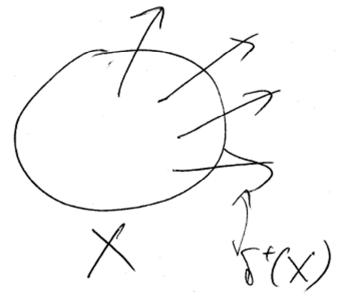
Nowhere-zero flows

Let *D* be a digraph, Γ Abelian group. A Γ -circulation in *D* is a mapping $f: E(D) \to \Gamma$ such that

$$f^+(v) = f^-(v),$$

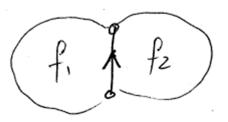
where $f^+(v) = \sum_{e \in \delta^+} f(e), f^-(v) = \sum_{e \in \delta^-} f(e)$ and
 $\delta^+(X) = \{e \in E(D): \text{tail in } X, \text{ head in } V(D) - X\}$
 $\delta^-(X) = \{e \in E(D): \text{tail in } X, \text{ head in } V(D) - X\}$



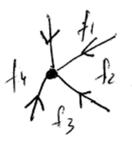
A nowhere-zero Γ -flow is a Γ -circulation such that $f(e) \neq 0$ for every $e \in E(D)$. A nowhere-zero k-flow is a Z-circulation f such that 0 < |f(e)| < k for every edge e. Compare to nowhere-zero (NZ) Z_k -flow. These are properties of the underlying undirected graph of D.

Thm. Let *G* be a plane graph. Then *G* has a NZ *k*-flow if and only if *G* is face *k*-colorable.

Pf. \Leftarrow Color the faces using 1, ..., *k*. Let *D* be an orientation of *G*. Define $\phi(e) = c(f_1) - c(f_2)$.



Then $\phi(e) \neq 0 \forall e \in E(D)$.



⇒ Any integer-valued circulation in a plane graph is an integer linear combination of "facial circulations"

Now let ϕ be a NZ *k*-flow. Then there exists a function $\beta: F(G) \rightarrow \mathbb{Z}$ such that

$$\phi(e) = \beta(f_1) - \beta(f_2),$$

where f_1 is the face to the left of e and f_2 is the face to the right. Define $\alpha(f)$ to be the residue class of $\beta(f) \pmod{k}$. Then α is a k-coloring of the faces.

Thm. Let *D* be a digraph. There is a polynomial *P* such that for every Abelian group Γ the number of NZ Γ -flows in *D* is $P(|\Gamma|)$.

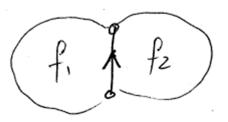
Proof. If *D* has no non-loop edge, then $P(x) = (x - 1)^{|E(D)|}$.

Otherwise pick a non-loop edge e, and let $\phi(D)$ be the # of NZ Γ -flows in D. Then

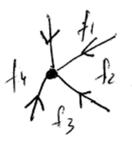
$$\phi(D) = \phi(D/e) - \phi(D \setminus e)$$

Theorem follows by induction.

Pf. \Leftarrow Color the faces using 1, ..., *k*. Let *D* be an orientation of *G*. Define $\phi(e) = c(f_1) - c(f_2)$.



Then $\phi(e) \neq 0 \forall e \in E(D)$.



⇒ Any integer-valued circulation in a plane graph is an integer linear combination of "facial circulations"

Now let ϕ be a NZ *k*-flow. Then there exists a function $\beta: F(G) \rightarrow \mathbb{Z}$ such that

$$\phi(e) = \beta(f_1) - \beta(f_2),$$

where f_1 is the face to the left of e and f_2 is the face to the right. Define $\alpha(f)$ to be the residue class of $\beta(f) \pmod{k}$. Then α is a k-coloring of the faces.

Thm. Let *D* be a digraph. There is a polynomial *P* such that for every Abelian group Γ the number of NZ Γ -flows in *D* is $P(|\Gamma|)$.

Proof. If *D* has no non-loop edge, then $P(x) = (x - 1)^{|E(D)|}$.

Otherwise pick a non-loop edge e, and let $\phi(D)$ be the # of NZ Γ -flows in D. Then

$$\phi(D) = \phi(D/e) - \phi(D \setminus e)$$

Theorem follows by induction.

Thm. A graph has \mathbb{Z}_k -flow if and only if it has a *k*-flow.

