Szemerédi's regularity lemma.

Let $\varepsilon > 0$. Let $A, B \subseteq V(G)$ be disjoint. We say that (A, B) is ε -**regular** in *G* if for all $X \subseteq A$ and $Y \subseteq B$ with $|X| \ge \varepsilon |A|$ and $|Y| \ge \varepsilon |B|$ we have

$$|d(A,B) - d(X,Y)| \le \varepsilon$$

where

$$d(C,D) = \frac{|\langle C,D\rangle|}{|C|\cdot|D|}$$

and $\langle C, D \rangle = \{e: e \text{ has one end in } C, \text{ the other in } D\}.$

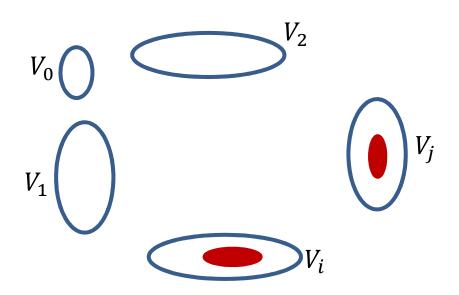
A partition $(V_0, V_1, ..., V_k)$ of V(G) is ε -regular if

(i) $|V_0| \le \varepsilon |V(G)|$

(ii) $|V_1| = |V_2| = \dots = |V_k|$

(iii) all but at most εk^2 pairs (V_i, V_j) are ε -regular $(1 \le i, j \le k)$.

Theorem (Szemerédi's regularity lemma). $\forall \varepsilon > 0 \forall$ integer $m \exists$ integer $M \forall$ graph G on $n \ge m$ vertices $\exists k$ with $m \le k \le M$ and an ε -regular partition $(V_0, V_1, V_2, ..., V_k)$ of V(G).



The Erdős-Stone theorem

Turán's theorem. If G has no K_r subgraph, then

$$|E(G)| \le |E(T_{r-1}(n))|,$$

with equality if and only if $G \cong T_{r-1}(n)$.

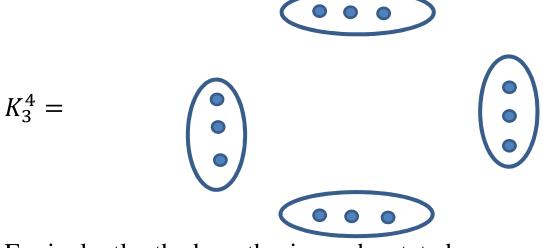
Recall that $T_{r-1}(n) = \text{complete } (r-1)\text{-partite graph on } n$ vertices with color classes as close to each other in size as possible. Let

$$t_{r-1}(n) \coloneqq \left| E\left(T_{r-1}(n)\right) \right| \approx \frac{r-2}{r-1} \cdot \frac{n^2}{2}$$

Theorem. (Erdős-Stone) $\forall r, s \forall \varepsilon > 0 \exists n_0 \forall \text{ graph } G \text{ on } \ge n_0$ vertices if

$$|E(G)| \ge t_{r-1}(n) + \varepsilon n^2,$$

then G has a $K_s^r \coloneqq K_{s,s,\dots,s}$ -subgraph.



Equivalently, the hypothesis can be stated as

$$|E(G)| \ge \left(\frac{r-2}{r-1} + \varepsilon\right) \frac{n^2}{2}$$

Definition.

 $ex(n, H) \coloneqq max\{|E(G)|: |V(G)| = n, G \text{ has no } H \text{ subgraph}\}$ Example. $ex(n, K_r) = t_{r-1}(n)$.
Corollary $\lim_{k \to \infty} \frac{ex(n, H)}{k} - \frac{\chi(H) - 2}{k}$ for every H with ≥ 1 edge

Corollary. $\lim_{n\to\infty} \frac{\exp(n,H)}{\binom{n}{2}} = \frac{\chi(H)-2}{\chi(H)-1}$ for every *H* with ≥ 1 edge **Proof.** Weekly exercise.

