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The max-flow min-cut theorem 

A directed graph or digraph is a pair � � ��, ��, where � is a 

finite set and � ⊆ � 	 �. 

 

A network is a quadruple � � ��, �, , ��, where � is a digraph, �,  ∈ ���� are distinct, and �: ���� → �0,∞�.   
s … source  t … sink  c … capacity function 

Notation.  For � ⊆ ����   
����� ≔ �� ∈ ����: �	has tail in	�,	head in	���� � �� 
����� ≔ �� ∈ ����: �	has head in	�,	tail in	���� � �� 

���� �� � ��� �,  ���� �� � ��� �.   If !: ���� → ", then  

!���� ≔ # !���,						$∈%&�'� !���� ≔ # !���$∈%(�'�  

A flow in � is a mapping !: ���� → R such that 

(i) 0 * !��� * ����    ∀� ∈ ����  (capacity constraints) 

(ii) !�� � � !�� �      ∀	 ∈ ���� � ��, �  
(conservation conditions) 
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Lemma.  If ! is a flow in a network � � ��, �, , �� and � ⊆ ���� 
with � ∈ �,  ∉ �, then 

!���� � !���� � !���� � !���� 
 

Definition.  !���� � !���� is the value of !, denoted by val�!�. 
Corollary. If ! is a flow in a network � � ��, �, , ��, then 

!���� � !���� � !��� � !��� 
A cut in a network � is a set of edges of the form  ����� for some 

set � ⊆ ���� with � ∈ �,  ∉ �. The capacity of a cut 0 is 

cap	�0� ≔ #����$∈3  

If 0 � �����, then cap�0� � �����. 
 

Corollary.  val�!� * cap�0� for every flow ! and every cut 0 in �. 

 

Lemma. In any network, there exists a flow of maximum value. 
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Theorem.  (Max-flow min-cut theorem, Ford & Fulkerson)  In any 

network � there exists a flow !∗ and cut 0∗ such that  

val�!∗� � cap�0∗�. 
If the capacity function is integral (takes on integer values only), 

then !∗ can be chosen integral. 

Proof.  Let � � ��, �, , ��, and let ! be a flow of maximum value.  

By an augmenting path we mean a path 5 in the underlying 

undirected multigraph such that  

(i) � is an end of 5 

(ii) !��� 6 ����   for every “forward” edge � ∈ ��5� 
(iii) !��� 7 0        for every “backward” edge � ∈ ��5� 
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Claim. There is no augmenting path from � to .   
Proof. Suppose for a contradiction that 5 is an augmenting path 

from � to . 

 

 

Let 8 7 0 be such that 

!��� 9 8 * ����		for	every	forward	edge	� ∈ ��5� 
!��� B 8							for	every	backward	edge	� ∈ ��5� 

Let !’ be defined by 

 

!F��� � G !���																			if	� ∉ ��5�!��� 9 8						if	� ∈ ��5�	is	forward!��� � 8					if	� ∈ ��5�	is	backward 

 

Then !’ is a flow of value val�!� 9 8 7 val	�!�, a contradiction. 

This proves the claim. 
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 Define  

� ≔ � ∶ there	is	an	augmenting	path	from	�	to	 �. 
Then  ∉ �.  Let 0 ≔ �����.  Claim !, 0 are as desired. 

We have !��� � 0 for every edge � � PQ ∈ �����.  To see that let R be an �-Q augmenting path (which exists because Q ∈ �). Then R 9 � is an �-P augmenting path, contrary to P ∉ �. This shows !��� � 0 for every edge � ∈ �����.   

 

 

Similarly, !��� � ���� for every edge � ∈ �����.  Thus !���� ������ and !���� � 0. Hence  

 

val�!� � !���� � !���� � ����� � cap�0�.		 
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If the capacity function is integral, then, starting from the zero 

flow, the proof constructs a maximal flow that is integral.   □ 

 

The proof gives rise to an algorithm to construct a maximum flow 

and a minimum cut. 

How good is the algorithm? 

 

 

 

 

 

 

 

 

The algorithm may take 2T iterations 

Size of input is about s ≔ logUT 

So the running time is 2T � 2 ∙ 2WXYZ[ � 2 ∙ 2\ 
However, if at every step we pick a shortest augmenting path, then 

this leads to a polynomial-time algorithm (week 3 problem sets) 
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Multiple sources or sinks 
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Capacities on vertices 

Suppose that ]: ���� → " and we want our flow to satisfy  

!�� � � !�� � * ]� � for every  ∈ ���� � ��, � 
An easy construction 

 

 

Do this for every  ∈ ���� � ��, �.   
Theorem.  If we have capacities on vertices, then there exists a 

flow !∗ and a vertex-cut 0∗ such that val�!∗� � cap�0∗�, where a 

vertex-cut is a set of vertices 0∗ ⊆ ���� � ��, � such that there is 

no path from � to  in �\0∗. 
Proof.  Use the above construction. 
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Application to baseball elimination _ teams; team	` has ab wins and cbd games to play against team e.  
Team ` is eliminated if it cannot finish with the most wins, or tied 

for the most wins. 

 

Example.   

 wins to play ATL PHL NY MON 

ATL 83 8  1 6 1 

PHL 79 4 1  0 3 

NY 78 7 6 0  1 

MON 76 5 1 3 1  

 

MON is eliminated 

ATL + NY have between them B 83 9 78 9 6 � 167 wins 

On average they win 83.5 games ⇒ one of them wins 84 ⇒ PHL is 

eliminated.  
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Fix team `l. Let  

m ≔ abn 9 # cbddobn
 

= max possible number of wins by team `l. 

Let p be a set of teams.  If 

�∗�																									#abb∈q 9 # cbd�b,d�⊆qbod	
7 m|p|, 

then some team in p will end up with 7 m wins ⇒`l is eliminated. 

Theorem.  Fix a team `l. The team `l is eliminated if and only if 

there exists a set p satisfying �∗�. 
Proof.  ⇐ done above 

⇒ construct a network using teams other than `l 
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Case 1.  ∃ flow of value ∑ cbd�b,d� .  Let Qbd be the flow on the edge  �`, �`, e��.  Then  

Qbd 9 Qdb � cbd 
(flow conservation + edges into sink are used at capacity). 

#Qbdd * m �ab 			∀	` 
(flow conservation at ` 9 capacity constraint on ��, `�. 
If team ` wins Qbd games against team e, then team ` ends up with ab 9 ∑ Qbdd  wins * m ⇒ `l is not eliminated. 
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Case 2.  ∄	flow	of	value	B ∑ cbd�b,d� .		By	the	MFMC	theorem	∃	cut	�����	of	capacity	6 ∑ cbd .		Let	A	be	the	set	of	teams	not	in	X.			

 	

		This	cannot	happen.																													We	may	move	�`, e�	out	of	�.			
	

A 

X 
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So	the	set	of	all	�`, e� ∈ �	is	equal	to	the	set	of	all	�`, e�	such	that	�`, e� ⊈ p.	The	capacity	of	�����	is	
#�m � ab� 9 # cbd � m ∙ |p| �#abb∈q�b,d�⊈q 	b∈q 9 # cbd�b,d�⊈q .	

This	is	6 ∑ cbd�b,d� ,	and	so	
	

m ∙ |p| �#abb∈q 6 # cbd�b,d�⊆q ⇒ p	satisfies	�∗� 
This proves that if team `l is eliminated, then there exists a set p 

satisfying �∗�. 
 