Pf. ⇐ easy. ⇒ Let $f: E(D) \to \mathbb{Z}$ be such that (1) $0 < |f(e)| < k \forall e \in E(D)$ (2) $f^+(v) \equiv f^-(v) \pmod{k}$ Let $D(f) \coloneqq \sum_{v \in V(D)} |f^+(v) - f^-(v)|$, and choose f satisfying (1) and (2) with D(f) minimum. WMA $f(e) > 0 \forall e \in E(D)$. Let

$$A = \{v \in V(D): f^+(v) > f^-(v)\}$$

and

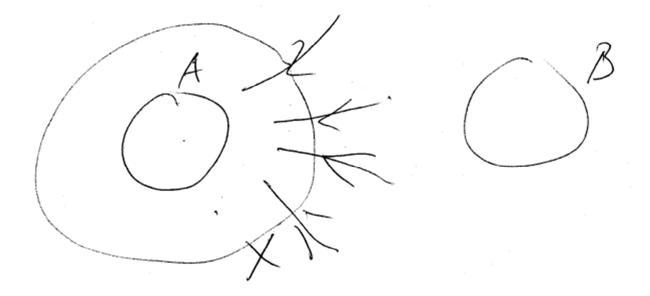
$$B = \{ v \in V(D) : f^+(v) < f^-(v) \}$$

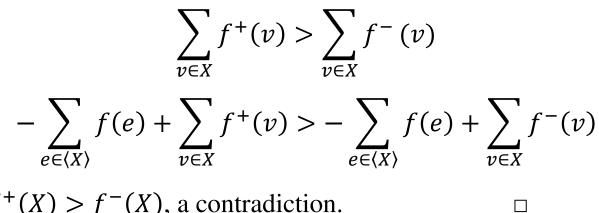
Claim. \nexists directed $A \rightarrow B$ path.

Pf. O.w. decrease the flow by *k* along such path. If $A = B = \emptyset$, then done, so WMA one is empty, and hence both are, because

$$\sum_{v \in V(D)} f^+(v) = \sum_{e \in E(D)} f(e) = \sum_{v \in V(D)} f^-(v)$$

By the claim $\exists X$ with $A \subseteq X$, $B \cap X = \emptyset$ and $\delta^+(X) = \emptyset$.





 $0 = f^+(X) > f^-(X)$, a contradiction.

Thm. A graph has \mathbb{Z}_k -flow if and only if it has a *k*-flow.

Pf. ⇐ easy. ⇒ Let $f: E(D) \to \mathbb{Z}$ be such that (1) $0 < |f(e)| < k \forall e \in E(D)$ (2) $f^+(v) \equiv f^-(v) \pmod{k}$ Let $D(f) \coloneqq \sum_{v \in V(D)} |f^+(v) - f^-(v)|$, and choose f satisfying (1) and (2) with D(f) minimum. WMA $f(e) > 0 \forall e \in E(D)$. Let

$$A = \{v \in V(D): f^+(v) > f^-(v)\}$$

and

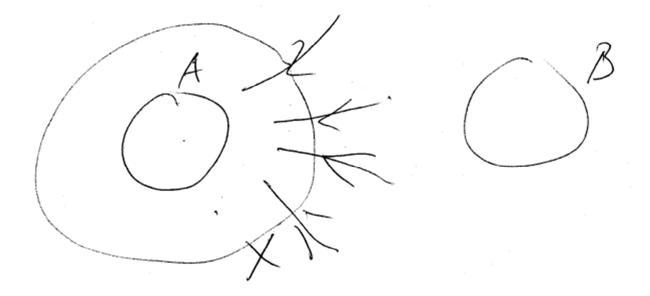
$$B = \{ v \in V(D) : f^+(v) < f^-(v) \}$$

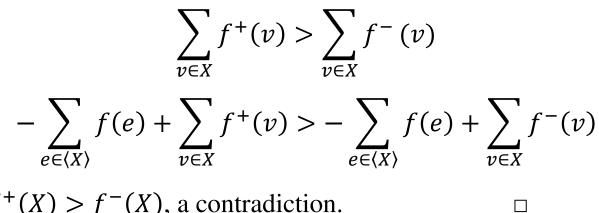
Claim. \nexists directed $A \rightarrow B$ path.

Pf. O.w. decrease the flow by k along such path. If $A = B = \emptyset$, then done, so WMA one is empty, and hence both are, because

$$\sum_{v \in V(D)} f^+(v) = \sum_{e \in E(D)} f(e) = \sum_{v \in V(D)} f^-(v)$$

By the claim $\exists X$ with $A \subseteq X$, $B \cap X = \emptyset$ and $\delta^+(X) = \emptyset$.





