G k-connected = 6(G) = mindegree = k

Converse?

Theorem (Mader) Every graph of minimum degree at least 4k has
a k-connected subgraph.



Theorem (Mader) Every graph of minimum degree at least 4k has
a k-connected subgraph.

Thoughts about a possible proof. Let n: = |V (G)|

1. Replace minimum degree by average degree
So 4k < average deg = )., deg(v)/n = 2|E(G)|/n,
which is the same as |E(G)| = 2kn

2.Let’s try to prove that for some suitable c, 5
(x) |[E(G)| = ckn+ B + 1 = G has k-connected subgraph.

GoNETE

Is it possible that for some values of ¢, §:

(#) If G is a counterexample, then so is Gyor G,?

If not, then |E(G)| = ckn+ B + 1 and |E(G,)| < ckn; +  and
|E(Gy)| < ckny + B.

But these conditions could be contradictory



|E(G)| < |[E(G)| + |E(G)| < ckny + B+ ckny + B <
<ck(n+k)+28=ckn+pB+ck?*+B <ckn+p
if ck? + B <0.

Soif ck? + B < 0, then above computation gives a contradiction,
and hence proves (#).
If we pick B := —ck?, then we have an inductive proof of (*):

|E(G)| = ckn — ck? + 1 = G has k-connected subgraph.

But how about the base of the induction?
n =k + 1?7 No way.

We should choose the base so that the edge bound will force the
graph to be complete: ckn — ck? + 1 = n?/2. Best chance for
n = ck.

Thus we are trying to prove

(+*) If [V (G)| = ck and |E(G)| = ckn — ck? + 1, then G
has a k-connected subgraph



Base case: If we choose suitable ¢, then there is no graph G with
V(G)| = ck and |E(G)| = ckn — ck? + 1: If |V(G)| = ck, then

ck 1
(ck)? — ck? +1 < |E(G)| < ( i ) < (ck)’
1
E(ck)2 < ck?

c<?2
If ¢ = 2, then the graph does not exist.

Induction step: Same as before, except we need to show that
|IV(G;)| = ck. That follows from

Lemma. If G is a minimum counterexample to (**), then
5(G) = ck.

Proof. We have already shown that |V (G)| > ck.
If v has degree < ck, then
IE(G\v)| =>ckn—ck?*+1—ck=ck(n—1)—ck?+ 1=
=ck([V(G\v)|—1) —ck? +1

= (G'\v is a smaller counterexample. O



Matching

A matching in G is a set M € E(G) such that every vertex of G is
incident with at most one edge of M.

A AN

M saturates v € V(G) or v is saturated by M if v is incident with
an edge of M.

A matching is perfect if it saturates every vertex.

A maximum matching is a matching M in G such that there is no
matching M’ with |M'| > |M|.

A maximal matching is a matching M such that there is no
matching M' with M & M'.

An M-alternating path is a path P such that edges in M and edges
not in M alternate along P.



An M-augmenting path is an M-alternating path P that starts and
ends in an M-unsaturated vertex.

MW

Let M' := MAE(P). Then M’ is a matching with |M'| > |M].

Theorem. (Berge) A matching M in G is maximum if and only if
there 1s no M-augmenting path.

Proof. = done

& Assume M is not maximum. Let M’ be a matching with
IM'| > |M|. Look at the graph H with V(H) =V (G), E(H) =
MaM'.

Then A(H) < 2. The components of H are:

- even cycles (same number of edges of M and M")
- paths

= 3 component P of H that has more edges in M’ than in M.
That’s an M-augmenting path. O