Definition. The upper density of an (infinite) graph *G* is

$$\limsup \left\{ \frac{|E(H)|}{\binom{|V(H)|}{2}} : H \subseteq G, H \text{ finite} \right\}$$

Corollary. The upper density of an infinite graph is

0,
$$\frac{1}{2}$$
, $\frac{2}{3}$, $\frac{3}{4}$, ..., or 1

Proof. Weekly exercise.

Proof of Erdős-Stone. Let *r*, *s* and $\gamma > 0$ be given. Want to show $\exists n_0$ such that if $|V(G)| \ge n_0$, then

$$|E(G)| \ge \left(\frac{1}{2}\frac{r-1}{r-2} + \gamma\right)n^2 \Rightarrow K_s^r \subseteq G$$

Let $\varepsilon = \varepsilon(r, s, \gamma)$ and $m = m(\gamma)$, TBD.

Let *M* be as in Szemerédi's regularity lemma. Let *G* have at least *m* vertices. By Szemerédi's regularity lemma *G* has an ε -regular partition (V_0, V_1, \dots, V_k) with $m \le k \le M$.

Note
$$(1 - \varepsilon) \frac{n}{k} \le |V_i| \le \frac{n}{k}$$
 for $i = 1, 2, ..., k$.

Let *R* be the "regularity graph" defined by $V(R) \coloneqq \{1, 2, ..., k\}$ and $i \sim j$ in *R* if (V_i, V_j) is ε -regular and the density $d(V_i, V_j)$ is $\geq \gamma$.

Claim 1. ε , *m* can be chosen so that *R* has a K_r subgraph.

Pf. If not, then by Turán's theorem $|E(R)| \le t_{r-1}(k) \le \frac{1}{2} \frac{r-2}{r-1} k^2$. We have that |E(G)| is at most the sum of:

- # of edges incident with V_0 , which is $\leq \epsilon n^2$
- # edges in some V_i , which is $\leq k \frac{1}{2} \left(\frac{n}{k}\right)^2 \leq \frac{1}{2} \frac{n^2}{m}$
- # of $V_i V_j$ edges for $i, j \in E(R)$, which is $\leq |E(R)| \left(\frac{n}{k}\right)^2 \leq \frac{1}{2} \frac{r-2}{r-1} n^2$
- # of $V_i V_j$ edges for (V_i, V_j) not ε -regular, which is $\leq \varepsilon k^2 \left(\frac{n}{k}\right)^2$
- # of $V_i V_j$ edges when $d(V_i, V_j) < \gamma$, which is $\leq {\binom{k}{2}} \gamma \left(\frac{n}{k}\right)^2$

$$\begin{split} |E(G)| &\leq \varepsilon n^2 + k \frac{1}{2} \left(\frac{n}{k}\right)^2 + |E(R)| \left(\frac{n}{k}\right)^2 + \varepsilon k^2 \left(\frac{n}{k}\right)^2 + \left(\frac{k}{2}\right) \gamma \left(\frac{n}{k}\right)^2 \\ &\leq \frac{1}{2} \frac{r-2}{r-1} n^2 + \varepsilon n^2 + \frac{1}{2} \frac{n^2}{k} + \varepsilon n^2 + \frac{\gamma}{2} n^2 \leq \\ &\leq \frac{1}{2} \frac{r-2}{r-1} n^2 + \left(2\varepsilon + \frac{1}{2m} + \frac{\gamma}{2}\right) n^2 \end{split}$$

So on choosing ε , *m* such that $4\varepsilon + \frac{1}{m} < \gamma$ we get a contradiction. This proves Claim 1.

Next we show that if ε is sufficiently small, then $K_s^r \subseteq G$. We may assume that $\{1, 2, ..., r\}$ is a clique in *R*.