 $0 = f^+(X) > f^-(X)$, a contradiction.

Corollary. For a graph *G* and a group Γ , the following are equivalent:

(1) G is NZ Γ -flow

(2) *G* has a NZ *k*-flow, where $k = |\Gamma|$.

Corollary. A cubic graph has a NZ 4-flow if and only if it is 3-edge-colorable.

Proof. NZ 4-flow \Leftrightarrow NZ $Z_2 \times Z_2$ -flow \Leftrightarrow 3-edge-coloring using

the colors (0,1), (1,0), (1,1)

Thm. If G is plane, then G has a NZ k-flow if and only if G^* is k-colorable.

Corollary. The 4CT is equivalent to: Every 2-edge-connected cubic planar graph is 3-edge-colorable.

Thm. A cubic graph has a NZ 3-flow \Leftrightarrow it is bipartite.

Pf. NZ 3-flow $\Leftrightarrow \mathbb{Z}_3$ -flow $\Leftrightarrow \exists$ orientation s.t. f = 1 is a \mathbb{Z}_3 -flow. Since *G* cubic \Rightarrow sources vs. sinks is a bipartition. That proves \Rightarrow .

 $\Leftarrow \qquad \text{Direct one way} \Rightarrow \mathbb{Z}_3 \text{-flow} \qquad \Box$

3-flow conjecture. Every 4-edge-connected graph has a NZ 3-flow.

3-edge-coloring conjecture. Every 2-edge-connected cubic graph with no Petersen minor is 3-edge-colorable (\Leftrightarrow NZ 4-flow).

4-flow conjecture. Every 2-edge-connected graph with no Petersen minor has a NZ 4-flow.

This implies

Grőtzsch conjecture. Let G be a planar graph of max degree 3 with no subgraph H s.t. H has all vertices of degree 3, except for exactly one of degree 2. Then G is 3-edge-colorable.

Implies the 4CT.

5-flow conjecture. Every 2-edge-connected graph has a NZ 5-flow.

Corollary. For a graph *G* and a group Γ , the following are equivalent:

(1) G is NZ Γ -flow

(2) *G* has a NZ *k*-flow, where $k = |\Gamma|$.

Corollary. A cubic graph has a NZ 4-flow if and only if it is 3-edge-colorable.

Proof. NZ 4-flow \Leftrightarrow NZ $Z_2 \times Z_2$ -flow \Leftrightarrow 3-edge-coloring using

the colors (0,1), (1,0), (1,1)

Thm. If G is plane, then G has a NZ k-flow if and only if G^* is k-colorable.

Corollary. The 4CT is equivalent to: Every 2-edge-connected cubic planar graph is 3-edge-colorable.

Application to Algebra

A **ring** is (*R*, +, , ,0,1), where

- (R, +) is an abelian group with identity 0
- a(bc) = (ab)c and 1 is a multiplicative identity
- (a+b)c = ac + bc and c(a+b) = ca + cb

Examples. (i) Z

(ii) Matrices over any ring

The *commutator* in a ring is [a, b] = ab - ba. More generally,

$$[a_1, a_2, \dots, a_k] = \sum_{\sigma} \operatorname{sgn}(\sigma) a_{\sigma(1)} a_{\sigma(2)} \cdots a_{\sigma(k)}$$

where the summation is over all permutations σ of $\{1, 2, ..., k\}$.

If $[a_1, a_2, ..., a_k] = 0$ for all $a_i \in R$, then R is said to satisfy the k^{th} **polynomial identity**.

THEOREM (Amitsur, Levitzky) The ring of $k \times k$ matrices over a commutative ring R satisfies the $(2k)^{\text{th}}$ polynomial identity. In other words, if $A_1, A_2, ..., A_{2k}$ are $k \times k$ matrices with entries in R, then $[A_1, A_2, ..., A_{2k}] = 0$.

Corollary. For a graph *G* and a group Γ , the following are equivalent:

(1) G is NZ Γ -flow

(2) *G* has a NZ *k*-flow, where $k = |\Gamma|$.

Corollary. A cubic graph has a NZ 4-flow if and only if it is 3-edge-colorable.

Proof. NZ 4-flow \Leftrightarrow NZ $Z_2 \times Z_2$ -flow \Leftrightarrow 3-edge-coloring using

the colors (0,1), (1,0), (1,1)

Thm. If G is plane, then G has a NZ k-flow if and only if G^* is k-colorable.

