Lemma 1.6. Let *G* be a plane multigraph, let $e \in E(G)$, let $x_1, x_2 \in \mathbb{R}^2 - G$ be two points such that the straight-line segment x_1x_2 intersects *e* exactly once and is otherwise disjoint from *G*. Let f_i be the face of *G* containing x_i . Then *e* is a subset of the boundary of both f_1 and f_2 , and is disjoint from the boundary of every other face of *G*. Furthermore, if *G* is a cycle, then $f_1 \neq f_2$.

Proof. Similar to the Jordan curve theorem.

Corollary. The boundary of a face of G is the point set of a subgraph of G.

Def. If *e*, f_1 , f_2 are as in the lemma, then we say that f_1 , f_2 are the two **faces incident with** *e*. Possibly $f_1 = f_2$.

Lemma. Let *G* be a plane multigraph that is a forest. Then |F(G)| = 1.

Proof. Induction on the number of bends. \Box

Lemma 1.10. Let G' be a subgraph of a plane multigraph G. Then

- (i) every face of G is a subset of a face of G'
- (ii) if $f \in F(G)$ and $bd(f) \subseteq G'$, then $f \in F(G')$
- (iii) if $f' \in F(G')$ is disjoint from G, then $f' \in F(G)$.

Proof. (i) easy

(ii) Let $f \in F(G)$. By (i) $\exists f' \in F(G'), f \subseteq f'$. WMA $f \subsetneqq f'$, for o.w. $f = f' \in F(G')$. So $\exists x' \in f' - f$. Pick $x \in f$ and a polygonal arc $A \subseteq f'$ with ends x, x'. Since $A \nsubseteq f \exists z \in A \cap$ bd(f). But $z \in A \subseteq f'$, and hence $z \notin G'$. So $bd(f) \nsubseteq G'$, a contradiction.

(iii) Let $f' \in F(G')$ be disjoint from *G*. Thus f' is an arcwiseconnected subset of $\mathbb{R}^2 - G$, and hence $f' \subseteq f$ for some $f \in F(G)$. By (i) $f \subseteq f''$ for some $f'' \in F(G')$. But $f' \subseteq f \subseteq f''$ and so f' = f'', because both are faces of *G'*. Now $f' \subseteq f \subseteq f'' = f'$, and so $f' = f \in F(G)$, as desired. **Lemma 1.11.** Let *e* be an edge of a plane multigraph *G* such that *e* belongs to a cycle of *G*. Let f_1, f_2 be the two faces incident with *e*. Then $f_1 \neq f_2$.

Proof. Let *C* be a cycle in *G* containing *e*. For i = 1,2 let $f_i \subseteq f'_i$, where $f'_i \in F(C)$. Pick points $x_i \in f_i$ as in Lemma 1.6; that is, the straight-line segment x_1x_2 intersects *e* exactly once and has no other intersections with *G*. Then $x_i \in f'_i$ and by Lemma 1.6 $f'_1 \neq f'_2$. It follows that $f_1 \neq f_2$.

Lemma 1.12. Let *G* be a plane graph, let $e \in E(G)$, and let f_1, f_2 be the two faces incident with *e*. Let $f_{12} \coloneqq f_1 \cup e \cup f_2$. Then $f_{12} \in F(G \setminus e)$ and $F(G) - \{f_1, f_2\} = F(G \setminus e) - \{f_{12}\}$.

Proof. Note f_{12} is arcwise connected. Thus $f_{12} \subseteq f'$, where $f' \in F(G \setminus e)$. WMA $f_{12} \not\subseteq f'$, for otherwise we are done. Thus there exists a polygonal arc A with $x \in f_{12}$ and $y \in f' - f_{12}$ such that $A \subseteq f'$. By considering a subset of A WMA that $A \cap e = \emptyset$. Since $y \in f' - f_{12} \subseteq \mathbb{R}^2 - G - f_1 - f_2$ it follows that y belongs to a face of G other than f_1 or f_2 , and yet A connects x to y and is disjoint from G, a contradiction. This proves $f_{12} \in F(G \setminus e)$.

Let $f \in F(G) - \{f_1, f_2\}$. By Lemma 1.6 bd(f) is disjoint from e, and so $bd(f) \subseteq G \setminus e$. Thus $f \in F(G \setminus e)$ by Lemma 1.10 (ii).

Let $f' \in F(G \setminus e) - \{f_{12}\}$. Then $f' \cap G = \emptyset$ and hence $f' \in F(G)$ by Lemma 1.10 (iii). Also, $f' \notin \{f_1, f_2\}$, because $f_1, f_2 \notin F(G \setminus e)$.

Theorem. (Euler's formula) Every **connected plane** graph *G* satisfies

$$|V(G)| + |F(G)| = |E(G)| + 2$$

Proof. Induction on |E(G)|. If *G* has no cycles, then it is a tree and |V(G)| = |E(G)| + 1 and |F(G)| = 1. So WMA what *G* has a cycle *C*. Let $e \in E(C)$, and let f_1, f_2 be the incident faces. Then $f_1 \neq f_2$ by Lemma 1.11. By induction applied to $G \setminus e$ we deduce

$$|V(G \setminus e)| + |F(G \setminus e)| = |E(G \setminus e)| + 2$$

But $|V(G)| = |V(G \setminus e)|$, $|E(G)| = |E(G \setminus e)| + 1$ and $|F(G)| = |F(G \setminus e)| + 1$ by Lemma 1.12.