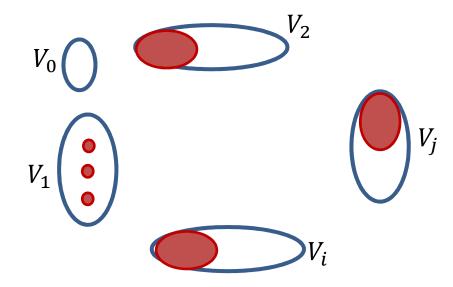
For $1 \le i < j \le r$ we have $d(V_i, V_j) \ge \gamma$ and so $d(X, Y) \ge \gamma - \varepsilon$ for every $X \subseteq V_i$ and $Y \subseteq V_j$ with $|X| \ge \varepsilon |V_i|$ and $|Y| \ge \varepsilon |V_j|$.

We will show:

(*) Let $V'_i \subseteq V_i$ satisfy $|V'_i| \ge \varepsilon |V_i|$ and $|V'_1| \ge (r-1)\varepsilon |V_1| + s$. Then there exist distinct vertices $v_1, v_2, \dots, v_s \in V'_1$ and sets $V''_i \subseteq V'_i$ such that

- { v_1 , ..., v_s } is complete to V''_i for all i = 2, ..., r
- $|V_i''| \ge c |V_i'|$, where $c = c(\gamma, r)$ is independent of ε

To prove the theorem assuming (*), first apply (*) to $V'_i = V_i$ to obtain $v_1, v_2, ..., v_s \in V'_1$ and sets $V'_i \subseteq V_i$. Then apply (*) to the sets $V'_2, V'_3, ..., V'_r$ to obtain $u_1, u_2, ..., u_s \in V'_2$ and sets $V''_i \subseteq V'_i$. Then apply (*) to the sets $V''_3, V''_4, ..., V''_r$ and so on.



Lemma. Let $Y \subseteq V_2$ with $|Y| \ge \varepsilon |V_2|$. Then all but $\varepsilon |V_1|$ vertices of V_1 have $\ge (\gamma - \varepsilon)|Y|$ neighbors in *Y*.

Proof. Let

 $X = \{v \in V_1 : v \text{ is adjacent to } < (\gamma - \varepsilon)|Y| \text{ vertices in } Y\}.$

Then $|\langle X, Y \rangle| < |X|(\gamma - \varepsilon)|Y|$. Thus $d(X, Y) < \gamma - \varepsilon$, and so $|X| < \varepsilon |V_1|$, as desired. \Box

By the lemma, all but $(r - 1)\varepsilon |V_1|$ vertices of V_1 have $\ge (\gamma - \varepsilon) |Y|$ neighbors in *Y* for $Y = V'_2, V'_3, ..., V'_r$. Pick $v_1 \in V'_1$ with this property and let $W_i \subseteq V'_i$ be such that $|W_i| \ge (\gamma - \varepsilon) |V'_i|$ and v_1 is complete to W_i for all i = 2, 3, ..., r. Repeat the same argument, but with $V'_2, V'_3, ..., V'_r$ replaced by $W_2, ..., W_r$. We find $v_2 \in V'_1 - \{v_1\}$ and $Z_i \subseteq W_i$ such that $|Z_i| \ge (\gamma - \varepsilon) |W_i|$ and v_2 is complete to Z_i for all i = 2, 3, ..., r. After *s* iterations we will end up with the vertices $v_1, v_2, ..., v_s$ and sets $V''_2, V''_3, ..., V''_r$. **Theorem (Triangle removal lemma)** $\forall \varepsilon > 0 \exists \delta > 0 \exists n_0$ such that if *G* is a graph on $\geq n_0$ vertices with at most δn^3 triangles, then $\exists F \subseteq E(G)$ such that $|F| \leq \varepsilon n^2$ and $G \setminus F$ is triangle-free.

