
Nowhere-zero flows 

Let � be a digraph, � Abelian group. A Γ-circulation in � is a 

mapping �: ���� → � such that 

�	�
� � ���
�, 
where �	�
� � ∑ �����∈�� , ���
� � ∑ �����∈��  and  

�	��� � �� ∈ ����:	tail	in	X,	head	in	"��� # �$ 
����� � �� ∈ ����:	tail	in	X,	head	in	"��� # �$ 

 

A nowhere-zero Γ-flow is a Γ-circulation such that ���� % 0 for 

every � ∈ ����.  A nowhere-zero '-flow is a (-circulation � such 

that 0 ) |����| ) ' for every edge �.  Compare to nowhere-zero 

(NZ) (+-flow. These are properties of the underlying undirected 

graph of �. 

Thm.  Let , be a plane graph.  Then , has a NZ '-flow if and only 

if , is face '-colorable. 



Pf.  ⇐	Color	the	faces	using	1, … , '.		Let	�	be	an	orientation	of	,.		Define	<��� � =��>� # =��?�.			

	
Then <��� % 0	∀	� ∈ ����.	

 

 

⇒	Any	integer-valued	circulation	in	a	plane	graph	is	an	integer	linear	combination	of	“facial	circulations”	

	
	
	



Now	let	<	be	a	NZ		'-flow.		Then	there	exists	a	function	O: P�,� → Q	such	that		
<��� � O��>� # O��?�, 

where �> is the face to the left of � and �? is the face to the right.  

Define R��� to be the residue class of O��� (mod '). Then R is a '-

coloring of the faces.   

Thm.  Let � be a digraph.  There is a polynomial S such that for 

every Abelian group Γ the number of NZ Γ-flows in � is S�|�|�. 
Proof.  If � has no non-loop edge, then S�T� � �T # 1�|U�V�|. 

 

Otherwise pick a non-loop edge �, and let <��� be the # of  NZ Γ-

flows in �.  Then 

<��� � <�� ��⁄ # <��\�� 
 

 

 

 

Theorem follows by induction.      □ 

D D\e D/e 

= + 
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Theorem follows by induction.      □ 

D D\e D/e 

= + 



Thm.  A graph has Q+-flow if and only if it has a '-flow. 

Pf.  ⇐ easy. 

⇒ Let �: ���� → Q be such that  

(1) 0 ) |����| ) '	∀	� ∈ ���� 
 (2) �	�
� ≡ ���
��mod	'� 
Let ���� ≔ ∑ |�	�
� # ���
�|\∈]�V� , and choose � satisfying (1) 

and (2) with ���� minimum.  WMA ���� > 0	∀	� ∈ ����.  Let  

_ � �
 ∈ "���: �	�
� > ���
�$ 
and  

` � �
 ∈ "���: �	�
� ) ���
�$ 
Claim.  ∄ directed _ → ` path. 

Pf.  O.w. decrease the flow by ' along such path.  If _ � ` � ∅, 

then done, so WMA one is empty, and hence both are, because 

c �	
\∈]�V�

�
� � c ����
�∈U�V�

� c ���
�
\∈]�V�

 

By the claim ∃	� with _ ⊆ �, ` ∩ � � ∅ and �	��� � ∅. 



 

 

 

c�	�
� > c��
\∈g\∈g

�
� 
# c ����

�∈〈g〉
j c�	�
�

\∈g
> # c ����

�∈〈g〉
j c���
�

\∈g
 

0 � �	��� > �����, a contradiction.    □ 
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Corollary.  For a graph , and a group Γ, the following are 

equivalent: 

(1) , is NZ Γ-flow 

(2) , has a NZ '-flow, where ' � |�|. 
Corollary.  A cubic graph has a NZ 4-flow if and only if it is 3-

edge-colorable. 

Proof.  NZ 4-flow ⇔ NZ (? × (?-flow ⇔ 3-edge-coloring using  

the colors �0,1�, �1,0�, �1,1� 
Thm. If , is plane, then , has a NZ '-flow if and only if ,∗ is '-

colorable. 

Corollary.  The 4CT is equivalent to: Every 2-edge-connected cubic 

planar graph is 3-edge-colorable.  

  



Thm.  A cubic graph has a NZ 3-flow ⇔ it is bipartite. 

Pf.  NZ 3-flow ⇔Qn-flow	⇔∃	orientation s.t.	� � 1	is a	Qn-flow.  

Since	,	cubic	⇒	sources vs. sinks is a	bipartition. That proves	⇒.	
⇐	 	 	 	 Direct one way	⇒Qn-flow 	 	 □	
3-flow conjecture.  Every 4-edge-connected graph has a NZ 3-flow. 

3-edge-coloring conjecture.  Every 2-edge-connected cubic graph 

with no Petersen minor is 3-edge-colorable (⇔ NZ 4-flow).  

4-flow conjecture.  Every 2-edge-connected graph with no Petersen 

minor has a NZ 4-flow.   

