The max-flow min-cut theorem

A directed graph or digraph is a pair D = (V,E), where V is a
finite setand E € V X /.
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A network is a quadruple N = (D, s, t, c), where D is a digraph,
s,t € V(D) are distinct, and c: E(D) — [0, oo].

S ... source t...sink C ... capacity function
Notation. For X € V(D)
51t (X) := {e € E(D): e has tail in X, head in V(D) — X}
0" (X):={e € E(D):ehasheadin X, tail in V(D) — X}
StT({vh) =6T(v), 6 " ({v}) =6 (v). If f:E(D) — R, then
Froos= ) f@, 0= Y f@
e€dt(X) e€d—(X)
A flow in N is a mapping f: E(D) — R such that

1) 0= f(e)<c(e) Vee€E(D) (capacity constraints)
i) fr@)=f"( VveV(D)-{st}

(conservation conditions)
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Lemma. If f is a flow in anetwork N = (D, s,t,c) and X € V(D)
withs € X, t € X, then

fr&) =) =X -f~X)

Definition. f*(s) — f~(s) is the value of f, denoted by val(f).

Corollary. If f is a flow in a network N = (D, s, t, ¢), then
ffr@O—=f = -f@

A cut in a network N is a set of edges of the form §*(X) for some

set X C V(D) withs € X, t € X. The capacity of acut K is

cap (K) := z c(e)

eeK

If K = 6% (X), then cap(K) = ¢t (X).

Corollary. val(f) < cap(K) for every flow f and every cut K in
N.

Lemma. In any network, there exists a flow of maximum value.



Theorem. (Max-flow min-cut theorem, Ford & Fulkerson) In any
network N there exists a flow f* and cut K* such that

val(f*) = cap(K™).

If the capacity function is integral (takes on integer values only),
then f* can be chosen integral.

Proof. Let N = (D, s,t,c), and let f be a flow of maximum value.
By an augmenting path we mean a path P in the underlying
undirected multigraph such that

(1) s is an end of P
(i) f(e) <c(e) forevery “forward” edge e € E(P)
(ii) f(e)>0 for every “backward” edge e € E(P)




Claim. There is no augmenting path from s to t.

Proof. Suppose for a contradiction that P is an augmenting path
from s to t.
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Let € > 0 be such that
f(e) + € < c(e) forevery forward edge e € E(P)
f(e) =€  forevery backward edge e € E(P)
Let f’ be defined by

f(e) ife & E(P)
f'(e) =1 f(e)+€ ife € E(P)isforward
f(e) —e ife € E(P)isbackward

Then f’ is a flow of value val(f) + € > val (f), a contradiction.
This proves the claim.



Define

X = {v : there is an augmenting path from s to v}.

Thent ¢ X. Let K := §7(X). Claim f, K are as desired.

We have f(e) = 0 for every edge e = xy € 6 (X). To see that let
Q be an s-y augmenting path (which exists because y € X). Then
Q + e is an s-x augmenting path, contrary to x € X. This shows
f(e) = 0 for every edge e € 6~ (X).

— o //‘0)(

Similarly, f(e) = c(e) for every edge e € §¥(X). Thus f(X) =
ct(X) and f~(X) = 0. Hence

val(f) = f7(X) — f~(X) = ¢*(X) = cap(K).



If the capacity function is integral, then, starting from the zero
flow, the proof constructs a maximal flow that is integral. O

The proof gives rise to an algorithm to construct a maximum flow
and a minimum cut.

How good is the algorithm?

The algorithm may take 2m iterations
Size of input is about s := log, m
So the running time is 2m = 2 - 21°82™ = 2. 23

However, if at every step we pick a shortest augmenting path, then
this leads to a polynomial-time algorithm (week 3 problem sets)



Multiple sources or sinks
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Capacities on vertices
Suppose that d: V(D) — R and we want our flow to satisfy
ftr(v) = f~(v) <d() forevery v € V(D) — {s, t}

An easy construction
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Do this for every v € V(D) — {s, t}.

Theorem. If we have capacities on vertices, then there exists a
flow f* and a vertex-cut K* such that val(f*) = cap(K™), where a
vertex-cut is a set of vertices K* € V(D) — {s, t} such that there is
no path from s to t in D\K".

Proof. Use the above construction.



Application to baseball elimination

n teams; team i has w; wins and 1;; games to play against team j.

Team i 1s eliminated if it cannot finish with the most wins, or tied
for the most wins.

Example.

wins |toplay | ATL | PHL | NY | MON
ATL 83 8 1 6 1
PHL 79 4 1 0 3
NY 78 7 6 0 1
MON | 76 5 1 3 1
MON is eliminated

ATL + NY have between them = 83 + 78 + 6 = 167 wins

On average they win 83.5 games = one of them wins 84 = PHL is
eliminated.



Fix team i,. Let
M :=w; + Z 1ij
J#lg
= max possible number of wins by team i,.
Let A be a set of teams. If

(%) ZWH‘ z rij > M|A,

i€EA {i,j}cA
I#]

then some team in A will end up with > M wins =i, is eliminated.

Theorem. Fix a team iy. The team i, is eliminated if and only if
there exists a set A satisfying (*).

Proof. < done above

= construct a network using teams other than i,
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Case 1. 3 flow of value X.; 3 ;j. Let y;; be the flow on the edge
(i,{i,j}). Then
Yij + Vji = Tij

(flow conservation + edges into sink are used at capacity).

ZyijSM—Wi Vi
J

(flow conservation at i + capacity constraint on (s, 1).

If team { wins y;; games against team j, then team { ends up with

w; + X.jyij wins < M = i is not eliminated.
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Case 2. 2 flow of value = }.; 1 7;;. By the MFMC theorem 3 cut
6" (X) of capacity < Y r;;. Let Abe the set of teams not in X.

X[~ )/_/.\@

This cannot happen. We may move {i, j} out of X.
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So the set of all {i, j} € X is equal to the set of all {i, j} such that
{i,j} £ A

The capacity of 67 (X) is
Z(M_Wi)-l_ z Tij:M'lAl—ZWi + Z rij'
IEA {i,j}ZA IEA {i,j}ZA

This is < X jy7ij, and so

M-|Al— ) w; < Z r;; = A satisfies ()
i€A (i,j}CA

This proves that if team i is eliminated, then there exists a set A
satisfying (*).
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