Def. A graph H is a **minor** of G if H can be obtained from a subgraph of G by contracting edges. An H **minor** is a minor isomorphic to H.

H subdivision \Rightarrow *H* minor

Theorem (Special case of Kuratowski's theorem) Let *G* be a 3connected graph with no minor isomorphic to K_5 or $K_{3,3}$. Then *G* is planar.

Proof. By induction on |V(G)|. If |V(G)| = 4, then clear. So WMA $|V(G)| \ge 5$. By an old lemma $\exists e \in E(G)$ such that G/e is 3-connected. Since G/e has no minor isomorphic to K_5 or $K_{3,3}$, it is planar by the induction hypothesis.

Let e = uv, let w be the new vertex of G/e.

Note $G/e \setminus w$ is 2-connected, and so the face containing w is bounded by a cycle, say C.

Claim. *C* can be written as $P_1 \cup P_2$, where P_1, P_2 are edge-disjoint paths such that *u* has all neighbors in $V(P_1) \cup \{v\}$ and *v* has all neighbors in $V(P_2) \cup \{u\}$.

Proof of claim. Case 1. Every neighbor of u on C is a neighbor of v and vice versa.

Case 2. WMA u has a neighbor x on C that is not a neighbor of v. Let P_1 be the shortest subpath of C whose ends are neighbors of v.

If *u* has all neighbors in *C* on $P_1 \Rightarrow$ claim holds, so WMA not. Then *G* has a $K_{3,3}$ subdivision.

Def. We say that a plane graph *G* is a **convex drawing** if every edge $e \in E(G)$ is a straight-line segment and every face is bounded by a convex polygon. The previous proof shows: **Theorem.** Every 3-connected simple plane graph has a convex drawing.

Lemma 2.12. A graph *G* has a K_5 or $K_{3,3}$ minor if and only if it has a K_5 or $K_{3,3}$ subdivision.

Proof. \Leftarrow : always true.

 \Rightarrow : $K_{3,3}$ minor implies $K_{3,3}$ subdivision.

 K_5 minor implies K_5 or $K_{3,3}$ subdivision (exercise) \Box

Lemma 2.13. Let *G* be a graph on ≥ 4 vertices with no K_5 or $K_{3,3}$ subdivision, and assume that adding an edge joining any pair of non-adjacent vertices creates a K_5 or $K_{3,3}$ subdivision. Then *G* is 3-connected.

Theorem. For a graph *G* TFAE:

- (1) G is planar
- (2) G has a straight-line drawing
- (3) *G* has no K_5 or $K_{3,3}$ minor
- (4) *G* has no K_5 or $K_{3,3}$ subdivision.

Remarks. (1) \Leftrightarrow (4) is "Kuratowski's theorem" 1930

(1) \Leftrightarrow (2) is called Fáry's theorem.

Proof. (3) \Leftrightarrow (4) by Lemma 2.12.

 $(2) \Rightarrow (1)$ trivial

 $(1) \Rightarrow (4)$ by Corollary 2.1.

To prove (3) \Rightarrow (2) let *G* have no K_5 or $K_{3,3}$ minor. WMA *G* is edge-maximal. Then *G* is 3-connected by Lemma 2.13. \Rightarrow *G* has a straight-line drawing by the Special case of Kuratowski's theorem.

Lemma 2.13. Let *G* have \geq 4 vertices and no K_5 or $K_{3,3}$ subdivision. Assume that adding an edge joining a pair of non-adjacent vertices creates a K_5 or $K_{3,3}$ subdivision. Then *G* is 3-connected.

Proof. Induction on |V(G)|.

Exercise. Prove *G* is 2-connected.

To show *G* is 3-connected suppose that $G \setminus \{u, v\}$ is disconnected. Thus $G = G_1 \cup G_2$, where $V(G_1) \cap V(G_2) = \{u, v\}$.

Claim. $u \sim v$.

Pf. If not, then the edge uv can be added without creating K_5 or $K_{3,3}$ subdivision.

So $u \sim v$. WMA $uv \in E(G_1) \cap E(G_2)$. By induction both G_1, G_2 are either 3-connected or a triangle. By Lemma 2.10 WMA G_i is a plane graph. Pick $w_i \in V(G_i) - \{u, v\}$ such that u, v, w_i belong to the same face. By hypothesis $G + w_1w_2$ has a K_5 or $K_{3,3}$ subdivision, say K.

All except possibly one of the branch-vertices of *K* belong to the same G_i , say G_1 . It follows that some branch-vertex of *K* belongs to G_2 , for otherwise there would be a K_5 or $K_{3,3}$ subdivision in G_1 . Thus *K* is a $K_{3,3}$ subdivision.

Let $G'_1 \coloneqq G_1$ + new vertex adjacent to u, v, w_1

Then G'_1 is a plane graph. *K* can be converted to a $K_{3,3}$ subdivision in G'_1 , a contradiction.

 $G + w_1 w_2$

Uniqueness of planar drawings

Def. A cycle *C* in a graph *G* is **peripheral** if it is induced and $G \setminus V(C)$ has at most one component.

Theorem. Let G be a 3-connected simple plane graph and let C be a subgraph of G. Then C bounds a face of G if and only if C is a peripheral cycle.

Corollary. Every 3-connected simple planar graph G has a unique planar drawing in the sense that every two planar drawings of G have the same facial boundaries.

Proof. \Leftarrow Let *C* be a peripheral cycle. Then by the Jordan curve theorem one of the faces of *C*, say *f*, is disjoint from *G* and its boundary is *C*. By Lemma 1.10 *f* is a face of *G*, and hence *C* bounds a face of *G*.

⇒ Let *C* be the boundary of a face of $f \in F(G)$. Then *C* is a cycle by Lemma 2.4. Suppose $\exists e = uv \in E(G) - E(C)$ with $u, v \in V(C)$.

 \exists path from *x* to *y* and otherwise disjoint from *C*, where *x*, *y* belong to different components of $C \setminus \{u, v\}$. Add a new vertex in *f* joined to *u*, *v*, *x*, *y*. The new graph is planar, but has a K_5 subdivision, a contradiction. So *uv* does not exist.

Suppose $G \setminus V(C)$ has ≥ 2 components, and let $a, b \in V(G) - V(C)$ belong to different components of $G \setminus V(C)$.

By Menger's theorem \exists internally disjoint *a*-*b* paths P_1, P_2, P_3 . Pick $c_i \in V(P_i) \cap V(C)$ for i = 1,2,3. Add a new vertex in *f* joined to c_1, c_2, c_3 . This gives a plane graph with a subdivision of $K_{3,3}$, a contradiction.