Lemma 1.6. Let G be a plane multigraph, let e € E(G), let
X1,%, € R? — G be two points such that the straight-line segment
X1Xo intersects e exactly once and is otherwise disjoint from G.
Let f; be the face of G containing x;. Then e is a subset of the
boundary of both f; and f,, and is disjoint from the boundary of
every other face of G. Furthermore, if G is a cycle, then f; # f5.

Proof. Similar to the Jordan curve theorem.
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Corollary. The boundary of a face of G is the point set of a

subgraph of G.

Def. If ¢, f;, f, are as in the lemma, then we say that f3, f, are the
two faces incident with e. Possibly f; = f>.



Lemma. Let G be a plane multigraph that is a forest. Then
|F(G)| = 1.
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Proof. Induction on the number of bends. O



Lemma 1.10. Let G’ be a subgraph of a plane multigraph G. Then

(1) every face of G is a subset of a face of G’
(i) if f € F(G) and bd(f) S G', then f € F(G")
(iii) if f* € F(G') is disjoint from G, then ' € F(G).
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Proof. (1) easy

(i) Let f € F(G). By ()3 f'€ F(G"), f S f'. WMA f & ', for
ow.f=f €F(G"). Soax'"ef'—f. Pickx € fanda
polygonal arc A € f' withends x,x'. SinceAZ fIz€AN
bd(f). Butz€e AC f',andhence z & G'. Sobd(f) £ G',a
contradiction.

(iii) Let f' € F(G") be disjoint from G. Thus f' is an arcwise-
connected subset of R? — G, and hence f' € f for some f € F(G).
By (i) f € f" for some f" € F(G'). But f' € f € f"" and so

f' = f", because both are faces of G'. Now f' € f € f"" = f', and
so f' = f € F(G), as desired.



Lemma 1.11. Let e be an edge of a plane multigraph G such that
e belongs to a cycle of G. Let f;, f, be the two faces incident with
e. Then fl == fz.

Proof. Let C be a cycle in G containing e. Fori = 1,2 let f; € f;,
where f; € F(C). Pick points x; € f; as in Lemma 1.6; that is, the
straight-line segment x; X, intersects e exactly once and has no
other intersections with G. Then x; € f; and by Lemma 1.6

fi #* f,. Itfollows that f; # f5.
O



Lemma 1.12. Let G be a plane graph, let e € E(G), and let f3, f5
be the two faces incident with e. Let f;, == f; Ue U f,. Then

fiz € F(G\e) and F(G) — {f1, f2} = F(G\e) — {f12}-

Proof. Note f;, is arcwise connected. Thus f;, € f’, where

f' € F(G\e). WMA f;, & f', for otherwise we are done. Thus
there exists a polygonal arc A with x € f;, andy € f' — f;, such
that A € f'. By considering a subset of A WMA that A Ne = @.
Since y € f' — fi, € R? — G — f; — f> it follows that y belongs
to a face of G other than f; or f,, and yet A connects x to y and is
disjoint from G, a contradiction. This proves f;, € F(G\e).

Let f € F(G) — {f1, f>}. By Lemma 1.6 bd(f) is disjoint from e,
and so bd(f) € G\e. Thus f € F(G\e) by Lemma 1.10 (i1).

Let f' € F(G\e) — {fi2}. Then f' NG = @ and hence f' € F(G)
by Lemma 1.10 (iii). Also, f’ € {f1, f>}, because f1, f, & F(G\e).
O



Theorem. (Euler’s formula) Every connected plane graph G
satisfies

V()| +|F(@)] = |EG)] +2

Proof. Induction on |E(G)|. If G has no cycles, then it is a tree
and |V(G)| = |E(G)| + 1 and |F(G)| = 1. So WMA what G has a

cycle C. Lete € E(C), and let f;, f, be the incident faces. Then
f1 # f, by Lemma 1.11. By induction applied to G\e we deduce

[V(G\e)| + |F(G\e)| = |[E(G\e)| + 2
But [V(G)| = |V(G\e)|, |E(G)| = |E(G\e)| + 1 and
|F(G)| = |F(G\e)| + 1 by Lemma 1.12. O

Corollary 1.14. Every simple planar graph on n = 3 vertices has
at most 3n — 6 edges. Moreover, if G has no triangles, then it has
at most 2n — 4 edges.

