Nowhere-zero flows

Let D be a digraph, I' Abelian group. A I'-circulation in D is a
mapping f: E(D) — I’ such that

ffw) =f~(),
where f* (V) = Xees+ f(€), [T(v) = Yees- f(€) and
5t (X) = {e € E(D): tail in X head in V(D) — X}
0~ (X) ={e € E(D): tailin X headin V(D) — X}

NSy X)

A nowhere-zero I'-flow is a I'-circulation such that f(e) # 0 for
every e € E(D). A nowhere-zero k-flow is a Z-circulation f such
that 0 < |f(e)| < k for every edge e. Compare to nowhere-zero
(NZ) Z-flow. These are properties of the underlying undirected
graph of D.

Thm. Let G be a plane graph. Then G has a NZ k-flow if and only
if G 1s face k-colorable.



Pf. < Color the faces using 1, ..., k. Let D be an orientation of G.

Define ¢(e) = c(f1) — c(f2).

20

Then ¢p(e) # 0V e € E(D).

= Any integer-valued circulation in a plane graph is an integer
linear combination of “facial circulations”




Now let ¢ be a NZ k-flow. Then there exists a function
p:F(G) — Z such that

¢(e) = B(f1) — B(f2),

where f; is the face to the left of e and f, is the face to the right.

Define a(f) to be the residue class of S(f) (mod k). Then « is a k-
coloring of the faces.

Thm. Let D be a digraph. There 1s a polynomial P such that for
every Abelian group I" the number of NZ I'-flows in D is P(|I'|).

Proof. If D has no non-loop edge, then P(x) = (x — 1)IE(®)I,
-l

¢

Otherwise pick a non-loop edge e, and let ¢p(D) be the # of NZ I'-
flows in D. Then

¢(D) = ¢p(D/e) — p(D\e)
<> X
D D\e

D/e

Theorem follows by induction. O
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Thm. A graph has Z,-flow if and only if it has a k-flow.
Pf. < easy.

= Let f: E(D) — Z be such that
(HOo<|f(e)l<kVeeE(D)

(2) f*(v) = f~(v)(mod k)

Let D(f) = Ypevp) |f T(v) — f~(v)], and choose f satisfying (1)
and (2) with D(f) minimum. WMA f(e) >0V e € E(D). Let

A={weVD):f () >f ()}
and

B={weVD):f*(v) <f ()}
Claim. A directed A — B path.

Pf. O.w. decrease the flow by k along such path. If A = B = 0,
then done, so WMA one 1s empty, and hence both are, because

Y frm= ) fE@= ) f

vev (D) e€E(D) VeV (D)

By theclaim3I X withA S X,BNX =@and 6" (X) = 0.
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veX veX

=) F@+ ) FF = fE@+ ) fw)

e€e(X) veX e€e(X) veX

0=f*(X)>f"(X), acontradiction. O
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Corollary. For a graph G and a group I', the following are
equivalent:

(1) G is NZ I'-flow
(2) G has a NZ k-flow, where k = |I'|.

Corollary. A cubic graph has a NZ 4-flow if and only if it is 3-
edge-colorable.

Proof. NZ 4-flow & NZ Z, X Z,-flow & 3-edge-coloring using
the colors (0,1), (1,0), (1,1)

Thm. If G is plane, then G has a NZ k-flow if and only if G is k-
colorable.

Corollary. The 4CT is equivalent to: Every 2-edge-connected cubic
planar graph 1s 3-edge-colorable.



Thm. A cubic graph has a NZ 3-flow < it is bipartite.

Pf. NZ 3-flow ©Z;-flow &3 orientation s.t. f = 11is a Z3-flow.
Since G cubic = sources vs. sinks 1s a bipartition. That proves =.

& Direct one way =Z5-flow O
3-flow conjecture. Every 4-edge-connected graph has a NZ 3-flow.

3-edge-coloring conjecture. Every 2-edge-connected cubic graph
with no Petersen minor is 3-edge-colorable (& NZ 4-flow).

4-flow conjecture. Every 2-edge-connected graph with no Petersen
minor has a NZ 4-flow.

