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� �-connected ⇒ ���� � min degree � � 

Converse? 

 

 

 

 

Theorem (Mader) Every graph of minimum degree at least 4� has 

a �-connected subgraph.  
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Theorem (Mader) Every graph of minimum degree at least 4� has 

a �-connected subgraph.  

Thoughts about a possible proof. Let : � |����| 
1. Replace minimum degree by average degree 

So 4� � average	deg � ∑ deg���� ⁄ � 2|����| ⁄ , 

which is the same as |����| � 2� 

 

2. Let’s try to prove that for some suitable �, ! 

�∗� |����| � �� # ! # 1 ⇒ � has �-connected subgraph. 

 
 

Is it possible that for some values of �, !: 

 

�#� If � is a counterexample, then so is �&or �'? 

 

If not, then |����| � �� # ! # 1 and |���&�| � ��& # ! and 

|���'�| � ��' # !. 

 

But these conditions could be contradictory 
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|����| � |���&�| # |���'�| � ��& # ! # ��' # ! � 

 

� ��� # �� # 2! � �� # ! # ��' # ! � �� # ! 

 

if ��' # ! � 0.  

 

So if ��' # ! � 0, then above computation gives a contradiction, 

and hence proves �#�.  

If we pick ! ≔ −��', then we have an inductive proof of �∗�: 

 

|����| � �� − ��' # 1 ⇒ � has �-connected subgraph. 

 

But how about the base of the induction? 

 � � # 1? No way. 

 

We should choose the base so that the edge bound will force the 

graph to be complete: �� − ��' # 1 � ' 2⁄ . Best chance for 

 � ��. 

 

Thus we are trying to prove 

 

�∗∗� If |����| � �� and |����| � �� − ��' # 1, then � 

 has a �-connected subgraph 
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Base case: If we choose suitable �, then there is no graph � with 

|����| � �� and |����| � �� − ��' # 1:  If |����| � ��, then  

����' − ��' # 1 � |����| � +��
2 , < 1

2 ����' 

1
2 ����' < ��' 

� < 2 

If � � 2, then the graph does not exist.  

Induction step: Same as before, except we need to show that 

|���.�| � ��. That follows from 

 

Lemma. If � is a minimum counterexample to �∗∗�, then 

���� � ��.	 
Proof. We have already shown that |����| > ��. 

If � has degree � ��, then 

|���\��| � �� − ��' # 1 − �� � ��� − 1� − ��' # 1 � 

� ���|���\��| − 1� − ��' # 1 

⇒	�\� is a smaller counterexample.   □ 
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Matching 

A matching in � is a set 2 ⊆ ���� such that every vertex of � is 

incident with at most one edge of 2. 

 

 

2 saturates � ∈ ���� or � is saturated by 2 if � is incident with 

an edge of 2.  

A matching is perfect if it saturates every vertex. 

A maximum matching is a matching 2 in � such that there is no 

matching 2′ with |26| > |2|.   
A maximal matching is a matching 2 such that there is no 

matching 2′ with 2 ⫋ 2′. 
An 2-alternating path is a path 8 such that edges in 2 and edges 

not in 2 alternate along 8. 
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An 2-augmenting path is an 2-alternating path 8 that starts and 

ends in an 2-unsaturated vertex. 

 

Let 26 ≔ 2∆��8�.  Then 2′ is a matching with |26| > |2|.   
 

Theorem. (Berge) A matching 2 in � is maximum if and only if 

there is no 2-augmenting path. 

Proof. ⇒ done 

 ⇐ Assume 2 is not maximum. Let 2′ be a matching with 

|26| > |2|.  Look at the graph ; with ��;� � ����, ��;� �
2⧍2′.   
Then ⧍�;� � 2.		The components of ; are: 

- even cycles (same number of edges of 2 and 2′) 
- paths 

⇒ ∃ component 8 of ; that has more edges in 2′ than in 2.  

That’s an 2-augmenting path.  □ 

  


