The max-flow min-cut theorem

A *directed graph* or *digraph* is a pair D = (V, E), where V is a finite set and $E \subseteq V \times V$.

A *network* is a quadruple N = (D, s, t, c), where *D* is a digraph, $s, t \in V(D)$ are distinct, and $c: E(D) \rightarrow [0, \infty]$.

s ... source t ... sink c ... capacity function

Notation. For $X \subseteq V(D)$

 $\delta^+(X) \coloneqq \{e \in E(D) : e \text{ has tail in } X, \text{ head in } V(D) - X\}$ $\delta^-(X) \coloneqq \{e \in E(D) : e \text{ has head in } X, \text{ tail in } V(D) - X\}$ $\delta^+(\{v\}) = \delta^+(v), \ \delta^-(\{v\}) = \delta^-(v). \text{ If } f : E(D) \to \mathbb{R}, \text{ then}$

$$f^+(X) \coloneqq \sum_{e \in \delta^+(X)} f(e), \quad f^-(X) \coloneqq \sum_{e \in \delta^-(X)} f(e)$$

A *flow* in *N* is a mapping $f: E(D) \rightarrow R$ such that

(i) $0 \le f(e) \le c(e) \quad \forall e \in E(D) \text{ (capacity constraints)}$

(ii)
$$f^+(v) = f^-(v) \quad \forall v \in V(D) - \{s, t\}$$

(conservation conditions)

Lemma. If *f* is a flow in a network N = (D, s, t, c) and $X \subseteq V(D)$ with $s \in X, t \notin X$, then

$$f^+(s) - f^-(s) = f^+(X) - f^-(X)$$

Definition. $f^+(s) - f^-(s)$ is the *value* of f, denoted by val(f).

Corollary. If f is a flow in a network N = (D, s, t, c), then

$$f^+(s) - f^-(s) = f^-(t) - f^+(t)$$

A *cut* in a network *N* is a set of edges of the form $\delta^+(X)$ for some set $X \subseteq V(D)$ with $s \in X$, $t \notin X$. The *capacity* of a cut *K* is

$$\operatorname{cap}(K) \coloneqq \sum_{e \in K} c(e)$$

If $K = \delta^+(X)$, then cap $(K) = c^+(X)$.

Corollary. $val(f) \le cap(K)$ for every flow f and every cut K in N.

Lemma. In any network, there exists a flow of maximum value.

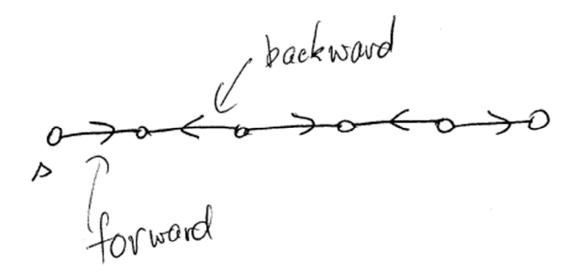
Theorem. (Max-flow min-cut theorem, Ford & Fulkerson) In any network *N* there exists a flow f^* and cut K^* such that

$$\operatorname{val}(f^*) = \operatorname{cap}(K^*).$$

If the capacity function is integral (takes on integer values only), then f^* can be chosen integral.

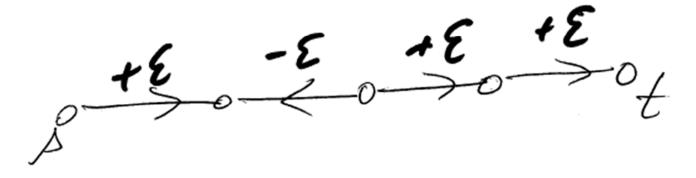
Proof. Let N = (D, s, t, c), and let f be a flow of maximum value. By an *augmenting path* we mean a path P in the underlying undirected multigraph such that

- (i) *s* is an end of *P*
- (ii) f(e) < c(e) for every "forward" edge $e \in E(P)$
- (iii) f(e) > 0 for every "backward" edge $e \in E(P)$



Claim. There is no augmenting path from s to t.

Proof. Suppose for a contradiction that *P* is an augmenting path from *s* to *t*.



Let $\epsilon > 0$ be such that

 $f(e) + \epsilon \le c(e) \text{ for every forward edge } e \in E(P)$ $f(e) \ge \epsilon \quad \text{ for every backward edge } e \in E(P)$ Let f' be defined by

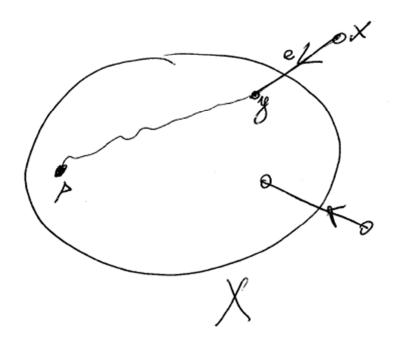
$$f'(e) = \begin{cases} f(e) & \text{if } e \notin E(P) \\ f(e) + \epsilon & \text{if } e \in E(P) \text{ is forward} \\ f(e) - \epsilon & \text{if } e \in E(P) \text{ is backward} \end{cases}$$

Then f' is a flow of value val $(f) + \epsilon >$ val(f), a contradiction. This proves the claim. Define

 $X \coloneqq \{v : \text{there is an augmenting path from } s \text{ to } v\}.$

Then $t \notin X$. Let $K \coloneqq \delta^+(X)$. Claim f, K are as desired.

