∈ ����.  By (i) ∃	′ ∈ �����,  ⊆ ′.  WMA  ⫋ ′, for 

o.w.  � ′ ∈ �����.  So ∃	�� ∈ � � .  Pick � ∈  and a 

polygonal arc � ⊆ ′ with ends �, �′.  Since � ⊈ 	∃	� ∈ � ∩
����.  But � ∈ � ⊆ ′, and hence � ∉ �′.  So ���� ⊈ �′, a 

contradiction. 

(iii) Let ′ ∈ ����� be disjoint from �.  Thus ′ is an arcwise-

connected subset of �
 � �, and hence ′ ⊆  for some  ∈ ����.  
By (i)  ⊆ ′′ for some ′′ ∈ �����.  But � ⊆  ⊆ �� and so 

� � ′′, because both are faces of �′. Now � ⊆  ⊆ �� � ′, and 

so � �  ∈ ����, as desired.                                 
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Lemma 1.11.  Let � be an edge of a plane multigraph � such that 

�	belongs to a cycle of �.  Let �, 
 be the two faces incident with 

�.  Then � � 
. 

 

 

Proof.  Let ! be a cycle in	� containing �.  For " � 1,2 let � ⊆ �
�, 

where �
� ∈ ��!�.  Pick points �� ∈ � as in Lemma 1.6; that is, the 

straight-line segment ���
 intersects � exactly once and has no 

other intersections with �. Then �� ∈ �
� and by Lemma 1.6 

�� � 
�.  It follows that � � 
.        

       □ 
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Lemma 1.12.  Let � be a plane graph, let � ∈ ����, and let �, 
 

be the two faces incident with �.  Let �
 ≔ � ∪ � ∪ 
.  Then 

�
 ∈ ���\�� and ���� � '�, 
( � ���\�� � '�
(.  

	
Proof.  Note �
 is arcwise connected.  Thus �
 ⊆ ′, where 

′ ∈ ���\��.  WMA �
 ⫋ ′, for otherwise we are done.  Thus 

there exists a polygonal arc � with � ∈ �
 and ) ∈ � � �
 such 

that � ⊆ ′.  By considering a subset of � WMA that � ∩ � � ∅.  

Since ) ∈ � � �
 ⊆ �
 � � � � � 
 it follows that ) belongs 

to a face of � other than � or 
, and yet � connects � to ) and is 

disjoint from �, a contradiction.  This proves �
 ∈ ���\��. 

Let  ∈ ���� � '�, 
(.  By Lemma 1.6 ���� is disjoint from �, 

and so ���� ⊆ �\�.  Thus  ∈ ���\�� by Lemma 1.10 (ii). 

Let � ∈ ���\�� � '�
(.  Then � ∩ � � ∅ and hence � ∈ ���� 
by Lemma 1.10 (iii).  Also, � ∉ '�, 
(, because �, 
 ∉ ���\��. 
              □ 
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Theorem.  (Euler’s formula) Every connected plane graph � 

satisfies 

|,���| - |����| � |����| - 2 

Proof.  Induction on |����|.  If � has no cycles, then it is a tree 

and |,���| � |����| - 1 and |����| � 1.  So WMA what � has a 

cycle !.  Let � ∈ ��!�, and let �, 
 be the incident faces.  Then 

� � 
 by Lemma 1.11.  By induction applied to �\� we deduce 

|,��\��| - |���\��| � |���\��| - 2 

But  |,���| � |,��\��|,  |����| � |���\��| - 1 and  

|����| � |���\��| - 1 by  Lemma 1.12.     □ 

Corollary 1.14.  Every simple planar graph on . / 3 vertices has 

at most 3. � 6 edges.  Moreover, if � has no triangles, then it has 

at most 2. � 4 edges. 

Proof.  WMA � is connected.  Let 3 be the number of edge-face 

incidences ��, �, with the proviso that if � is incident with � and 


, and � � 
, then the incidence ��, �� � ��, 
� is counted 

twice.  Then 3 � 2|����|.  Since � has no loops or parallel edges, 

each face contributes at least 3 toward 3.   

 

Thus 3 / 3|����|. So |����| 4 

5
|����|.  Substituting into 

Euler’s formula   
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|,���| -
2
3
|����| / |,���| - |����| � |����| - 2 

1
3
|����| 4 |,���| � 2 

|����| 4 3|,���| � 6. 

