Algebraic graph theory

The **edge space** of a graph *G* is the vector space $\mathcal{E}(G) \coloneqq GF(2)^{E(G)}$ If $E(G) = \{e_1, e_2, \dots, e_m\}$, then the elements are *m*-tuples (x_1, x_2, \dots, x_m) , where $x_i \in \{0, 1\}$.

We can also regard the elements of $\mathcal{E}(G)$ as subsets of E(G) with addition defined by $A + B \coloneqq A \bigtriangleup B = (A - B) \cup (B - A)$.

Definition. The cycle space of G is the subspace of $\mathcal{E}(G)$ generated by edge-sets of cycles. It is denoted by $\mathcal{C}(G)$.

Proposition. $F \in C(G)$ if and only if every vertex of G is incident with an even number of edges in F.

Definition. The **cut space** of *G* is the subspace of $\mathcal{E}(G)$ generated by cuts; that is, sets of edges of the form $\delta(X)$ for some $X \subseteq V(G)$. It is denoted by $\mathcal{C}^*(G)$.

Proposition. $F \in C^*(G)$ if and only $F = \delta(X)$ for some $X \subseteq V(G)$.

Proof. $\delta(X) \vartriangle \delta(Y) = \delta(X \bigtriangleup Y)$

Definition. For $E, F \in \mathcal{E}(G)$ we define

 $\langle E, F \rangle = |E \cap F| \pmod{2}$

For $\mathcal{F} \subseteq \mathcal{E}(G)$ let $\mathcal{F}^{\perp} := \{ D \in \mathcal{E}(G) : \langle D, F \rangle = 0 \ \forall F \in \mathcal{F} \}$

Theorem. $\mathcal{C} = (\mathcal{C}^*)^{\perp}$ and $\mathcal{C}^{\perp} = \mathcal{C}^*$.

Proof. Enough to prove the first equality. $C \subseteq (C^*)^{\perp}$, because every cycle intersects every cut even number of times. Conversely, suppose $F \notin C$. Then $\exists v$ incident with odd number of edges in F. Then $\langle \delta(v), F \rangle = 1$, and so $F \notin (C^*)^{\perp}$.

Theorem. If G is connected, n = |V(G)|, m = |E(G)|, then

$$\dim C(G) = m - n + 1$$
$$\dim C^*(G) = n - 1$$

Proof. Pick a spanning tree *T*. For $e \notin E(T)$ let C_e be the unique cycle in T + e. Then $\{C_e\}_{e \notin E(T)}$ are linearly independent. Let $v_0 \in V(G)$. Then

$$\{\delta(v): v \in V(G) - \{v_0\}\}$$

are linearly independent. Thus the dimensions are at least as large as stated. They sum up to n by the previous theorem. \Box

Theorem. A graph G is bipartite if and only if it has no odd cycle.

Proof. \forall cycle is even $\Leftrightarrow \mathbb{1} = (1,1,...,1) \in \mathcal{C}(G)^{\perp} = \mathcal{C}^*(G) \Leftrightarrow \exists$ cut that contains all edges $\Leftrightarrow G$ is bipartite. \Box

Result. Let *G* be a connected graph with *n* vertices and *m* edges. Then *G* has exactly 2^{m-n+1} even subgraphs (subgraphs with all degrees even).

Proof. The number of such subgraphs is the number of elements in C(G), which is

 $2^{\dim \mathcal{C}(G)} = 2^{m-n+1}$

Let *A* be a symmetric real matrix. The **numerical range** of *A* is

$$R = \{ \langle A\bar{x}, \bar{x} \rangle \colon \|\bar{x}\| = 1 \}$$

Then the largest eigenvalue is $\lambda_{max} = \max R$ and the smallest eigenvalue is $\lambda_{min} = \min R$.

There is an orthogonal basis of eigenvectors, and so the 2nd smallest eigenvalue is

$$\min\{\langle A\bar{x}, \bar{x}\rangle : \|\bar{x}\| = 1, \langle \bar{x}, \bar{x}_1\rangle = 0\}$$

where \bar{x}_1 is an eigenvector corresponding to λ_{\min} .

Theorem. Let *G* be a connected graph with adjacency matrix *A*. Then

- (i) $|\lambda| \leq \Delta(G)$ for every eigenvalue λ of G
- (ii) $\Delta(G)$ is an eigenvalue of A if and only if G is regular, and if it is, then $\Delta(G)$ has multiplicity 1
- (iii) if $-\Delta(G)$ is an eigenvalue, then G is regular and bipartite
- (iv) if G is bipartite and λ is an eigenvalue of A, then so is $-\lambda$ and they have the same multiplicity
- (v) the largest eigenvalue λ satisfies $\delta(G) \le \lambda \le \Delta(G)$
- (vi) if H is an induced subgraph of G, then

 $\lambda_{\min}(G) \le \lambda_{\min}(H) \le \lambda_{\max}(H) \le \lambda_{\max}(G)$