This implies 

Grőtzsch conjecture.  Let , be a planar graph of max degree 3 with 

no subgraph p s.t. p has all vertices of degree 3, except for exactly 

one of degree 2.  Then , is 3-edge-colorable.   

Implies the 4CT. 

5-flow conjecture.  Every 2-edge-connected graph has a NZ 5-flow.   

  



Corollary.  For a graph , and a group Γ, the following are 

equivalent: 

(1) , is NZ Γ-flow 

(2) , has a NZ '-flow, where ' � |�|. 
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Thm. If , is plane, then , has a NZ '-flow if and only if ,∗ is '-

colorable. 

Corollary.  The 4CT is equivalent to: Every 2-edge-connected cubic 

planar graph is 3-edge-colorable.  

  



Application to Algebra 

A ring is �q,j,∙ ,0,1�, where 

• �q,j� is an abelian group with identity 0 

• s�t=� � �st�= and 1 is a multiplicative identity 

• �s j t�= � s= j t= and =�s j t� � =s j =t 

Examples. (i)  ( 

(ii) Matrices over any ring 

The commutator in a ring is us, tv � st # ts. More generally, 

us>, s?, … , s+v � csgn�w�sx�>�sx�?�⋯sx�+�x
 

where the summation is over all permutations w of �1,2, … , '$. 
If us>, s?, … , s+v � 0 for all s{ ∈ q, then q is said to satisfy the |}~ 

polynomial identity. 

 

THEOREM (Amitsur, Levitzky) The ring of ' × ' matrices over a 

commutative ring q satisfies the �2'��� polynomial identity. In 

other words, if _>, _?, … , _?+ are ' × ' matrices with entries in q, 

then u_>, _?, … , _?+v � 0. 
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Proof. Since u_>, _?, … , _?+v is linear in each variable, it suffices to 

prove the theorem for matrices of the form �{� (each entry 0, 

except �{� � 1). So we must show  

u�{��� , �{��� , … , �{�����v � 0. 

Define a directed multigraph � by "��� � �1,2, … , '$ and ���� � ��>, �?, … , �?+$, where �� � ����. Then  

�x�����x����⋯�x����� % 0 

if and only if w��>�, w��?�, … , w��?+� is the edge-set of an Euler trail 

in �. So 

��{��� , �{��� , … , �{������ � ���� , ��� , … , ����� � 

 

csgn�w��x�����x����⋯�x����� � csgn�������x
 

where the last summation is over all Euler trails,  sgn��� is the sign 

of the permutation of ���� determined by �, T is the origin of � 

and � is its terminus. Furthermore, 

csgn�������
� c �csgn���

�
�

�,�∈]�V�
��� 

where the last summation is over all Euler trails from T to �. 

 



Lemma. Let � be a directed multigraph with |����| � 2|"���| and 

the let T, � ∈ "���. Then  

���, T, �� ≔ csgn���
�

� 0 

where the summation is over all Euler trails from T to �. 

Proof. Let � � |"���| and � � |����|. WMA no isolated vertices.  

Step 1. We show that it suffices to prove the theorem for T � � and � � 2�. We construct a directed multigraph �′ by adding a new 

vertex �, an edge �� and a path � → T of length � j 1 # 2�. 

 

Then |"����| � � j � j 1 # 2� � � j 1 # � 

          |�����| � � j� j 1 # 2� j 1 � 2�� j 1 # �� 

|���, T, ��| � |����, �, ��| 
	
	

x 

y 
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We	proceed	by	induction	on	�.	WMA	�	has	a	closed	Euler	trail,	for	otherwise	���, �, �� � 0.	Thus	deg	�
� � deg��
�	for	all	
 ∈ "���.	
Step	2Step	2Step	2Step	2.	If	�	has	a	parallel	edge,	then	���, �, �� � 0.	
Step	3.Step	3.Step	3.Step	3.	If	�	has	a	vertex	t % �	of	degree	2	with	one	neighbor	

	
Delete	t	and	go	by		induction		
Step	4Step	4Step	4Step	4....	If	�	has	a	vertex	t % �	of	degree	2	with	two	neighbors	

	
	
	
	
	



Define	

	
Then	

|���, �, ��| � �c���{ , �, ��
�

{ >
�	
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Step	5Step	5Step	5Step	5....	If	�	has	a	loop	at	a	vertex	t % �	of	degree	4	
	

	
	

|���, �, ��| � |����, �, ��| 
 

Step	6Step	6Step	6Step	6.	If	none	of	the	above	apply,	then	either		
• deg	�
� � deg��
� � 2	for	all	
 ∈ "���,	or	
• deg	��� � 1,		deg	�£� � 3,	deg	�
� � 2	for	other	
.	

	
Step	7Step	7Step	7Step	7.	There	exist	two	adjacent	vertices	of	outdegree	two	�exercise�	

	
	
	
	
	
	



	
	

���, �, �� � ���>, �, �� j ���?, �, �� # ���¦, �, �� # ���§, �, ��	
	
	
QuestionQuestionQuestionQuestion.	Is	the	bound	|����| � 2|"���|	in	the	lemma	best	possible?	
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