Proof. WMA G is connected. Let g be the number of edge-face
incidences (e, f), with the proviso that if e is incident with f; and
f>, and f; = f,, then the incidence (e, f;) = (e, f5) is counted
twice. Then g = 2|E(G)|. Since G has no loops or parallel edges,
each face contributes at least 3 toward q.

0-—*—0——‘-"——0

Thus g 2 3|F(G)|. So |[F(G)| < Z|E(G)|. Substituting into

Euler’s formula



VOl +5IE@)] 2 V@) +F©)] = IE@)] +2

1
ZIE@)] < V(©)] -2

[E(G)] < 3[V(G)| —6.

Corollary 1.15. K5 and K3 3 are not planar.
Proof.
|E(K5)| =10 £ 9 = 3|V(Ks)| - 6
|E(Ks3)| =9 <12 =3|V(Ks3)| -6
|E(K33)| =9 £8=2|V(Ks3)| — 4
0

Reminder . A subdivision of a graph




No subdivision of K5 or K3 3 is planar. No graph that has a K5 or
K3 3 subdivision is planar. Are there other nonplanar graphs?

No. That 1s what Kuratowski’s theorem tells us.

Lemma. Let G be a plane graph consisting of two vertices and
three internally disjoint paths Py, P,, P; joining them. Then G has
precisely three faces with boundaries P; U P,, P; U P; and P, U Ps,
respectively.

Proof. The graph P; U P, has exactly two faces by the Jordan
curve theorem; let f5 be the one disjoint from P;. Define f3, f5
similarly. Then f3, f5, f3 € F(G) by Lemma 1.10 (iii), and they are
distinct, because they have different boundaries. Let f € F(G) and
let x € bd(f) —V(G). WMA x € P,. But P, is only incident with
fiand f3,and so f = f; or f = f3 as desired. m



Theorem. Let G be a 2-connected plane graph. Then every face
of G 1s bounded by a cycle.

Proof. By induction on |E(G)|. If G is a cycle, then done by the
Jordan curve theorem. By the ear-decomposition theorem G can
be written as G = G' U P, where P is a path with both ends in G’
and otherwise disjoint from it (and |[E(P)| = 1). By induction
every face of G’ is bounded by a cycle.

Let f € F(G). Then f € f', where f' € F(G"). Then f'is
bounded by a cycle C of G'. Let P° be the point set P — {u, v},
where u, v are the ends of P.




Since P? is arcwise-connected, it is a subset of a face of G'.

Case 1. P° N f' = @. Then bd(f") is disjoint from G, and hence
f' € F(G) by Lemma 1.10. Thus f = f’ and the boundary of
f = f"is C, as desired.

Case2. P° C f'. Nowbd(f) S f'NG S CUP = fis aface of
C U P by Lemma 1.10 = f is bounded by a cycle by Lemma 2.2.
O
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Def. A graph H is a minor of G if H can be obtained from a
subgraph of G by contracting edges. An H minor is a minor
isomorphic to H.

H subdivision = H minor

Theorem (Special case of Kuratowski’s theorem) Let G be a 3-
connected graph with no minor isomorphic to K5 or K3 3. Then G is

planar.

Proof. By induction on |V (G)|. If |[V(G)| = 4, then clear. So
WMA |V(G)| = 5. By anold lemma 3 e € E(G) such that G/e is
3-connected. Since G /e has no minor isomorphic to K5 or K3 3, it
1s planar by the induction hypothesis.

Let e = uv, let w be the new vertex of G /e.

11



Note G /e\w is 2-connected, and so the face containing w is
bounded by a cycle, say C.

Claim. C can be written as P; U P,, where P;, P, are edge-disjoint
paths such that u has all neighbors in VV(P;) U {v} and v has all
neighbors in V(P,) U {u}.

Proof of claim. Case 1. Every neighbor of u on C is a neighbor of
v and vice versa.

Kz subdivision = Kz minor
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Case 2. WMA u has a neighbor x on C that is not a neighbor of v.

Let P; be the shortest subpath of C whose ends are neighbors of v.

If u has all neighbors in C on P; = claim holds, so WMA not.
Then G has a K3 3 subdivision.
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