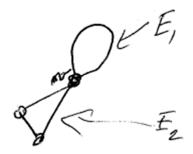
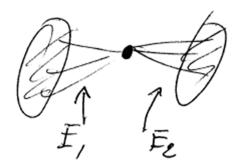
Block structure of (connected) graphs.

A *cut-vertex* in a multigraph G is a vertex v such that E(G) can be partitioned into disjoint non-empty sets E_1 , E_2 such that v is the only vertex such that both E_1 and E_2 include an edge incident with v.

Example 1.



Example 2. $G \setminus v$ disconnected.



Definition. A *block* is a connected multigraph with no cut-vertex.

Examples.

Every loopless and 2-connected multigraph.

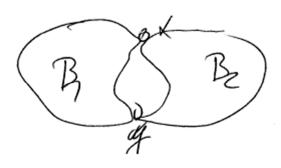
Definition. A block of a multigraph G is a maximal submultigraph that is a block.

Proposition. (i) Every multigraph is a union of its blocks.

(ii) If B_1 , B_2 are distinct blocks of G, then $|V(B_1) \cap V(B_2)| \le 1$, and if $v \in V(B_1) \cap V(B_2)$, then v is a cut-vertex.

Proof. (i) immediate.

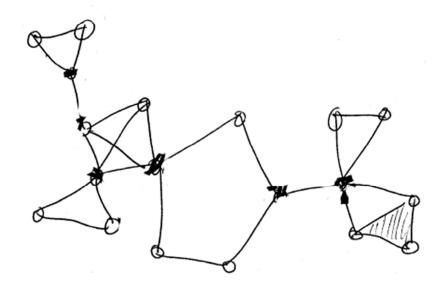
(ii) Suppose $x, y \in V(B_1) \cap V(B_2), x \neq y$



 $\Rightarrow B_1 \cup B_2$ is block

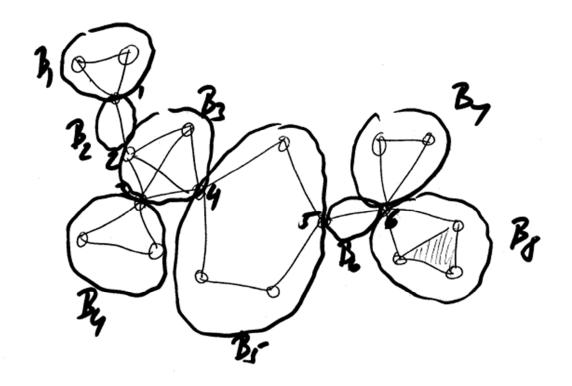
If B_1 , B_2 are 2-connected $\Rightarrow B_1 \cup B_2$ 2-connected.

Proof. Let $z \in V(B_1 \cup B_2)$. Then $B_1 \setminus z$, $B_2 \setminus z$ are connected, and they intersect $\Rightarrow (B_1 \setminus z) \cup (B_2 \setminus z) = (B_1 \cup B_2) \setminus z$ is connected.



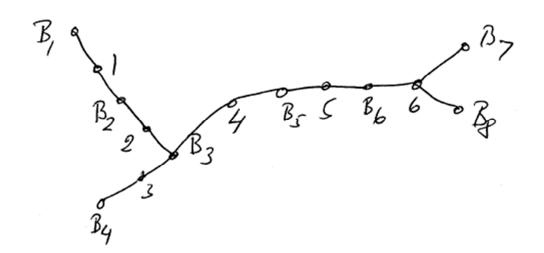
Given a multigraph, define a graph F as follows: $V(F) = \mathcal{B} \cup \mathcal{C}$ $\mathcal{B} = \text{all blocks of } G$; $\mathcal{C} = \text{all cut-vertices of } G$. $B \in \mathcal{B}$ is adjacent to $c \in \mathcal{C}$ if $c \in V(B)$.

Theorem. *F* is a forest, and if *G* is connected, then it is a tree. **Definition.** This is called the **block structure of a graph**. **Proof.** Exercise.



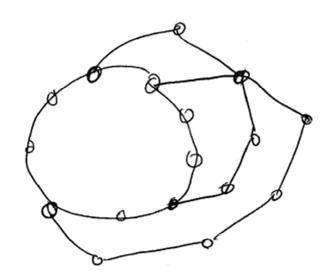
Given a multigraph, define a graph F as follows: $V(F) = \mathcal{B} \cup \mathcal{C}$ $\mathcal{B} = \text{all blocks of } G$; $\mathcal{C} = \text{all cut-vertices of } G$. $B \in \mathcal{B}$ is adjacent to $c \in \mathcal{C}$ if $c \in V(B)$.

