Application to geometry

 $cr(G) \coloneqq$ minimum number of crossings in a drawing of G in the plane (in which crossings are allowed). More precisely, our "drawings" now allow edges to intersect, but

- (1) $|e \cap e'|$ is finite for distinct $e, e' \in E(G)$
- (2) each point of \mathbb{R}^2 belongs to ≤ 2 edges.

So the number of crossings in a drawing is $\sum_{\{e,e'\}} |e \cap e'|$, and cr(G) is the minimum, over all drawings Γ of G, of the number of crossings in Γ .

Examples.
$$cr(K_5) = cr(K_{3,3}) = 1, cr(K_6) = 3$$
 (exercise)

Fact. Computing cr(G) is NP-hard.

Conjecture.
$$cr(K_n) = \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor$$

Remark. Let cr'(G) denote the minimum, over all drawings Γ of G, of the number of unordered pairs of edges that cross in Γ . It is not known whether cr(G) = cr'(G) for all graphs G.

Lemma. $cr(G) \ge |E(G)| - 3|V(G)|$.

Proof. If not, then remove cr(G) edges, one from each crossing, to get a planar graph on *n* vertices and $\ge |E(G)| - cr(G) > 3n$ edges, a contradiction.

Crossing Number Lemma. (Ajtai, Chvatal, Newborn, Szemerédi; Leighton) Let *G* be a simple graph. Then

$$cr(G) \ge \frac{1}{64} \frac{|E(G)|^3}{|V(G)|^2} - |V(G)|$$

Proof. (Székely) Let *c* be the crossing number of *G*, let n = |V(G)|, m = |E(G)|. WMA $m \ge 4n$, for o.w. RHS is negative. Let $p \in (0,1)$, TBD. Choose a random subset $V \subseteq V(G)$ by picking each vertex independently at random with probability *p*. The expected number of

vertices is pn

edges is p^2m

crossings is p^4c

By the lemma

$$p^4c \ge p^2m - 3pn$$

and so

$$c \ge \frac{m}{p^2} - 3\frac{n}{p^3}$$

Choose $p = \frac{4n}{m}$ (which is < 1, because $m \ge 4n$) to get

$$c \ge \frac{m^3}{64n^2}$$

Is the expected number of crossings really p^4c ?

Let I(n, m) be the maximum number of possible incidences between n points and m lines in the plane. That is,

$$I(n,m) = \max |\{(p,L): p \in P, L \in \mathcal{L}, p \in L\}|$$

where the maximum is taken over all sets $P \subseteq \mathbb{R}^2$ and sets of lines \mathcal{L} such that |P| = n and $|\mathcal{L}| = m$.

Example. $I(3,3) \ge 6$

Theorem. (Szemerédi-Trotter) For all $m, n \ge 1$,

$$I(n,m) = O(n^{2/3}m^{2/3} + n + m)$$

and the bound is asymptotically tight.

Proof. (Szekély) Let P, \mathcal{L} be a system of points and lines realizing I(n, m). Define a topological graph (= graph drawn with crossings) G by V(G) = P and E(G) = subsets of lines in \mathcal{L} connecting consecutive points.

A line $L \in \mathcal{L}$ containing k points contributes k - 1 edges. So

$$I(n,m) = \sum_{L \in \mathcal{L}} \# \text{ of points on } L =$$

 $= \sum_{L \in \mathcal{L}} (1 + \# \text{ edges of } G \text{ contributed by } L) = |E(G)| + m.$

By the Crossing Number Lemma

$$\frac{1}{2}m^2 \ge \binom{m}{2} \ge cr(G) \ge \frac{1}{64}\frac{|E(G)|^3}{n^2} - n$$

$$|E(G)|^3 \le 32m^2n^2 + 64n^3$$

$$I(n,m) = |E(G)| + m \le O(m^{2/3}n^{2/3} + n + m)$$