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Lemma 1.6.  Let � be a plane multigraph, let � ∈ ����, let 

��, �
 ∈ �
 � � be two points such that the straight-line segment 

���
 intersects � exactly once and is otherwise disjoint from �.  

Let 
� be the face of � containing ��.  Then � is a subset of the 

boundary of both 
� and 

, and is disjoint from the boundary of 

every other face of �. Furthermore, if � is a cycle, then 
� � 

. 

Proof. Similar to the Jordan curve theorem.   

 

Corollary.  The boundary of a face of � is the point set of a 

subgraph of �. 

Def.  If �, 
�, 

 are as in the lemma, then we say that 
�, 

 are the 

two faces incident with �.  Possibly 
� � 

. 
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Lemma.  Let � be a plane multigraph that is a forest.  Then 

|����| � 1. 

 

 

Proof.  Induction on the number of bends.  □ 
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Lemma 1.10.  Let �′ be a subgraph of a plane multigraph �. Then  

(i) every face of � is a subset of a face of �′ 
(ii) if 
 ∈ ���� and ���
� ⊆ �′, then 
 ∈ ����� 
(iii) if 
′ ∈ ����� is disjoint from �, then 
′ ∈ ����.   

 

Proof.  (i) easy 

(ii) Let 
 ∈ ����.  By (i) ∃	
′ ∈ �����, 
 ⊆ 
′.  WMA 
 ⫋ 
′, for 

o.w. 
 � 
′ ∈ �����.  So ∃	�� ∈ 
� � 
.  Pick � ∈ 
 and a 

polygonal arc � ⊆ 
′ with ends �, �′.  Since � ⊈ 
	∃	� ∈ � ∩
���
�.  But � ∈ � ⊆ 
′, and hence � ∉ �′.  So ���
� ⊈ �′, a 

contradiction. 

(iii) Let 
′ ∈ ����� be disjoint from �.  Thus 
′ is an arcwise-

connected subset of �
 � �, and hence 
′ ⊆ 
 for some 
 ∈ ����.  
By (i) 
 ⊆ 
′′ for some 
′′ ∈ �����.  But 
� ⊆ 
 ⊆ 
�� and so 


� � 
′′, because both are faces of �′. Now 
� ⊆ 
 ⊆ 
�� � 
′, and 

so 
� � 
 ∈ ����, as desired.                                 
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Lemma 1.11.  Let � be an edge of a plane multigraph � such that 

�	belongs to a cycle of �.  Let 
�, 

 be the two faces incident with 

�.  Then 
� � 

. 

 

 

Proof.  Let ! be a cycle in	� containing �.  For " � 1,2 let 
� ⊆ 
�
�, 

where 
�
� ∈ ��!�.  Pick points �� ∈ 
� as in Lemma 1.6; that is, the 

straight-line segment ���
 intersects � exactly once and has no 

other intersections with �. Then �� ∈ 
�
� and by Lemma 1.6 


�� � 

�.  It follows that 
� � 

.        

       □ 
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Lemma 1.12.  Let � be a plane graph, let � ∈ ����, and let 
�, 

 

be the two faces incident with �.  Let 
�
 ≔ 
� ∪ � ∪ 

.  Then 


�
 ∈ ���\�� and ���� � '
�, 

( � ���\�� � '
�
(.  

	
Proof.  Note 
�
 is arcwise connected.  Thus 
�
 ⊆ 
′, where 


′ ∈ ���\��.  WMA 
�
 ⫋ 
′, for otherwise we are done.  Thus 

there exists a polygonal arc � with � ∈ 
�
 and ) ∈ 
� � 
�
 such 

that � ⊆ 
′.  By considering a subset of � WMA that � ∩ � � ∅.  

Since ) ∈ 
� � 
�
 ⊆ �
 � � � 
� � 

 it follows that ) belongs 

to a face of � other than 
� or 

, and yet � connects � to ) and is 

disjoint from �, a contradiction.  This proves 
�
 ∈ ���\��. 

Let 
 ∈ ���� � '
�, 

(.  By Lemma 1.6 ���
� is disjoint from �, 

and so ���
� ⊆ �\�.  Thus 
 ∈ ���\�� by Lemma 1.10 (ii). 

Let 
� ∈ ���\�� � '
�
(.  Then 
� ∩ � � ∅ and hence 
� ∈ ���� 
by Lemma 1.10 (iii).  Also, 
� ∉ '
�, 

(, because 
�, 

 ∉ ���\��. 
              □ 
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Theorem.  (Euler’s formula) Every connected plane graph � 

satisfies 

|,���| - |����| � |����| - 2 

Proof.  Induction on |����|.  If � has no cycles, then it is a tree 

and |,���| � |����| - 1 and |����| � 1.  So WMA what � has a 

cycle !.  Let � ∈ ��!�, and let 
�, 

 be the incident faces.  Then 


� � 

 by Lemma 1.11.  By induction applied to �\� we deduce 

|,��\��| - |���\��| � |���\��| - 2 

But  |,���| � |,��\��|,  |����| � |���\��| - 1 and  

|����| � |���\��| - 1 by  Lemma 1.12.     □ 

Corollary 1.14.  Every simple planar graph on . / 3 vertices has 

at most 3. � 6 edges.  Moreover, if � has no triangles, then it has 

at most 2. � 4 edges. 

