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What is det(� + ���)?  WMA	� = 1.   

 

det(� + ���) = �sgn	(�)�(� + ����
���� )��(�) = 

 

= � sgn	(�)�:�(�)�� (��� + 1)����(�) +�
���  

+ � sgn	(�)�:�(�)�� ����(�)
�

��� = 

 

= �sgn	(�)����(�)
�

���� + � sgn(�)�:�(�)�� ����(�) =�
���  

 = det(�) + det�(1) 
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Proposition. Let � be a multigraph, and let � be an edge 

that is not a loop. Then �(�) = �(�\�) + �(�/�) 

 

Definition.  Let � be a multigraph with !(�) = {1,2, … , &} 
and let ( = ()�*)�,*���  be an & × & matrix defined by )�* = #	edges	with	ends	0, 1 
Then ( is called the adjacency matrix of �. 

The Laplacian matrix of a graph is defined by 2 = (ℓ�*) 

where  

ℓ�* = 4 �)�5				if	0 = 15��−)�* 						otherwise	 
Note that rows and columns sum to 0, and hence  

det 2 = 0. 
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Kirchhoff’s Matrix Tree Theorem. Let � be a multigraph, let 2 be 

its Laplacian matrix, let ; ∈ {1,2, … , ;}, and let 2(;)	denote the 

matrix obtained from	2 by deleting the ;=> row and ;=> column. 

Then �(�) = det 2(;). 

Proof.  If � is disconnected, then �(�) = 0 = det 2(;).   
WMA � is connected and loopless. 

If |�(�)| = 0, then �(�) = 1 = det 2(;).   
We proceed by induction on |�(�)|.   
Recall �(�) = �(�\�) + 	�(�/�) 
Enough to show (∗)												det 2A (B) = det 2A\C (B) + det 2A/C (D) 
where � = B� and D is the new vertex of �/� 2A(B) = 2A\C(B) + ��� det 2A (B) = det[2A\C (B) + ���]= det 2A\C (B) + det 2A\C (B, �)= det 2A\C (B) + det 2A/C (D) 
This proves (∗), and hence the theorem.   □  

 

 



4 

 

Theorem.  (Cayley) �(G�) = &�H�.  In other words there are 

exactly &�H� trees with vertex-set {1,2, … , &}. 
Proof. By Kirchhoff’s Matrix Tree Theorem 

�(G�) = det I�H� H�H� �H�
H� 				 H�

H�H� �H�JK& − 1 =    

   

[by adding rows 2,3, … , & − 1 to row 1] 

 

= detM 1 1−1 & − 1⋮−1 				 1 1−1 −1
−1 & − 1O = 

 

[by adding row 1 to all other rows] 

 

= detM 1 1&
0 				 1

0&O = &�H� 

□ 
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A directed multigraph is a triple (!, �, P), where !, � 

are finite sets and P is an incidence relation that 

assigns to every edge � ∈ � an ordered pair of not 

necessarily distinct vertices of !, called its ends. 

 

We denote the outdegree of a vertex � by degQ(�) 

and the indegree by degH(�). 
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The max-flow min-cut theorem 

A directed graph or digraph is a pair R = (!, �), where ! is a 

finite set and � ⊆ ! × !. 

 

A network is a quadruple U = (R, V, W, X), where R is a digraph, V, W ∈ !(R) are distinct, and X: �(R) → [0,∞].   
s … source  t … sink  c … capacity function 

 

Example  
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Notation.  For [ ⊆ !(R)   \Q([) ≔ {� ∈ �(R): �	has tail in	[,	head in	!(R) − [} \H([) ≔ {� ∈ �(R): �	has head in	[,	tail in	!(R) − [} \Q({�}) = \Q(�),  \H({�}) = \H(�).   If ^: �(R) → _, then  

^Q([) ≔ � ^(�),						C∈`a(b) ^H([) ≔ � ^(�)C∈`c(b)  

 

Example 
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A flow in U is a mapping ^: �(R) → R such that 

(i) 0 e ^(�) e X(�)    ∀� ∈ �(R)  (capacity constraints) 

(ii) ^Q(�) = ^H(�)      ∀	� ∈ !(R) − {V, W}  
(conservation conditions) 

 

Example 
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Lemma.  If ^ is a flow in a network U = (R, V, W, X) and [ ⊆ !(R) 
with V ∈ [, W ∉ [, then ^Q(V) − ^H(V) = ^Q([) − ^H([) 

 

Definition.  ^Q(V) − ^H(V) is the value of ^, denoted by val(^). 
Proof.  ^Q(�) = ^H(�)   ∀� ∈ !(R) − {V, W}.   
Sum over all � ∈ [ − {V} 
 

 

 

 

 

 

^Q([) − ^(V, [k) + ^([, V) + � ^(�)C	>lm	no=>C�pm	��	bH{m}
= 

= ^H([) − ^([k , V) + ^(V, [) + � ^(�)C	>lm	no=>C�pm	��	bH{m}	
 

  

s 

X 
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Corollary. If ^ is a flow in a network U = (R, V, W, X), then ^Q(V) − ^H(V) = ^H(W) − ^Q(W) 
Proof. Apply previous lemma to [ = !(R) − {W}.                   □	 
 

A cut in a network U is a set of edges of the form  \Q([) for some 

set [ ⊆ !(R) with V ∈ [, W ∉ [. The capacity of a cut G is 

cap	(G) ≔ �X(�)C∈t  

If G = \Q([), then cap(G) = XQ([). 
 

Corollary.  val(^) e cap(G) for every flow ^ and every cut G in U. 

Proof.  Let G = \Q([). val(^) = ^Q(V) − ^H(V) = ^Q([) − ^H([) = 

 

= � ^(�)C∈`a(b) − � ^(�)C∈`c(b) e � X(�)C∈`a(b) = cap(G) 
□ 

 

 