Corollary. The 4CT is equivalent to: Every 2-edge-connected cubic planar graph is 3-edge-colorable.

Application to Algebra

A **ring** is (*R*, +, , ,0,1), where

- (R, +) is an abelian group with identity 0
- a(bc) = (ab)c and 1 is a multiplicative identity
- (a+b)c = ac + bc and c(a+b) = ca + cb

Examples. (i) Z

(ii) Matrices over any ring

The *commutator* in a ring is [a, b] = ab - ba. More generally,

$$[a_1, a_2, \dots, a_k] = \sum_{\sigma} \operatorname{sgn}(\sigma) a_{\sigma(1)} a_{\sigma(2)} \cdots a_{\sigma(k)}$$

where the summation is over all permutations σ of $\{1, 2, ..., k\}$.

If $[a_1, a_2, ..., a_k] = 0$ for all $a_i \in R$, then R is said to satisfy the k^{th} **polynomial identity**.

THEOREM (Amitsur, Levitzky) The ring of $k \times k$ matrices over a commutative ring R satisfies the $(2k)^{\text{th}}$ polynomial identity. In other words, if $A_1, A_2, ..., A_{2k}$ are $k \times k$ matrices with entries in R, then $[A_1, A_2, ..., A_{2k}] = 0$.

Proof. Since $[A_1, A_2, ..., A_{2k}]$ is linear in each variable, it suffices to prove the theorem for matrices of the form E_{ij} (each entry 0, except $e_{ij} = 1$). So we must show

$$[E_{i_1j_1}, E_{i_2j_2}, \dots, E_{i_{2k}j_{2k}}] = 0.$$

Define a directed multigraph D by $V(D) = \{1, 2, ..., k\}$ and $E(D) = \{e_1, e_2, ..., e_{2k}\}$, where $e_t = i_t j_t$. Then

$$E_{\sigma(e_1)}E_{\sigma(e_2)}\cdots E_{\sigma(e_{2k})}\neq 0$$

if and only if $\sigma(e_1)$, $\sigma(e_2)$, ..., $\sigma(e_{2k})$ is the edge-set of an Euler trail in D. So

$$[E_{i_1j_1}, E_{i_2j_2}, \dots, E_{i_{2k}j_{2k}}] = [E_{e_1}, E_{e_2}, \dots, E_{e_{2k}}] =$$

$$\sum_{\sigma} \operatorname{sgn}(\sigma) E_{\sigma(e_1)} E_{\sigma(e_2)} \cdots E_{\sigma(e_{2k})} = \sum_{W} \operatorname{sgn}(W) E_{xy}$$

where the last summation is over all Euler trails, sgn(W) is the sign of the permutation of E(D) determined by W, x is the origin of Wand y is its terminus. Furthermore,

$$\sum_{W} \operatorname{sgn}(W) E_{xy} = \sum_{x,y \in V(D)} \left(\sum_{W} \operatorname{sgn}(W) \right) E_{xy}$$

where the last summation is over all Euler trails from x to y.

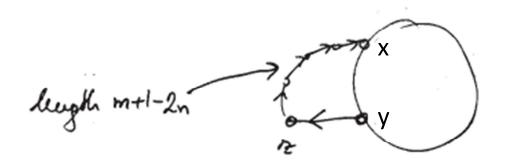
Lemma. Let *D* be a directed multigraph with $|E(D)| \ge 2|V(D)|$ and the let $x, y \in V(D)$. Then

$$\varepsilon(D, x, y) \coloneqq \sum_{W} \operatorname{sgn}(W) = 0$$

where the summation is over all Euler trails from x to y.

Proof. Let n = |V(D)| and m = |E(D)|. WMA no isolated vertices.

Step 1. We show that it suffices to prove the theorem for x = y and m = 2n. We construct a directed multigraph D' by adding a new vertex z, an edge yz and a path $z \rightarrow x$ of length m + 1 - 2n.