Proof. (i) Let \bar{x} be an eigenvector corresponding to λ . By reordering V(G) WMA $1 = |x_1| \ge |x_2|, |x_3|, ..., |x_n|$. Then

$$\begin{aligned} |\lambda| &= |\lambda x_1| = |(A\bar{x})_1| = \left| \sum_{j=1}^n A_{1j} x_j \right| \le \\ &\le \sum_{j=1}^n A_{1j} |x_j| \le \sum_{j=1}^n A_{1j} = \deg(v_1) \le \Delta(G) \end{aligned}$$

(ii) If G is regular, then 1 = (1, 1, ..., 1) is an eigenvector corresponding to $\Delta(G)$. Conversely, if $\Delta(G)$ is an eigenvalue, then the above calculation (without absolute values) shows that G is regular and 1 is the only eigenvector with $x_1 = 1$.

(iii) If $-\Delta(G)$ is an eigenvalue, then the same argument shows G is regular. Suppose $x_1 = -1$. Then

$$\Delta(G) = -\Delta(G)x_1 = (A\bar{x})_1 = \sum_{j=1}^n A_{1j}x_j \le \Delta(G)$$

 $\Rightarrow x_j = 1$ for every neighbor v_j of v_1 .

The same argument shows that $x_k = -1$ for every neighbor x_k of a neighbor of v_1 , and so on. Thus *G* is bipartite.

(iv) $A = \begin{pmatrix} 0 & B \\ B^T & 0 \end{pmatrix}$. Let $\bar{x} = \begin{pmatrix} \bar{x}_1 \\ \bar{x}_2 \end{pmatrix}$ be an eigenvector corresponding to λ . Then $B\bar{x}_2 = \lambda \bar{x}_1$, $B^T \bar{x}_1 = \lambda \bar{x}_2$. Let $\bar{y} \coloneqq \begin{pmatrix} \bar{x}_1 \\ -\bar{x}_2 \end{pmatrix}$. Then $A\bar{y} = \begin{pmatrix} -B\bar{x}_2 \\ B^T\bar{x}_1 \end{pmatrix} = \begin{pmatrix} -\lambda \bar{x}_1 \\ \lambda \bar{x}_2 \end{pmatrix} = -\lambda \bar{y}$. (v) $\lambda_{\max} = \max\{\langle A\bar{x}, \bar{x} \rangle : \|\bar{x}\| = 1\}$. We know $\lambda_{\max} \leq \Delta(G)$. Now take $\bar{x} = \frac{1}{\sqrt{n}}(1, 1, ..., 1)$. Then

$$\lambda_{\max} \ge \langle A\bar{x}, \bar{x} \rangle = \frac{1}{n} \sum_{(i,j)} A_{ij} \ge \frac{1}{n} \sum_{v \in V(G)} \deg(v) \ge \delta(G)$$

(vi) Enough to show for $H \coloneqq G \setminus v_n$. Pick \bar{y} with $\|\bar{y}\| = 1$ such that $\langle A'\bar{y}, \bar{y} \rangle = \lambda_{\max}(H)$, where $A' = \operatorname{adj} \operatorname{matrix} \operatorname{of} H$. Let $\bar{x} = (y_1, y_2, \dots, y_{n-1}, 0)$. Then $\|\bar{x}\| = 1$ and

$$\lambda_{\max}(G) \ge \langle A\bar{x}, \bar{x} \rangle = \langle A'\bar{y}, \bar{y} \rangle = \lambda_{\max}(H)$$

The other inequality is analogous.

Reminder: The Laplace matrix *L* of a graph

$$L_{ij} = \begin{cases} \deg(v_i) & \text{if } i = j \\ -A_{ij} & \text{if } i \neq j \end{cases}$$

Exercise. $\langle L\bar{x}, \bar{x} \rangle = \sum_{\substack{\{i,j\}\\i \sim j}} (x_i - x_j)^2$ for any vector \bar{x} , where *L* is the

Laplace matrix of G.

Theorem. Let *G* be a graph on *n* vertices, and let λ_2 be the second smallest eigenvalue of the Laplace matrix of *G*. Then for every $S \subseteq V(G)$ we have

$$|\partial S| \ge \lambda_2 \frac{|S| \cdot |V(G) - S|}{n}$$

Proof. $\lambda_2 = \min\{\langle L\bar{x}, \bar{x} \rangle : \|\bar{x}\| = 1, \bar{x} \cdot 1 = 0\}$. Let |S| = k. Define $\bar{x} = (x_1, ..., x_n)$ by

$$x_{i} = \begin{cases} n-k & \text{if } v_{i} \in S \\ -k & \text{if } v_{i} \notin S \end{cases}$$

$$\bar{x} \cdot 1 = k(n-k) - k(n-k) = 0$$

$$\|\bar{x}\|^{2} = k(n-k)^{2} + (n-k)k^{2} = nk(n-k)$$

$$\lambda_{2} \leq \frac{\langle L\bar{x}, \bar{x} \rangle}{\|\bar{x}\|^{2}} = \frac{\sum_{\{i,j\}, i \sim j} (x_{i} - x_{j})^{2}}{nk(n-k)} = \frac{|\partial S|n^{2}}{nk(n-k)}$$

Definition. The conductance or isoperimetric constant of G is

$$\Phi(G) := \min\left\{\frac{|\partial S|}{|S|} : \emptyset \neq S \subseteq V(G), |S| \le \frac{|V(G)|}{2}\right\}$$

Corollary. $\Phi(G) \ge \lambda_2(G)/2$.

