Szemerédi’s regularity lemma.

Lete > 0.Let4,B € V(G) be disjoint. We say that (4, B) is &-
regular in G if forall X € Aand Y € B with |X| = ¢|A| and
|Y| = €|B| we have

|d(A,B) —d(X,Y)| < ¢
where

(C,D)|

4C.D) =1 1D)

and (C, D) = {e: e has one end in C, the other in D}.

A partition (Vy, V4, ..., V) of V(G) is &-regular if

@) Vol < €|V(G)

(i) | = V| = - = V|

(iii) all but at most €k? pairs (Vi, V]) are e-regular (1 < i,j < k).

Theorem (Szemerédi’s regularity lemma). V € > 0V integer m 3
integer M V graph G on n = m vertices 3 k withm < k < M and an
g-regular partition (Vy, V1, V5, ..., Vi) of V(G).
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The Erdos-Stone theorem

Turan’s theorem. If G has no K, subgraph, then

E@®)] < |E(Tr-a(m)],
with equality if and only if G = T,_; (n).

Recall that T,._;(n) = complete (r — 1)-partite graph on n vertices
with color classes as close to each other in size as possible. Let

r—2 n?

r—1 2
Theorem. (Erdds-Stone) Vr,s Ve > 03nyV graph G on = ny
vertices 1f

tr_1(n) = |E(TT—1(n))| ~

|E(G)| = t,_;(n) + en?,

then G has a K = K ; s-subgraph.
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Equivalently, the hypothesis can be stated as
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Definition.
ex(n,H) = max{|E(G)|:|V(G)| = n, G has no H subgraph}
Example. ex(n, K,) = t,_,(n).

ex(n,H) _ x(H)-2
() x)-1

Corollary. lim,,_, for every H with = 1 edge

Proof. Weekly exercise.

Definition. The upper density of an (infinite) graph G is

|E(H)|

(IV(H)I)

Corollary. The upper density of an infinite graph is

0,1/2,2/3,3/4,...,01*1

Proof. Weekly exercise.

lim sup :H € @G, H finite



Proof of Erdos-Stone. Let 7, s and y > 0 be given. Want to show
dn, such that if |V (G)| = n,, then

E(G) >(1r_1+ ) 25 KT CG
Let e = &(r,s,y) and m = m(y), TBD.

Let M be as in Szemerédi’s regularity lemma. Let G have at least m
vertices. By Szemerédi’s regularity lemma G has an e-regular
partition (Vo, Vy, ..., Vi) withm < k < M.

Note (1 — 8)% < |V;] S% fori =1,2,..,k.

Let R be the “regularity graph” defined by V(R) := {1,2, ..., k} and
i~jin R if (V;,V;) is e-regular and the density d(V;,V;) is = y.

Claim 1. £, m can be chosen so that R has a K,- subgraph.

Pf. If not, then by Turan’s theorem |E(R)| < t,_,(k) < %E k2.

We have that |E(G)| is at most the sum of:

e # of edges incident with V,, which is < en?
: D 1/n\% _ 1n?
e #edgesin some V; , whichis < k p (E) < p—
2
o #of V;-V; edges for i,j € E(R), whichis < [E(R)| (%) <
1r-2 2

2r—1

2
e #of V;-V; edges for (V;, V;) not e-regular, which is < ek? (%)

o #of V;-V; edges when d(Vi, V]) <y, whichis < (Iz{)y (%)2
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So on choosing &, m such that 4¢ + % < Yy we get a contradiction.
This proves Claim 1.

Next we show that if ¢ is sufficiently small, then K € G. We may
assume that {1,2, ..., 7} is a clique in R.
Forl1<i<j<rwehaved(V;V;) 2yandsod(X,Y) =y — & for
every X S V;and Y € V; with |[X| = €[V;| and |Y]| = €|V}].

We will show:

(*) Let V] € V; satisfy |V]| = €|V;| and |V]| = (r — De|V;| + s.
Then there exist distinct vertices v4, Vy, ..., Us € V{ and sets V;" € V;/
such that

e {vy,..,V5}is complete to V' foralli = 2, ...,r
o |V/'| = dV/|, where ¢ = c(y,r) is independent of &

To prove the theorem assuming (*), first apply (*) to Vi = V; to
obtain vy, vy, ..., Vs € V] and sets V;' € V;. Then apply (*¥) to the sets
Vy, V3, ..., Vi to obtain uq, Uy, ..., us € V, and sets V;" € V;'. Then

apply (*) to the sets V3', V,’, ..., V" and so on.
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Lemma. LetY € V, with |[Y| = €|V,|. Then all but €|V, | vertices
of V; have = (y — ¢)|Y| neighbors in Y.

