Connectivity

A *vertex cut* in *G* is a set $X \subseteq V(G)$ such that $G \setminus X$ is disconnected. We say that a graph *G* is *k*-connected if it has $\ge k + 1$ vertices and $G \setminus X$ is connected for every set $X \subseteq V(G)$ of size < k. We say that *G* is *k*-edge-connected if $G \setminus F$ is connected for every set $F \subseteq E(G)$ of size < k.

The **connectivity** of *G*, denoted by $\kappa(G)$, is the maximum integer *k* such that *G* is *k*-connected.

The **edge-connectivity** of *G*, denoted by $\kappa'(G)$, is the maximum integer such that *G* is *k*-edge-connected.

Question. Is there a relationship between $\kappa(G)$ and $\kappa'(G)$?

There exist graphs with $\kappa(G) = 1$ and $\kappa'(G)$ big:

Proposition. $\kappa(G) \le \kappa'(G) \le \delta(G)$ (= minimum degree) **Proof.** $\kappa'(G) \le \delta(G)$ is clear

 $\kappa(G) \leq \kappa'(G)$:

Let $k \coloneqq \kappa'(G)$, and let $F \subseteq E(G)$ be such that |F| = k and $G \setminus F$ is disconnected.

Need to find $X \subseteq V(G)$ such that $|X| \leq k$ and $G \setminus X$ is disconnected.

WMA $G \setminus \{x_1, x_2, \dots, x_k\}$ is connected. Similarly, WMA $G \setminus \{y_1, y_2, \dots, y_k\}$ is connected. So $V(G) = \{x_1, x_2, \dots, x_k, y_1, y_2, \dots, y_k\}.$ WMA $x_1 = x_2 = \dots = x_p \neq x_j \quad \forall j = p + 1, \dots, k$

Let *N* be the set of nbrs of x_1 . Then

 $|N| \le \#$ nbrs among x's+ # nbrs among y's $\le k - p + p = k$. If $G \setminus N$ is disconnected, then done. Otherwise $V(G) = N \cup \{x_1\} \Rightarrow |V(G)| \le k + 1 \Rightarrow \kappa(G) \le k$. **Open problem.** Is there a function $f: \mathbb{N} \to \mathbb{N}$ such that \forall graph G $\forall a, b \in V(G)$ if G is f(k)-connected, then there exists an a- bpath P such that $G \setminus V(P)$ is k-connected?

Known that f(1) = 3 and f(2) = 5.

Menger's theorem

Theorem. Let *G* be a multigraph, let $s, t \in V(G)$ and $S, T \subseteq V(G)$. Let $s \neq t$.

- (i) The maximum number of internally disjoint *s*-*t* paths is equal to the minimum cardinality of a set $X \subseteq V(G) \{s, t\}$ such that $G \setminus X$ has no *s*-*t* path.
- (ii) The maximum number of edge-disjoint *s t* paths is equal to the minimum cardinality of a set $F \subseteq E(G)$ such that $G \setminus F$ has no *s t* path.
- (iii) The maximum number of disjoint *S*-*T* paths is equal to the minimum cardinality of a set $W \subseteq V(G)$ such that $G \setminus W$ has no *S*-*T* path.

Definition. Two paths P_1 , P_2 are internally disjoint if every $v \in V(P_1) \cap V(P_2)$ is an end of both.

Proof. (ii) Define a network N = (D, s, t, c) as follows:

D: replace every e of G by two directed edges, one in each direction

 $c(e) = 1 \forall e \in E(D).$

We want an integer k, a family of k edge-disjoint s-t paths and a set $F \subseteq E(G)$ of size k such that $G \setminus F$ has no s-t path.

By the MFMC theorem \exists integral flow f and a cut K such that $|F| = \operatorname{val}(f) = \operatorname{cap}(K)$.

Let F ":=" K. Look at the set Z of edges e of G such that f(e') = 1 for one of the corresponding edges of e' of D.

Example. val(f) = 3.

WMA *D* has no directed cycle consisting of edges $\{e: f(e) = 1\}$. Now *Z* is the set of edges of *k* edge-disjoint *s*-*t* paths. This proves (ii).

The rest is left as an exercise.

Food for thought.

Suppose we have 3 internally disjoint s-t paths in G.

Suppose also \nexists a set $X \subseteq V(G) - \{s, t\}$ of size 3 or less such that $G \setminus X$ has no *s*-*t* path. Then, by Menger's theorem, there exist 4 internally disjoint paths.

Where are they?