Definition. A graph *G* is an (n, d, c)-expander if |V(G) = n, $\Delta(G) \le d$ and for every $X \subseteq V(G)$ with $|X| \le n/2$ we have $|N(X)| \ge c|X|$.

N(X) means neighbors outside of X

Corollary. Every graph *G* on *n* vertices and $\Delta(G) \leq d$ is an (n, d, c)-expander, where $c = \frac{\lambda_2}{2d}$ and λ_2 is the second smallest eigenvalue of the Laplace matrix of *G*.

Proof. $|N(X)| \ge \frac{1}{d} |\partial X| \ge \frac{\lambda_2}{2d} |X|$ by the previous corollary.

Theorem (Alon 1986) If a graph G is an (n, d, c)-expander, then

$$\lambda_2 \ge \frac{c^2}{4+2c^2}$$

I will not prove this, but I have notes on it.

Szemerédi's regularity lemma.

Let $\varepsilon > 0$. Let $A, B \subseteq V(G)$ be disjoint. We say that (A, B) is ε -**regular** in *G* if for all $X \subseteq A$ and $Y \subseteq B$ with $|X| \ge \varepsilon |A|$ and $|Y| \ge \varepsilon |B|$ we have

$$|d(A,B) - d(X,Y)| \le \varepsilon$$

where

$$d(C,D) = \frac{|\langle C,D\rangle|}{|C|\cdot|D|}$$

and $\langle C, D \rangle = \{e: e \text{ has one end in } C, \text{ the other in } D\}.$

A partition $(V_0, V_1, ..., V_k)$ of V(G) is ε -regular if

(i) $|V_0| \le \varepsilon |V(G)|$

(ii) $|V_1| = |V_2| = \dots = |V_k|$

(iii) all but at most εk^2 pairs (V_i, V_j) are ε -regular $(1 \le i, j \le k)$.

Theorem (Szemerédi's regularity lemma). $\forall \varepsilon > 0 \forall$ integer $m \exists$ integer $M \forall$ graph G on $n \ge m$ vertices $\exists k$ with $m \le k \le M$ and an ε -regular partition $(V_0, V_1, V_2, ..., V_k)$ of V(G).

The Erdős-Stone theorem

Turán's theorem. If G has no K_r subgraph, then

$$|E(G)| \le |E(T_{r-1}(n))|,$$

with equality if and only if $G \cong T_{r-1}(n)$.

Recall that $T_{r-1}(n) = \text{complete } (r-1)\text{-partite graph on } n$ vertices with color classes as close to each other in size as possible. Let

$$t_{r-1}(n) \coloneqq \left| E\left(T_{r-1}(n)\right) \right| \approx \frac{r-2}{r-1} \cdot \frac{n^2}{2}$$

Theorem. (Erdős-Stone) $\forall r, s \forall \varepsilon > 0 \exists n_0 \forall \text{ graph } G \text{ on } \ge n_0$ vertices if

$$|E(G)| \ge t_{r-1}(n) + \varepsilon n^2,$$

then G has a $K_s^r \coloneqq K_{s,s,\dots,s}$ -subgraph.

Equivalently, the hypothesis can be stated as

$$|E(G)| \ge \left(\frac{r-2}{r-1} + \varepsilon\right) \frac{n^2}{2}$$

Definition.

 $ex(n, H) \coloneqq max\{|E(G)|: |V(G)| = n, G \text{ has no } H \text{ subgraph}\}$ Example. $ex(n, K_r) = t_{r-1}(n)$.
Corollary $\lim_{k \to \infty} \frac{ex(n, H)}{k} - \frac{\chi(H) - 2}{k}$ for every H with ≥ 1 edge

Corollary. $\lim_{n\to\infty} \frac{\exp(n,H)}{\binom{n}{2}} = \frac{\chi(H)-2}{\chi(H)-1}$ for every *H* with ≥ 1 edge **Proof.** Weekly exercise.

Definition. The upper density of an (infinite) graph *G* is

$$\limsup \left\{ \frac{|E(H)|}{\binom{|V(H)|}{2}} : H \subseteq G, H \text{ finite} \right\}$$

Corollary. The upper density of an infinite graph is

0,
$$\frac{1}{2}$$
, $\frac{2}{3}$, $\frac{3}{4}$, ..., or 1

Proof. Weekly exercise.