"If a graph has $o(n^3)$ triangles, then all triangles can be destroyed by removing $o(n^2)$ edges"

Application to arithmetic progressions

Lemma. $\forall \varepsilon > 0 \exists n_0 \forall \text{graph } G \text{ on } n \ge n_0 \text{ vertices such that every edge is in exactly one triangle has <math>\le \varepsilon n^2$ edges.

Proof. By the Triangle removal lemma $\exists \delta > 0 \exists n_0$ such that every graph on $\geq n_0$ vertices with $\leq \delta n^3$ triangles can be made Δ free by deleting εn^2 edges. Our graph has $|E(G)| \leq n^2$ triangles, which is $\leq \delta n^3$ for big enough n. So if n is a big enough, then $\exists F \subseteq E(G)$ such that $|F| \leq \varepsilon n^2$ and $G \setminus F$ is triangle free. Let F'consist of the edges of the unique triangle containing e, for all $e \in F$. Thus $|F'| \leq 3\varepsilon n^2$ and $E(G) \subseteq F'$, as required. \Box

Definition. A corner is a triple of the form

 $\{(x, y), (x, y + d), (x + d, y)\}$ for some d, possibly negative.

Corollary. (Ajtai & Szemerédi 1974). Let $A \subseteq [\{1, 2, ..., N\}]^2$. If *A* contains no corner, then $|A| = o(N^2)$.

Proof. Consider the $N \times N$ grid.

X = horizontal lines y = i for i = 1, 2, ..., N

Y =vertical lines x = i for i = 1, 2, ..., N

Z = slope - 1 lines y = -x + i for i = 1, 2, ..., 2N - 1

Then |X| = |Y| = N and |Z| = 2N - 1

Define a tripartite graph *G* on $X \cup Y \cup Z$ by saying that the two lines are adjacent if their intersection belongs to *A*. Then |V(G)| = 4N - 1 and |E(G)| = 3|A|. Since *A* is corner-free, each edge belongs to a unique triangle. By the previous lemma, $3|A| = o(N^2)$, as desired.

Corollary. (Roth's theorem) If $S \subseteq \{1, 2, ..., N\}$ contains no 3-term arithmetic progression, then |S| = o(N).

Proof. Let $A = \{(x, y): x, y \in \{1, 2, ..., 2N\}, y - x \in S\}$. If *A* has a corner, say $(x, y), (x, y + d), (x + d, y) \in A$, then

 $y - x \in S$, $y + d - x \in S$, $y - x - d \in S$, and so *S* contains a 3term arithmetic progression. We may therefore assume that *A* has no corner. For every $\{s, s'\} \subseteq S$ we have $(s, s + s') \in A$, and hence $|A| \ge {|S| \choose 2}$. By the previous corollary ${|S| \choose 2} \le |A| = o(N^2)$, and so |S| = o(N).

Application to property testing

Definition. A graph *G* on *n* vertices is ε -far from triangle-free if for every set $F \subseteq E(G)$ of size at most εn^2 the graph $G \setminus F$ has a triangle.

Remark. We cannot hope to test whether a graph is triangle-free in constant time, but how about distinguishing triangle-free graphs from those that are ε -far from triangle-free?

Theorem. For every $\varepsilon > 0$ there exists a randomized algorithm which in constant time accepts every triangle free graph and rejects every graph which is ε -far from triangle-free with probability at least 2/3.

Proof. Let δ be as in the Triangle removal lemma. Thus if *G* is ε -far from triangle-free, then it has more than δn^3 triangles. Pick δ^{-1} triples of vertices uniformly independently at random. If none of those triples form a triangle, then accept the graph; otherwise reject. If the graph is a triangle-free, then it will be accepted. If it is ε -far from triangle-free, then the probability of being accepted is at most

$$\left(1 - \frac{\delta n^3}{\binom{n}{3}}\right)^{\delta^{-1}} \le \frac{1}{3}$$

if δ is sufficiently small.