Algebraic graph theory

The edge space of a graph G is the vector space £(G) := GF(Z)E(G)
If E(G) = {eq, ey, ..., e}, then the elements are m-tuples
(%1, X5, ..., Xy ), Where x; € {0,1}.

We can also regard the elements of £(G) as subsets of E(G) with
addition definedbyA+ B:=AAB=(A—B)U (B —A).

Definition. The cycle space of G is the subspace of £(G) generated
by edge-sets of cycles. It is denoted by C(G).

Proposition. F € C(G) if and only if every vertex of G is incident
with an even number of edges in F.

Definition. The cut space of G is the subspace of £(G) generated by
cuts; that is, sets of edges of the form §(X) forsome X C V(G). Itis
denoted by C*(G).

Proposition. F € C*(G) ifand only F = 6(X) for some X € V(G).
Proof. 5(X) A6(Y) =8(X AY)
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Definition. For E, F € £(G) we define
(E,F)=|E nF|(mod 2)
ForF € £(G) let FL:={D € £(G):(D,F) =0V F € F}

Theorem. C = (C*)+ and C1 = C*.

Proof. Enough to prove the first equality. C S (C*)+, because every
cycle intersects every cut even number of times. Conversely,
suppose F & C. Then 3v incident with odd number of edges in F.

Then (§(v),F) = 1,and so F & (C*)~.
Theorem. If G is connected, n = |V(G)|,m = |E(G)|, then
dimC(G) =m—-—n+1
dimC*(G)=n—-1

Proof. Pick a spanning tree T. For e &€ E(T) let C, be the unique
cyclein T + e. Then {C,}¢¢g(ry are linearly independent. Let

vy € V(G). Then
{6():v e V(G) — {vo}}

are linearly independent. Thus the dimensions are at least as large as
stated. They sum up to n by the previous theorem. O

Theorem. A graph G is bipartite if and only if it has no odd cycle.

Proof. V cycleiseven © 1= (1,1,...,1) € C(G)L = ¢*(G) & 3
cut that contains all edges & G 1s bipartite. O



Result. Let G be a connected graph with n vertices and m edges.
Then G has exactly 2™~ "*1 even subgraphs (subgraphs with all
degrees even).

Proof. The number of such subgraphs is the number of elements in
C(G), which is

ZdimC’(G) — om-n+1



Let A be a symmetric real matrix. The numerical range of A is
R = {{Ax, x): ||x|| = 1}

Then the largest eigenvalue is A, = max R and the smallest
eigenvalue is A,j;, = minR.

There 1s an orthogonal basis of eigenvectors, and so the 2" smallest
eigenvalue 1s

min{(Ax, x): ||x|| = 1,(x, x;) = 0}
where X; is an eigenvector corresponding to Ayip-

Theorem. Let G be a connected graph with adjacency matrix A.
Then

(i)  |A] < A(G) for every eigenvalue A of G

(i1))  A(G) is an eigenvalue of A if and only if G is regular, and if
it is, then A(G) has multiplicity 1

(i1) 1f —A(G) 1s an eigenvalue, then G is regular and bipartite

(iv) if G 1s bipartite and A is an eigenvalue of A, then so is - 4
and they have the same multiplicity

(v)  the largest eigenvalue A satisfies 6(G) < A < 4(G)

(vi) if H 1s an induced subgraph of G, then

)lmin (G) < Amin (H) = AmaX(H) = Amax(G)

Proof. (1) Let X be an eigenvector corresponding to A. By reordering
V(G) WMA 1 = |x1| = |X2|, |x3|, e |xn|. Then



n
21 = x| = 1040 = [ Y Ay <
j=1

n n
< ZA1j|xj| < zAlj — deg(v,) < A(G)
=1 =1

(i1) If G 1s regular, then 1 = (1,1, ...,1) is an eigenvector
corresponding to 4(G). Conversely, if 4(G) is an eigenvalue, then
the above calculation (without absolute values) shows that G is
regular and 1 is the only eigenvector with x; = 1.

(ii1) If —A(G) is an eigenvalue, then the same argument shows G is
regular. Suppose x; = —1. Then

AG) = —A(6)x, = (A%); = ZAl x; < A(G)
=

=X;

; = 1 for every neighbor v; of v;.

The same argument shows that x, = —1 for every neighbor x; of a
neighbor of v4, and so on. Thus G is bipartite.