Proof.  WMA � is connected.  Let 3 be the number of edge-face 

incidences ��, 
�, with the proviso that if � is incident with 
� and 



, and 
� � 

, then the incidence ��, 
�� � ��, 

� is counted 

twice.  Then 3 � 2|����|.  Since � has no loops or parallel edges, 

each face contributes at least 3 toward 3.   

 

Thus 3 / 3|����|. So |����| 4 

5
|����|.  Substituting into 

Euler’s formula   
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|,���| -
2
3
|����| / |,���| - |����| � |����| - 2 

1
3
|����| 4 |,���| � 2 

|����| 4 3|,���| � 6. 

           □ 

Corollary 1.15.  67 and 65,5 are not planar. 

Proof.   

|��67�| � 10 ≰ 9 � 3|,�67�| � 6 

;�<65,5=; � 9 4 12 � 3;,<65,5=; � 6 

;�<65,5=; � 9 ≰ 8 � 2;,<65,5=; � 4 

           □ 

Reminder . A subdivision of a graph 
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No subdivision of 67 or 65,5 is planar. No graph that has a 67 or 

65,5 subdivision is planar. Are there other nonplanar graphs? 

No. That is what Kuratowski’s theorem tells us. 

Lemma.  Let � be a plane graph consisting of two vertices and 

three internally disjoint paths ?�, ?
, ?5 joining them.  Then � has 

precisely three faces with boundaries ?� ∪ ?
, ?� ∪ ?5 and ?
 ∪ ?5, 

respectively. 

 

 

 

Proof.  The graph ?� ∪ ?
 has exactly two faces by the Jordan 

curve theorem; let 
5 be the one disjoint from ?5.  Define 
�, 

 

similarly.  Then 
�, 

, 
5 ∈ ���� by Lemma 1.10 (iii), and they are 

distinct, because they have different boundaries.  Let 
 ∈ ���� and 

let � ∈ ���
� � ,���.  WMA � ∈ ?
. But ?
 is only incident with 


� and 
5, and so 
 � 
� or 
 � 
5 as desired.    □ 
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Theorem.  Let � be a 2-connected plane graph.  Then every face 

of � is bounded by a cycle. 

 

 

Proof.  By induction on |����|.  If � is a cycle, then done by the 

Jordan curve theorem.  By the ear-decomposition theorem � can 

be written as � � �′ ∪ ?, where ? is a path with both ends in �′ 
and otherwise disjoint from it (and |��?�| / 1).  By induction 

every face of �′ is bounded by a cycle. 

Let 
 ∈ ����.  Then 
 ⊆ 
′, where 
′ ∈ �����.  Then 
′ is 

bounded by a cycle ! of �′.  Let ?@ be the point set ? � 'A, B(, 
where A, B are the ends of ?. 
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Since ?@ is arcwise-connected, it is a subset of a face of �′.   

Case 1.  ?@ ∩ 
� � ∅.  Then ���
′� is disjoint from �, and hence 


′ ∈ ���� by Lemma 1.10. Thus 
 � 
′  and the boundary of 


 � 
′ is !, as desired. 

Case 2.  ?@ ⊆ 
′.  Now ���
� ⊆ 
′C ∩ � ⊆ ! ∪ ? ⇒ 
 is a face of 

! ∪ ? by Lemma 1.10 ⇒ 
 is bounded by a cycle by Lemma 2.2. 

              □ 
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Def.  A graph E is a minor of � if E can be obtained from a 

subgraph of � by contracting edges. An F minor is a minor 

isomorphic to E. 

E subdivision ⇒  E minor  

 

Theorem  (Special case of Kuratowski’s theorem) Let � be a 3-

connected graph with no minor isomorphic to 67 or 65,5. Then � is 

planar. 

Proof.  By induction on |,���|.  If |,���| � 4, then clear.  So 

WMA |,���| / 5.  By an old lemma ∃	� ∈ ���� such that �/� is 

3-connected. Since �/� has no minor isomorphic to 67 or 65,5, it 

is planar by the induction hypothesis. 

Let � � AB, let I be the new vertex of �/�.   
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Note �/�\I is 2-connected, and so the face containing I is 

bounded by a cycle, say !. 

Claim.  ! can be written as ?� ∪ ?
, where ?�, ?
 are edge-disjoint 

paths such that A has all neighbors in ,�?�� ∪ 'B( and B has all 

neighbors in ,�?
� ∪ 'A(. 

Proof of claim. Case 1.  Every neighbor of A on ! is a neighbor of 

B and vice versa. 

 

67 subdivision ⇒ 67 minor 
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Case 2.  WMA A has a neighbor � on ! that is not a neighbor of B. 

Let ?� be the shortest subpath of ! whose ends are neighbors of B. 

 

If A has all neighbors in ! on ?� ⇒ claim holds, so WMA not. 

Then � has a 65,5 subdivision.     

□ 