Then |V(D')| = n + m + 1 - 2n = m + 1 - n|E(D')| = m + m + 1 - 2n + 1 = 2(m + 1 - n) $|\varepsilon(D, x, y)| = |\varepsilon(D', z, z)|$ **Proof.** Since $[A_1, A_2, ..., A_{2k}]$ is linear in each variable, it suffices to prove the theorem for matrices of the form E_{ij} (each entry 0, except $e_{ij} = 1$). So we must show

$$[E_{i_1j_1}, E_{i_2j_2}, \dots, E_{i_{2k}j_{2k}}] = 0.$$

Define a directed multigraph D by $V(D) = \{1, 2, ..., k\}$ and $E(D) = \{e_1, e_2, ..., e_{2k}\}$, where $e_t = i_t j_t$. Then

$$E_{\sigma(e_1)}E_{\sigma(e_2)}\cdots E_{\sigma(e_{2k})}\neq 0$$

if and only if $\sigma(e_1)$, $\sigma(e_2)$, ..., $\sigma(e_{2k})$ is the edge-set of an Euler trail in D. So

$$[E_{i_1j_1}, E_{i_2j_2}, \dots, E_{i_{2k}j_{2k}}] = [E_{e_1}, E_{e_2}, \dots, E_{e_{2k}}] =$$

$$\sum_{\sigma} \operatorname{sgn}(\sigma) E_{\sigma(e_1)} E_{\sigma(e_2)} \cdots E_{\sigma(e_{2k})} = \sum_{W} \operatorname{sgn}(W) E_{xy}$$

where the last summation is over all Euler trails, sgn(W) is the sign of the permutation of E(D) determined by W, x is the origin of Wand y is its terminus. Furthermore,

$$\sum_{W} \operatorname{sgn}(W) E_{xy} = \sum_{x,y \in V(D)} \left(\sum_{W} \operatorname{sgn}(W) \right) E_{xy}$$

where the last summation is over all Euler trails from x to y.

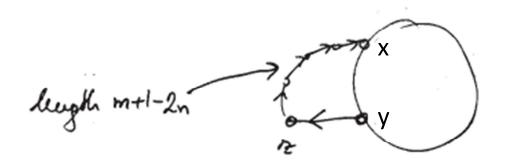
Lemma. Let *D* be a directed multigraph with $|E(D)| \ge 2|V(D)|$ and the let $x, y \in V(D)$. Then

$$\varepsilon(D, x, y) \coloneqq \sum_{W} \operatorname{sgn}(W) = 0$$

where the summation is over all Euler trails from x to y.

Proof. Let n = |V(D)| and m = |E(D)|. WMA no isolated vertices.

Step 1. We show that it suffices to prove the theorem for x = y and m = 2n. We construct a directed multigraph D' by adding a new vertex z, an edge yz and a path $z \rightarrow x$ of length m + 1 - 2n.



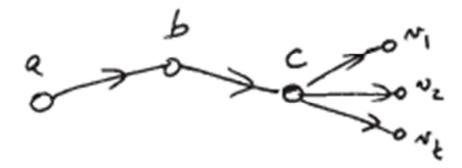
Then |V(D')| = n + m + 1 - 2n = m + 1 - n|E(D')| = m + m + 1 - 2n + 1 = 2(m + 1 - n) $|\varepsilon(D, x, y)| = |\varepsilon(D', z, z)|$ We proceed by induction on *n*. WMA *D* has a closed Euler trail, for otherwise $\varepsilon(D, z, z) = 0$. Thus deg⁺(v) = deg⁻(v) for all $v \in V(D)$.

Step 2. If *D* has a parallel edge, then $\varepsilon(D, z, z) = 0$.

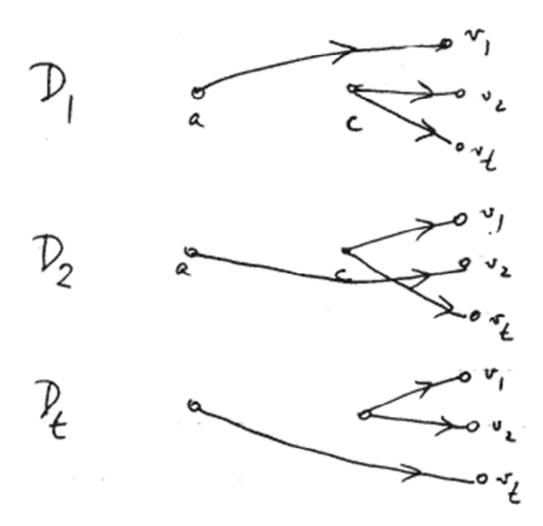
Step 3. If *D* has a vertex $b \neq z$ of degree 2 with one neighbor

Delete *b* and go by induction

Step 4. If *D* has a vertex $b \neq z$ of degree 2 with two neighbors



Define



Then

$$|\varepsilon(D, z, z)| = \left|\sum_{i=1}^{t} \varepsilon(D_i, z, z)\right|$$

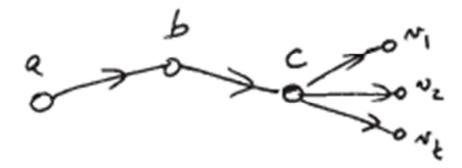
We proceed by induction on *n*. WMA *D* has a closed Euler trail, for otherwise $\varepsilon(D, z, z) = 0$. Thus deg⁺(v) = deg⁻(v) for all $v \in V(D)$.