We have f(e) = 0 for every edge $e = xy \in \delta^{-}(X)$. To see that let Q be an *s*-*y* augmenting path (which exists because $y \in X$). Then Q + e is an *s*-*x* augmenting path, contrary to $x \notin X$. This shows f(e) = 0 for every edge $e \in \delta^{-}(X)$.



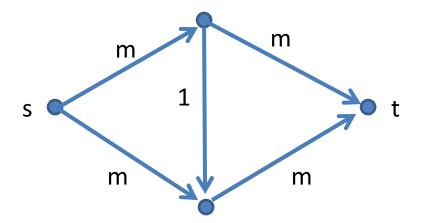
Similarly, f(e) = c(e) for every edge $e \in \delta^+(X)$. Thus $f^+(X) = c^+(X)$ and $f^-(X) = 0$. Hence

$$val(f) = f^+(X) - f^-(X) = c^+(X) = cap(K).$$

If the capacity function is integral, then, starting from the zero flow, the proof constructs a maximal flow that is integral. \Box

The proof gives rise to an algorithm to construct a maximum flow and a minimum cut.

How good is the algorithm?



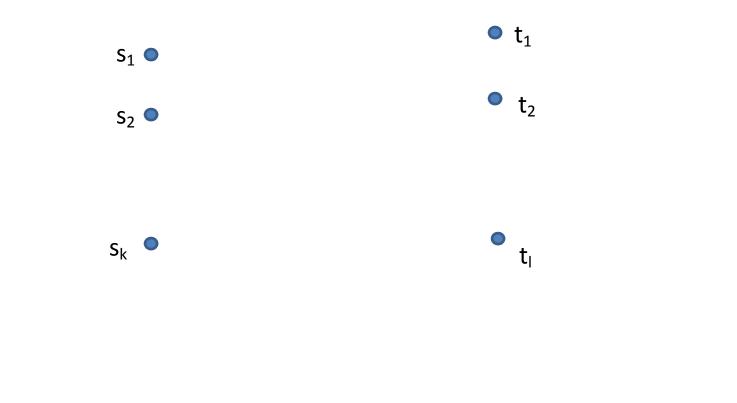
The algorithm may take 2m iterations

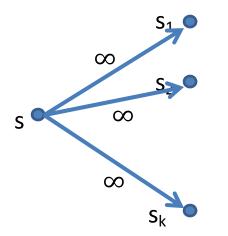
Size of input is about $s \coloneqq \log_2 m$

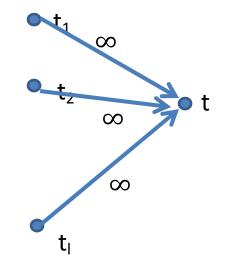
So the running time is $2m = 2 \cdot 2^{\log_2 m} = 2 \cdot 2^s$

However, if at every step we pick a shortest augmenting path, then this leads to a polynomial-time algorithm (week 3 problem sets)

Multiple sources or sinks



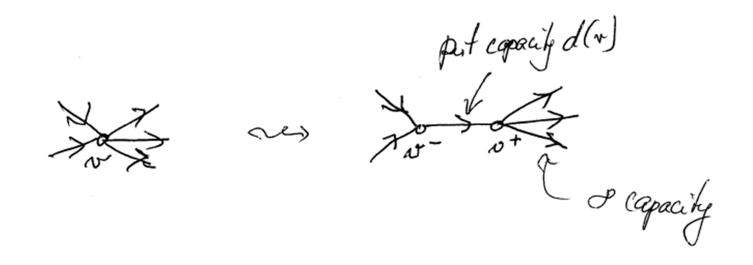




Capacities on vertices

Suppose that $d: V(D) \to \mathbb{R}$ and we want our flow to satisfy $f^+(v) = f^-(v) \le d(v)$ for every $v \in V(D) - \{s, t\}$

An easy construction



Do this for every $v \in V(D) - \{s, t\}$.

Theorem. If we have capacities on vertices, then there exists a flow f^* and a *vertex-cut* K^* such that $val(f^*) = cap(K^*)$, where a vertex-cut is a set of vertices $K^* \subseteq V(D) - \{s, t\}$ such that there is no path from *s* to *t* in $D \setminus K^*$.

Proof. Use the above construction.

Application to baseball elimination

n teams; team *i* has w_i wins and r_{ij} games to play against team *j*. Team *i* is eliminated if it cannot finish with the most wins, or tied for the most wins.

Example.

	wins	to play	ATL	PHL	NY	MON
ATL	83	8		1	6	1
PHL	79	4	1		0	3
NY	78	7	6	0		1
MON	76	5	1	3	1	

MON is eliminated

ATL + NY have between them $\ge 83 + 78 + 6 = 167$ wins

On average they win 83.5 games \Rightarrow one of them wins 84 \Rightarrow PHL is eliminated.