Proof. Let
X ={v eV:visadjacentto < (y — ¢)|Y| vertices in Y}.

Then [(X,Y)| < |X|(y — &)|Y]|. Thusd(X,Y) <y — €, and so
| X| < €|V, as desired. O

By the lemma, all but (r — 1)&|V;| vertices of V; have = (y — )|Y]
neighbors in Y for Y = V,, V3, ..., V,'. Pick v; € V] with this property
and let W; € V' be such that |W;| = (y — €)|V;| and v, is complete
to W; foralli = 2,3, ...,7. Repeat the same argument, but with

V,, Vs, ..., V! replaced by W,, ..., W,.. We find v, € V] — {v;} and

Z; € W; such that |Z;| = (y — €)|W;| and v, is complete to Z; for all
i = 2,3,...,r. After s iterations we will end up with the vertices

V4, Uy, ..., Us and sets V', V3!, .., V!, [



Theorem (Triangle removal lemma) Ve > 036 > 0 3 ny such
that if G is a graph on > n, vertices with at most 6n> triangles, then
3 F € E(G) such that |F| < en? and G\F is triangle-free.

“If a graph has o(n?) triangles, then all triangles can be destroyed by
removing o(n?) edges”

Application to arithmetic progressions

Lemma. V ¢ > 0 3 ny V graph ¢ on n = ng vertices such that every
edge is in exactly one triangle has < en? edges.

Proof. By the Triangle removal lemma 3 § > 0 3 n such that
every graph on > n, vertices with < §n? triangles can be made A-
free by deleting en® edges. Our graph has |E(G)| < n? triangles,
which is < 6n3 for big enough n. So if n is a big enough, then

3 F € E(G) such that |F| < en? and G\F is triangle free. Let F’
consist of the edges of the unique triangle containing e, for all e € F.
Thus |F'| < 3en? and E(G) € F', as required. O

Definition. A corner is a triple of the form

{(x,y),(x,y+d),(x +d,y)} for some d, possibly negative.



Corollary. (Ajtai & Szemerédi 1974). Let A € [{1,2, ..., N}]%. If
A contains no corner, then |A| = o(N?).

Proof. Consider the N X N grid.

X = horizontal linesy =ifori =1,2,...,N

Y = vertical linesx =i fori =1,2,...,N

Z =slope—1linesy =—x+ifori=1,2,..2N—1
Then [X| =|Y|=Nand |Z|=2N -1

Define a tripartite graph G on X U Y U Z by saying that the two lines

are adjacent if their intersection belongs to A. Then |V (G)| = 4N —

1 and |E(G)| = 3|A|. Since A is corner-free, each edge belongs to a

unique triangle. By the previous lemma, 3|A| = o(N?), as desired.
0

Corollary. (Roth’s theorem) If S € {1,2, ..., N} contains no 3-term
arithmetic progression, then |S| = o(N).

Proof. LetA ={(x,y):x,y € {1,2,...,2N},y —x € S}. If Ahas a
corner, say (x,y),(x,y +d),(x + d,y) € A, then

y—x€S,y+d—x€S,y—x—d €S, and so S contains a 3-
term arithmetic progression. We may therefore assume that A has no
corner. For every {s,s'} € S we have (5,5 + s') € A, and hence

|A| = (lgl). By the previous corollary (l“;l) < |A| = o(N?), and so
S| = o(N).



Application to property testing

Definition. A graph G on n vertices is &-far from triangle-free if
for every set F € E(G) of size at most en? the graph G\F has a
triangle.

Remark. We cannot hope to test whether a graph is triangle-free in
constant time, but how about distinguishing triangle-free graphs
from those that are e-far from triangle-free?

Theorem. For every € > 0 there exists a randomized algorithm
which in constant time accepts every triangle free graph and rejects
every graph which is e-far from triangle-free with probability at least

2/3.

Proof. Let 6 be as in the Triangle removal lemma. Thus if G is e-far
from triangle-free, then it has more than 6n> triangles. Pick § 71
triples of vertices uniformly independently at random. If none of
those triples form a triangle, then accept the graph; otherwise reject.
If the graph is a triangle-free, then it will be accepted. If it is e-far
from triangle-free, then the probability of being accepted i1s at most

on3 5 1
1——) <=
(-T) =3

if § is sufficiently small.