Step 2. If *D* has a parallel edge, then $\varepsilon(D, z, z) = 0$.

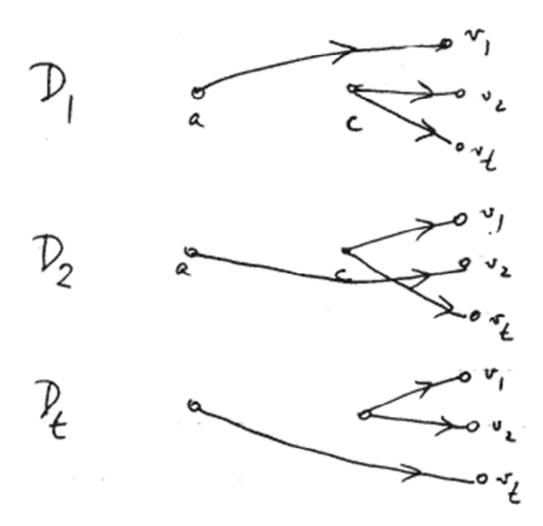
Step 3. If *D* has a vertex $b \neq z$ of degree 2 with one neighbor

Delete *b* and go by induction

Step 4. If *D* has a vertex $b \neq z$ of degree 2 with two neighbors



Define



Then

$$|\varepsilon(D, z, z)| = \left|\sum_{i=1}^{t} \varepsilon(D_i, z, z)\right|$$

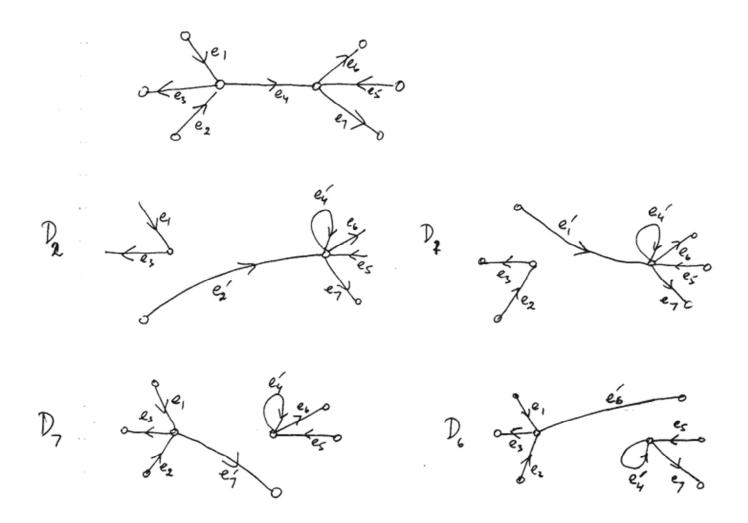
Step 5. If *D* has a loop at a vertex $b \neq z$ of degree 4

 $|\varepsilon(D, z, z)| = |\varepsilon(D', z, z)|$

Step 6. If none of the above apply, then either

- $\deg^+(v) = \deg^-(v) = 2$ for all $v \in V(D)$, or
- $\deg^+(z) = 1$, $\deg^+(w) = 3$, $\deg^+(v) = 2$ for other v.

Step 7. There exist two adjacent vertices of outdegree two (exercise)



 $\varepsilon(D, z, z) = \varepsilon(D_1, z, z) + \varepsilon(D_2, z, z) - \varepsilon(D_6, z, z) - \varepsilon(D_7, z, z)$

Question. Is the bound $|E(D)| \ge 2|V(D)|$ in the lemma best possible?

Step 5. If *D* has a loop at a vertex $b \neq z$ of degree 4

 $|\varepsilon(D, z, z)| = |\varepsilon(D', z, z)|$

Step 6. If none of the above apply, then either

- $\deg^+(v) = \deg^-(v) = 2$ for all $v \in V(D)$, or
- $\deg^+(z) = 1$, $\deg^+(w) = 3$, $\deg^+(v) = 2$ for other v.

Step 7. There exist two adjacent vertices of outdegree two (exercise)