This implies

Grotzsch conjecture. Let ¢ be a planar graph of max degree 3 with
no subgraph H s.t. H has all vertices of degree 3, except for exactly
one of degree 2. Then G 1s 3-edge-colorable.

Implies the 4CT.

S-flow conjecture. Every 2-edge-connected graph has a NZ 5S-flow.
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Application to Algebra
Aringis (R, +,,0,1), where

® (R,+) is an abelian group with identity 0

e a(bc) = (ab)c and 1 is a multiplicative identity

® (a+b)c=ac+bcandc(a+b) =ca+ch
Examples. (i) Z

(ii) Matrices over any ring

The commutator in a ring is [a, b] = ab — ba. More generally,

lay, ay, ..., a;] = Z sgn(0)as(1)Ag(2) *** Ao (k)

o

where the summation is over all permutations ¢ of {1,2, ..., k}.

If [ay, ay, ..., ax] = 0 forall @; € R, then R is said to satisfy the k"
polynomial identity.

THEOREM (Amitsur, Levitzky) The ring of k X k matrices over a

commutative ring R satisfies the (Zk)th polynomial identity. In
other words, if A1, A,, ..., A, are k X k matrices with entries in R,
then [AIIAZI ...,Azk] = 0.
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Proof. Since [A4,4,, ..., A5, ] is linear in each variable, it suffices to
prove the theorem for matrices of the form E;; (each entry 0,

except e;; = 1). So we must show

[E; : E E; i ]1=0.

L1J1? Higjor =0 Hlokjok

Define a directed multigraph D by V(D) = {1,2, ..., k} and
E(D) = {eq, €5, ..., €51}, Where e; = ij;. Then

EsenEo(e,) " Ea(ey) 0

if and only if 6(eq),0(ey), ..., a(e,) is the edge-set of an Euler trail
inD. So

[Ei1j1’Ei2j2’ ""Eizkak] = [E€1’E€2’ ""Eezk] =

Z Sgn(U)Ea(el)Ea(ez) Ea(ezk) — Z Sgn(W)Exy
o w

where the last summation is over all Euler trails, sgn(W) is the sign
of the permutation of E(D) determined by W, x is the origin of W
and y is its terminus. Furthermore,

z sgn(W)Ey, = z (2 sgn(W)) Esy

w x,yeEV(D) \ W

where the last summation is over all Euler trails from x to y.



Lemma. Let D be a directed multigraph with |[E(D)| = 2|V (D)| and
theletx,y € V(D). Then

e(D,x,y) = z sgn(W) =0

w

where the summation is over all Euler trails from x to y.
Proof. Letn = [V (D)| and m = |E(D)|. WMA no isolated vertices.

Step 1. We show that it suffices to prove the theorem for x = y and
m = 2n. We construct a directed multigraph D’ by adding a new
vertex z, an edge yz and a path z —» x of lengthm + 1 — 2n.

J&‘LXK\ m+l-2.,

Then |[V(D)|=n+m+1-2n=m+1—n
IE(D)|=m+m+1-2n+1=2(m+1—n)
(D, x,y)| = (D', z,z)|
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We proceed by induction on n. WMA D has a closed Euler trail,
for otherwise (D, z,z) = 0. Thus deg™ (v) = deg™(v) for all
v eV(D).

Step 2. If D has a parallel edge, then (D, z,z) = 0.

Step 3. If D has a vertex b # z of degree 2 with one neighbor

b

'S

Delete b and go by induction

Step 4. If D has a vertex b # z of degree 2 with two neighbors

/O\Oii
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Then
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Step 5. If D has a loop at a vertex b # z of degree 4

e(D, z,2)| = |e(D', z,2)|

Step 6. If none of the above apply, then either

e deg*(v) = deg~(v) = 2forallv € V(D), or
e deg*(2) =1, deg™(w) = 3,deg*(v) = 2 for other v.

Step 7. There exist two adjacent vertices of outdegree two
(exercise)
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£(D,z,z) =€(Dq,2,z) + €(D,,2z,z) — (D¢, z,z) — (D5, 2, 2)

Question. Is the bound |E(D)| = 2|V (D)| in the lemma best
possible?
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