What is det(M + E,,,)? WMA v = 1.

n
det(M + E;;) = Z sgn (o) H(M + E11)ia(i) =
=1

o

n
— sgn (6) (M, + 1) HMia(i) +
=2

o:0(1)=1
n
+ 2 sgn(a)ﬂMio—(i)=
o:0(1)#1 i=1

n n
= z sgn (0) 1_[ Mig @iy + z sgn(o) 1_[ Mioy =
i=1 =1 (=2

o o:0(i)

= det(M) + det M(1)



Proposition. Let ¢ be a multigraph, and let e be an edge
that is not a loop. Then

7(G) = 1(G\e) + 1(G/e)

Definition. Let G be a multigraph with V'(G) = {1,2, ..., n}
andlet A = (al-j)’{fj:l be an n X n matrix defined by

a;; = # edges with ends i, j
Then A is called the adjacency matrix of .

The Laplacian matrix of a graph is defined by L = (fl-j)

za“‘ ifi =
fij:

k#i
—a;; otherwise

where

Note that rows and columns sum to 0, and hence
det L = 0.



Kirchhoff’s Matrix Tree Theorem. Let G be a multigraph, let L be
its Laplacian matrix, let k € {1,2, ..., k}, and let L(k) denote the

matrix obtained from L by deleting the k" row and kt"* column.
Then t(G) = det L(k).

Proof. If G is disconnected, then 7(G) = 0 = det L(k).
WMA ¢ 1s connected and loopless.
If |[E(G)| =0, then (G) = 1 = det L(k).
We proceed by induction on |E(G)].
Recall

7(G) = 1(G\e) + t(G/e)
Enough to show

(%) detLg (u) = detLg\, (u) + detLg . (W)
where e = uv and w is the new vertex of G /e
Le(u) = Le\e(u) + Eyy

detL; (u) = dEt[LG\e (w) + Epy]
— det LG\e (u) + det LG\e (ur U)
= detLg\, (1) + detLg,, (W)

This proves (*), and hence the theorem. O



Theorem. (Cayley) 7(K,,) = n™ 2. In other words there are
exactly n*~2 trees with vertex-set {1,2, ..., n}.

Proof. By Kirchhoff’s Matrix Tree Theorem

n-1 -1 -1
T(Kn)=det<"1 n-1 _1>}n—1=

-1 -1 n-1
[by adding rows 2,3, ...,n — 1 to row 1]

1 1 1 1
—get| "L m-1 -1 -1

—1 -1 n-—1

[by adding row 1 to all other rows]

1 1 1
= det n 0 |= n—2
0 n



A directed multigraph is a triple (V,E,y), where V, E
are finite sets and i is an incidence relation that
assigns to every edge e € E an ordered pair of not
necessarily distinct vertices of V, called its ends.

We denote the outdegree of a vertex v by deg™ (v)
and the indegree by deg™ (v).



The max-flow min-cut theorem

A directed graph or digraph is a pair D = (V,E), where V is a
finite setand E € V X /.

/ﬁ”””«fh&a 4e

tail ?}‘ e

A network is a quadruple N = (D, s, t, c), where D is a digraph,
s,t € V(D) are distinct, and c: E(D) — [0, oo].

S ... source t...sink C ... capacity function

Example




Notation. For X € V(D)
51t (X) := {e € E(D): e has tail in X, head in V(D) — X}
5~ (X):={e € E(D):ehasheadin X, tail in V(D) — X}
StT{vh) =6T(v), 6 " ({v}) =6 (v). If f:E(D) — R, then
fran= > fl, 0= ) [

eest(X) ees—(X)

Example




A flow in N is a mapping f: E(D) — R such that

i) O0=<f(e)<c(e) Vee€E(D) (capacity constraints)
i ffw=fw VvveV®D)—{st}

(conservation conditions)

Example




Lemma. If f is a flow in anetwork N = (D, s,t,c) and X € V(D)
withs € X, t € X, then

fFE -~ =X -fX)
Definition. f*(s) — f~(s) is the value of f, denoted by val(f).

Proof. f*(v) = f~(v) Vv eV(D)— {s,t}.

Sum over all v € X — {s}

1),

FraO-fXD)+f)+ ) fe)=

e has both
ends in X—{s}

= fFO-FEED+ 0+ D (O

e has both
ends in X—{s}



Corollary. If f is a flow in a network N = (D, s, t, ¢), then
ffO == O-f"@®
Proof. Apply previous lemma to X = V(D) — {t}. O

A cut in a network N is a set of edges of the form §*(X) for some
set X C V(D) withs € X, t € X. The capacity of acut K is

cap (K) = ) c(e)

eeK

If K =67 (X), then cap(K) = ¢t (X).

Corollary. val(f) < cap(K) for every flow f and every cut K in
N.

Proof. Let K = §%(X).
val(f) = fF(s) = f7(s) = fT(X) — f~(X) =

= Z f(e) — Z f(e) < Z c(e) = cap(K)

eedt(X) e€ed~(X) eedt(X)
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