The max-flow min-cut theorem

A *directed graph* or *digraph* is a pair D = (V, E), where V is a finite set and $E \subseteq V \times V$.

A *network* is a quadruple N = (D, s, t, c), where *D* is a digraph, $s, t \in V(D)$ are distinct, and $c: E(D) \rightarrow [0, \infty]$.

s ... source t ... sink c ... capacity function

Example

Notation. For $X \subseteq V(D)$ $\delta^+(X) \coloneqq \{e \in E(D) : e \text{ has tail in } X, \text{ head in } V(D) - X\}$ $\delta^-(X) \coloneqq \{e \in E(D) : e \text{ has head in } X, \text{ tail in } V(D) - X\}$ $\delta^+(\{v\}) = \delta^+(v), \ \delta^-(\{v\}) = \delta^-(v). \text{ If } f : E(D) \to \mathbb{R}, \text{ then}$

$$f^+(X) \coloneqq \sum_{e \in \delta^+(X)} f(e), \quad f^-(X) \coloneqq \sum_{e \in \delta^-(X)} f(e)$$

Example

A *flow* in *N* is a mapping $f: E(D) \to R$ such that

- (i) $0 \le f(e) \le c(e) \quad \forall e \in E(D)$ (capacity constraints)
- (ii) $f^+(v) = f^-(v) \quad \forall v \in V(D) \{s, t\}$

(conservation conditions)

Example

Lemma. If *f* is a flow in a network N = (D, s, t, c) and $X \subseteq V(D)$ with $s \in X, t \notin X$, then

$$f^+(s) - f^-(s) = f^+(X) - f^-(X)$$

Definition. $f^+(s) - f^-(s)$ is the *value* of f, denoted by val(f). **Proof.** $f^+(v) = f^-(v) \quad \forall v \in V(D) - \{s, t\}.$

Sum over all $v \in X - \{s\}$

$$f^{+}(X) - f(s, X^{c}) + f(X, s) + \sum_{\substack{e \text{ has both} \\ ends \text{ in } X - \{s\}}} f(e) =$$
$$= f^{-}(X) - f(X^{c}, s) + f(s, X) + \sum_{\substack{e \text{ has both} \\ ends \text{ in } X - \{s\}}} f(e)$$

 $f(s, X^c) + f(s, X) = f^+(s), \ f(X^c, s) + f(X, s) = f^-(s)$

Corollary. If f is a flow in a network N = (D, s, t, c), then

$$f^+(s) - f^-(s) = f^-(t) - f^+(t)$$

Proof. Apply previous lemma to $X = V(D) - \{t\}$.

A *cut* in a network *N* is a set of edges of the form $\delta^+(X)$ for some set $X \subseteq V(D)$ with $s \in X$, $t \notin X$. The *capacity* of a cut *K* is

$$\operatorname{cap}(K) \coloneqq \sum_{e \in K} c(e)$$

If $K = \delta^+(X)$, then cap $(K) = c^+(X)$.

Corollary. $val(f) \le cap(K)$ for every flow f and every cut K in N.

Proof. Let $K = \delta^+(X)$.

$$val(f) = f^+(s) - f^-(s) = f^+(X) - f^-(X) =$$

$$= \sum_{e \in \delta^+(X)} f(e) - \sum_{e \in \delta^-(X)} f(e) \le \sum_{e \in \delta^+(X)} c(e) = \operatorname{cap}(K)$$

Lemma. In any network, there exists a flow of maximum value.

Proof. Let N = (D, s, t, c) be a network, and let

 $M \coloneqq \sup \{ \operatorname{val}(f) : f \text{ is a flow in } N \}.$

There exists a sequence of flows f_1, f_2, \dots such that

$$val(f_n) \ge M - \frac{1}{n}.$$

Let $e_1, e_2, ..., e_m$ be the edges of D. The sequence $\{f_n(e_1)\}_{n=1}^{\infty}$ has a convergent subsequence $\{f_n(e_1)\}_{n \in A_1}$. Let $f(e_1)$ be the limit. The sequence $\{f_n(e_2)\}_{n \in A_1}$ has a convergent subsequence $\{f_n(e_2)\}_{n \in A_2}$. Let $f(e_2)$ be the limit. After m steps we construct a flow f. Then f is a flow of value M. \Box **Theorem.** (Max-flow min-cut theorem, Ford & Fulkerson) In any network *N* there exists a flow f^* and cut K^* such that

$$\operatorname{val}(f^*) = \operatorname{cap}(K^*).$$

If the capacity function is integral (takes on integer values only), then f^* can be chosen integral.

Proof. Let N = (D, s, t, c), and let f be a flow of maximum value. By an *augmenting path* we mean a path P in the underlying undirected multigraph such that

- (i) *s* is an end of *P*
- (ii) f(e) < c(e) for every "forward" edge $e \in E(P)$
- (iii) f(e) > 0 for every "backward" edge $e \in E(P)$