(1v) A = ( BOT lg) Letx = (;2) be an eigenvector corresponding to
X1

A. Then Bx, = A%;, BTx; = Ax,. Lety = ( = ) Then Ay =

_sz . _Afl . —
(o2, )= (i) ==
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(V) Apax = max{{Ax, x): ||x|| = 1}. We know A, < 4(G). Now
_ 1
take x = = (1,1, ...,1). Then

1 1
A > (A%, %) = —z Ay > Z deg(v) = 8(G)
"o &

(vi) Enough to show for H := G\v,,. Pick y with ||y|| = 1 such that
(A'Y,y) = Apax(H), where A" = adj matrix of H. Let X =
(Y1, V2, «+» Vn-1,0). Then ||X]|| = 1 and
Amax(G) 2 (Af) x_> — <A,}_]’ )_/> — AmaX(H)
The other inequality i1s analogous. O

Reminder: The Laplace matrix L of a graph
Lo deg(v;) ifi=j
o {_Aij if i # j
Exercise. (LX,%) = Y. j3(x; — x;)* for any vector X, where L is the
i~
Laplace matrix of G.

Theorem. Let G be a graph on n vertices, and let A, be the second

smallest eigenvalue of the Laplace matrix of G. Then for every
S € V(G) we have

S| -V (G) =S|
n

0S| = A,

Proof. 1, = min{({Lx, x): |[x|| = 1,x -1 = 0}. Let|S| = k. Define
X = (xq,...x,) by



__{n—k ifv, €S
YT l-k ifveS

Xx1=kn—k)—k(h—k)=0
x| = k(n — k)? + (n — k)k? = nk(n — k)

1 < (Lx, x) _ Vi i~ (X — %)° _ |0S|n*
2= %12 nk(n — k) nk(n — k)

O

Definition. The conductance or isoperimetric constant of G is

Corollary. @(G) = 1,(G)/2.

Definition. A graph G is an (n, d, c¢)-expander if |V (G) = n,
A(G) < d and for every X € V(G) with |X| < n/2 we have
IN(X)| = c|X].

N (X) means neighbors outside of X

Corollary. Every graph G on n vertices and 4(G) < d is an
(n, d, c)-expander, where ¢ = j—; and A, is the second smallest

eigenvalue of the Laplace matrix of G.

Proof. |[N(X)| = % |0X| = j—; |X| by the previous corollary.



Theorem (Alon 1986) If a graph G is an (n, d, c)-expander, then
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I will not prove this, but I have notes on it.



Szemerédi’s regularity lemma.

Lete > 0.Let4,B € V(G) be disjoint. We say that (4, B) is &-
regular in G if forall X € Aand Y € B with |X| = ¢|A| and
|Y| = €|B| we have

|d(A,B) —d(X,Y)| < ¢
where

(C,D)|

4C.D) =1 1D)

and (C, D) = {e: e has one end in C, the other in D}.

A partition (Vy, V4, ..., V) of V(G) is &-regular if

@) Vol < €|V(G)

(i) | = V| = - = V|

(iii) all but at most €k? pairs (Vi, V]) are e-regular (1 < i,j < k).

Theorem (Szemerédi’s regularity lemma). V € > 0V integer m 3
integer M V graph G on n = m vertices 3 k withm < k < M and an
g-regular partition (Vy, V1, V5, ..., Vi) of V(G).
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The Erdos-Stone theorem

Turan’s theorem. If G has no K, subgraph, then

E@®)] < |E(Tr-a(m)],
with equality if and only if G = T,_; (n).

Recall that T,._;(n) = complete (r — 1)-partite graph on n vertices
with color classes as close to each other in size as possible. Let

r—2 n?

r—1 2
Theorem. (Erdds-Stone) Vr,s Ve > 03nyV graph G on = ny
vertices 1f

tr_1(n) = |E(TT—1(n))| ~

|E(G)| = t,_;(n) + en?,

then G has a K = K ; s-subgraph.

>

x>

Equivalently, the hypothesis can be stated as

2

o= (i)




Definition.
ex(n,H) = max{|E(G)|:|V(G)| = n, G has no H subgraph}
Example. ex(n, K,) = t,_,(n).

ex(n,H) _ x(H)-2
() x)-1

Corollary. lim,,_, for every H with = 1 edge

Proof. Weekly exercise.

Definition. The upper density of an (infinite) graph G is

|E(H)|

(IV(H)I)

Corollary. The upper density of an infinite graph is

0,1/2,2/3,3/4,...,01*1

Proof. Weekly exercise.

lim sup :H € @G, H finite