Fix team i_0 . Let

$$M \coloneqq w_{i_0} + \sum_{j \neq i_0} r_{ij}$$

= max possible number of wins by team i_0 .

Let *A* be a set of teams. If

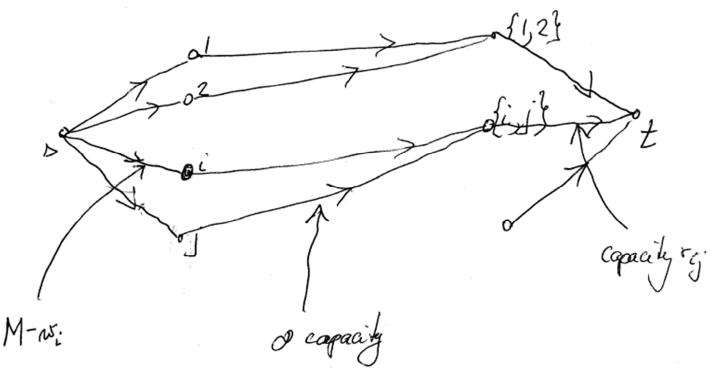
(*)
$$\sum_{i \in A} w_i + \sum_{\substack{\{i,j\} \subseteq A \\ i \neq j}} r_{ij} > M|A|,$$

then some team in A will end up with > M wins $\Rightarrow i_0$ is eliminated.

Theorem. Fix a team i_0 . The team i_0 is eliminated if and only if there exists a set A satisfying (*).

Proof. \Leftarrow done above

 \Rightarrow construct a network using teams other than i_0



Case 1. \exists flow of value $\sum_{\{i,j\}} r_{ij}$. Let y_{ij} be the flow on the edge $(i, \{i, j\})$. Then

$$y_{ij} + y_{ji} = r_{ij}$$

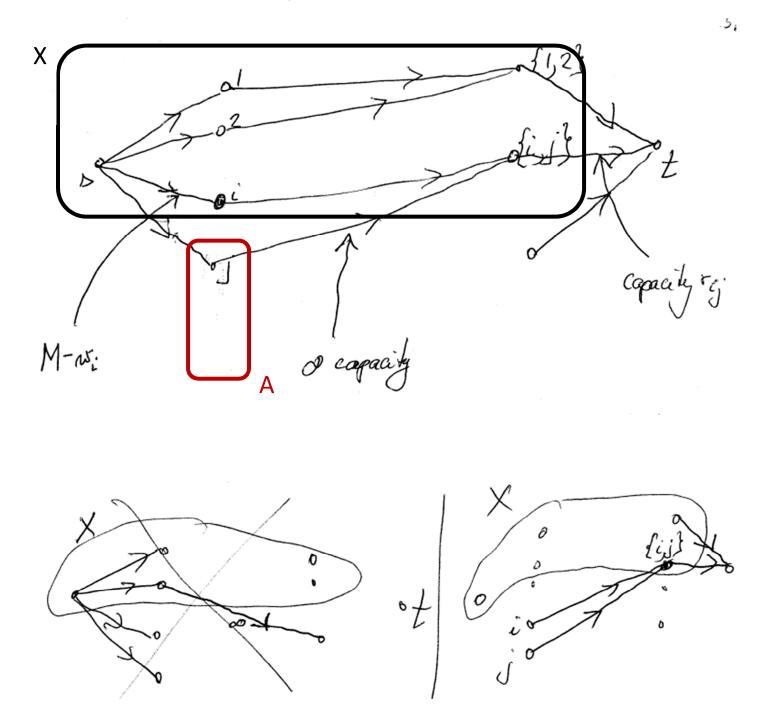
(flow conservation + edges into sink are used at capacity).

$$\sum_{j} y_{ij} \le M - w_i \quad \forall \ i$$

(flow conservation at i + capacity constraint on (s, i).

If team *i* wins y_{ij} games against team *j*, then team *i* ends up with $w_i + \sum_j y_{ij}$ wins $\leq M \Rightarrow i_0$ is not eliminated.

Case 2. \nexists flow of value $\geq \sum_{\{i,j\}} r_{ij}$. By the MFMC theorem \exists cut $\delta^+(X)$ of capacity $< \sum r_{ij}$. Let *A* be the set of teams not in *X*.



This cannot happen.

We may move $\{i, j\}$ out of X.

So the set of all $\{i, j\} \in X$ is equal to the set of all $\{i, j\}$ such that $\{i, j\} \nsubseteq A$.

The capacity of $\delta^+(X)$ is

$$\sum_{i \in A} (M - w_i) + \sum_{\{i,j\} \notin A} r_{ij} = M \cdot |A| - \sum_{i \in A} w_i + \sum_{\{i,j\} \notin A} r_{ij}.$$

This is $< \sum_{\{i,j\}} r_{ij}$, and so

$$M \cdot |A| - \sum_{i \in A} w_i < \sum_{\{i,j\} \subseteq A} r_{ij} \Rightarrow A \text{ satisfies } (*)$$

This proves that if team i_0 is eliminated, then there exists a set *A* satisfying (*).