Corollary 1.14. Every **simple** planar graph on $n \ge 3$ vertices has at most 3n - 6 edges. Moreover, if *G* has no triangles, then it has at most 2n - 4 edges.

Proof. WMA *G* is connected. Let *q* be the number of edge-face incidences (e, f), with the proviso that if *e* is incident with f_1 and f_2 , and $f_1 = f_2$, then the incidence $(e, f_1) = (e, f_2)$ is counted twice. Then q = 2|E(G)|. Since *G* has no loops or parallel edges, each face contributes at least 3 toward *q*.

Thus $q \ge 3|F(G)|$. So $|F(G)| \le \frac{2}{3}|E(G)|$. Substituting into Euler's formula

$$|V(G)| + \frac{2}{3} |E(G)| \ge |V(G)| + |F(G)| = |E(G)| + 2$$
$$\frac{1}{3} |E(G)| \le |V(G)| - 2$$
$$|E(G)| \le 3 |V(G)| - 6.$$

Corollary 1.15. K_5 and $K_{3,3}$ are not planar.

Proof.

$$|E(K_5)| = 10 \le 9 = 3|V(K_5)| - 6$$
$$|E(K_{3,3})| = 9 \le 12 = 3|V(K_{3,3})| - 6$$
$$|E(K_{3,3})| = 9 \le 8 = 2|V(K_{3,3})| - 4$$

Reminder . A subdivision of a graph

No subdivision of K_5 or $K_{3,3}$ is planar. No graph that has a K_5 or $K_{3,3}$ subdivision is planar. Are there other nonplanar graphs?

No. That is what Kuratowski's theorem tells us.

Lemma. Let *G* be a plane graph consisting of two vertices and three internally disjoint paths P_1 , P_2 , P_3 joining them. Then *G* has precisely three faces with boundaries $P_1 \cup P_2$, $P_1 \cup P_3$ and $P_2 \cup P_3$, respectively.

Proof. The graph $P_1 \cup P_2$ has exactly two faces by the Jordan curve theorem; let f_3 be the one disjoint from P_3 . Define f_1, f_2 similarly. Then $f_1, f_2, f_3 \in F(G)$ by Lemma 1.10 (iii), and they are distinct, because they have different boundaries. Let $f \in F(G)$ and let $x \in bd(f) - V(G)$. WMA $x \in P_2$. But P_2 is only incident with f_1 and f_3 , and so $f = f_1$ or $f = f_3$ as desired.

Theorem. Let *G* be a 2-connected plane graph. Then every face of *G* is bounded by a cycle.

Proof. By induction on |E(G)|. If *G* is a cycle, then done by the Jordan curve theorem. By the ear-decomposition theorem *G* can be written as $G = G' \cup P$, where *P* is a path with both ends in *G'* and otherwise disjoint from it (and $|E(P)| \ge 1$). By induction every face of *G'* is bounded by a cycle.

Let $f \in F(G)$. Then $f \subseteq f'$, where $f' \in F(G')$. Then f' is bounded by a cycle *C* of *G'*. Let P^o be the point set $P - \{u, v\}$, where u, v are the ends of *P*.

Since P^o is arcwise-connected, it is a subset of a face of G'.

Case 1. $P^o \cap f' = \emptyset$. Then bd(f') is disjoint from *G*, and hence $f' \in F(G)$ by Lemma 1.10. Thus f = f' and the boundary of f = f' is *C*, as desired.

Case 2. $P^o \subseteq f'$. Now $bd(f) \subseteq \overline{f'} \cap G \subseteq C \cup P \Rightarrow f$ is a face of $C \cup P$ by Lemma 1.10 $\Rightarrow f$ is bounded by a cycle by Lemma 2.2.

Def. A graph H is a **minor** of G if H can be obtained from a subgraph of G by contracting edges. An H **minor** is a minor isomorphic to H.

H subdivision \Rightarrow *H* minor

Theorem (Special case of Kuratowski's theorem) Let *G* be a 3connected graph with no minor isomorphic to K_5 or $K_{3,3}$. Then *G* is planar.

Proof. By induction on |V(G)|. If |V(G)| = 4, then clear. So WMA $|V(G)| \ge 5$. By an old lemma $\exists e \in E(G)$ such that G/e is 3-connected. Since G/e has no minor isomorphic to K_5 or $K_{3,3}$, it is planar by the induction hypothesis.

Let e = uv, let w be the new vertex of G/e.

Note $G/e \setminus w$ is 2-connected, and so the face containing w is bounded by a cycle, say C.

Claim. *C* can be written as $P_1 \cup P_2$, where P_1, P_2 are edge-disjoint paths such that *u* has all neighbors in $V(P_1) \cup \{v\}$ and *v* has all neighbors in $V(P_2) \cup \{u\}$.

Proof of claim. Case 1. Every neighbor of u on C is a neighbor of v and vice versa.

Case 2. WMA u has a neighbor x on C that is not a neighbor of v. Let P_1 be the shortest subpath of C whose ends are neighbors of v.

If *u* has all neighbors in *C* on $P_1 \Rightarrow$ claim holds, so WMA not. Then *G* has a $K_{3,3}$ subdivision.