           □ 

Corollary 1.15.  67 and 65,5 are not planar. 

Proof.   

|��67�| � 10 ≰ 9 � 3|,�67�| � 6 

;�<65,5=; � 9 4 12 � 3;,<65,5=; � 6 

;�<65,5=; � 9 ≰ 8 � 2;,<65,5=; � 4 

           □ 

Reminder . A subdivision of a graph 
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No subdivision of 67 or 65,5 is planar. No graph that has a 67 or 

65,5 subdivision is planar. Are there other nonplanar graphs? 

No. That is what Kuratowski’s theorem tells us. 

Lemma.  Let � be a plane graph consisting of two vertices and 

three internally disjoint paths ?�, ?
, ?5 joining them.  Then � has 

precisely three faces with boundaries ?� ∪ ?
, ?� ∪ ?5 and ?
 ∪ ?5, 

respectively. 

 

 

 

Proof.  The graph ?� ∪ ?
 has exactly two faces by the Jordan 

curve theorem; let 5 be the one disjoint from ?5.  Define �, 
 

similarly.  Then �, 
, 5 ∈ ���� by Lemma 1.10 (iii), and they are 

distinct, because they have different boundaries.  Let  ∈ ���� and 

let � ∈ ���� � ,���.  WMA � ∈ ?
. But ?
 is only incident with 

� and 5, and so  � � or  � 5 as desired.    □ 
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Theorem.  Let � be a 2-connected plane graph.  Then every face 

of � is bounded by a cycle. 

 

 

Proof.  By induction on |����|.  If � is a cycle, then done by the 

Jordan curve theorem.  By the ear-decomposition theorem � can 

be written as � � �′ ∪ ?, where ? is a path with both ends in �′ 
and otherwise disjoint from it (and |��?�| / 1).  By induction 

every face of �′ is bounded by a cycle. 

Let  ∈ ����.  Then  ⊆ ′, where ′ ∈ �����.  Then ′ is 

bounded by a cycle ! of �′.  Let ?@ be the point set ? � 'A, B(, 
where A, B are the ends of ?. 
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Since ?@ is arcwise-connected, it is a subset of a face of �′.   

Case 1.  ?@ ∩ � � ∅.  Then ���′� is disjoint from �, and hence 

′ ∈ ���� by Lemma 1.10. Thus  � ′  and the boundary of 

 � ′ is !, as desired. 

Case 2.  ?@ ⊆ ′.  Now ���� ⊆ ′C ∩ � ⊆ ! ∪ ? ⇒  is a face of 

! ∪ ? by Lemma 1.10 ⇒  is bounded by a cycle by Lemma 2.2. 

              □ 

  



11 

 

Def.  A graph E is a minor of � if E can be obtained from a 

subgraph of � by contracting edges. An F minor is a minor 

isomorphic to E. 

E subdivision ⇒  E minor  

 

Theorem  (Special case of Kuratowski’s theorem) Let � be a 3-

connected graph with no minor isomorphic to 67 or 65,5. Then � is 

planar. 

Proof.  By induction on |,���|.  If |,���| � 4, then clear.  So 

WMA |,���| / 5.  By an old lemma ∃	� ∈ ���� such that �/� is 

3-connected. Since �/� has no minor isomorphic to 67 or 65,5, it 

is planar by the induction hypothesis. 

Let � � AB, let I be the new vertex of �/�.   
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Note �/�\I is 2-connected, and so the face containing I is 

bounded by a cycle, say !. 

Claim.  ! can be written as ?� ∪ ?
, where ?�, ?
 are edge-disjoint 

paths such that A has all neighbors in ,�?�� ∪ 'B( and B has all 

neighbors in ,�?
� ∪ 'A(. 

Proof of claim. Case 1.  Every neighbor of A on ! is a neighbor of 

B and vice versa. 

 

67 subdivision ⇒ 67 minor 
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Case 2.  WMA A has a neighbor � on ! that is not a neighbor of B. 

Let ?� be the shortest subpath of ! whose ends are neighbors of B. 

 

If A has all neighbors in ! on ?� ⇒ claim holds, so WMA not. 

Then � has a 65,5 subdivision.     

□ 