Theorem. *F* is a forest, and if *G* is connected, then it is a tree. **Definition.** This is called the block structure of a graph. **Proof.** Exercise.



Theorem. (Ear structure of 2-connected graphs). Let G be a 2-connected graph. Then G can be written as $G = G_0 \cup G_1 \cup \cdots \cup G_k$, where

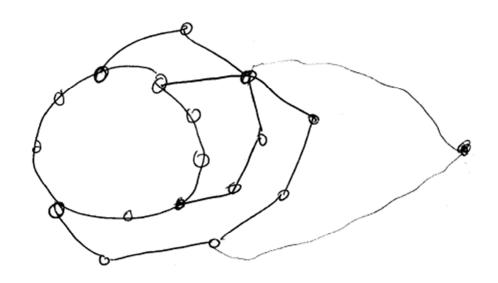
- (i) G_0 is a cycle, and
- (ii) for i = 1, 2, ..., k, G_i is a path with both ends in $G_0 \cup \cdots \cup G_{i-1}$, and otherwise disjoint from it.



Proof. \exists cycle. We can pick G_0, G_1, \dots, G_k satisfying (i) and (ii) with k maximum.

Theorem. (Ear structure of 2-connected graphs). Let G be a 2-connected graph. Then G can be written as $G = G_0 \cup G_1 \cup \cdots \cup G_k$, where

- (i) G_0 is a cycle, and
- (ii) for i = 1, 2, ..., k, G_i is a path with both ends in $G_0 \cup \cdots \cup G_{i-1}$, and otherwise disjoint from it.



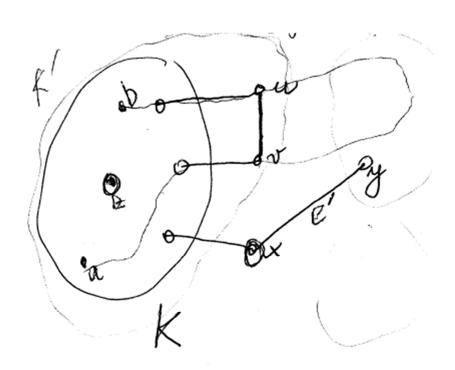
Proof. \exists cycle. We can pick G_0, G_1, \dots, G_k satisfying (i) and (ii) with k maximum.

If a vertex v does not belong to $G_0 \cup \cdots \cup G_k$, then there exist paths P_1, P_2 from v to $G_0 \cup \cdots \cup G_k$, disjoint, except for v. Then $G_0, G_1, \ldots, G_k, P_1 \cup P_2$ contradicts the choice of k.

A lemma about 3-connected graphs

Theorem. Let G be a 3-connected graph on ≥ 5 vertices. Then G has an edge e such that G/e is 3-connected.

Proof. Suppose not. Thus $\forall e = uv \exists x \in V(G)$ such that $G \setminus \{u, v, x\}$ is disconnected. Pick e = uv and x as above and a component K of $G \setminus \{u, v, x\}$ such that |V(K)| is maximum. Note u has a nbr in K, for o.w. $G \setminus \{v, x\}$ is disconnected. Same for v, x. Same for other components. Let y be a nbr of x not in $V(K) \cup \{u, v\}$.



For the edge $e' = xy \exists z \in V(G)$ such that $G \setminus \{x, y, z\}$ is disconnected. Let K' be the subgraph induced by $V(K) \cup \{u, v\}$.

Claim. $K' \setminus z$ is connected.

Proof. Let $a, b \in V(K') - \{z\}$. We must show that there exists an a-b path in $K' \setminus z$. Since G is 3-connected there exists an a-b path P in $G \setminus \{z, x\}$. If P is a path in $K' \setminus z$, then we are done, and so we may assume not. Thus P leaves K' through u or v and re-enters through v or u. In either case it uses both u and v. Let P' be obtained from P by short cutting using the edge e = uv. Then P' is an a-b path in $K' \setminus z$, as desired. This proves the claim.

By the claim, $K'\setminus z$ is a subgraph of a component K'' of $G\setminus \{x,y,z\}$. But $|V(K'')| \ge |V(K')| - 1 \ge |V(K)| + 1$ contrary to the choice of u, v, x, K.