Matchings in bipartite graphs

Let G be a bipartite graph with bipartition (A, B). A matching M is a **complete matching from** A **to** B if it saturates every vertex of A.

If |A| = |B|, then a complete matching from *A* to *B* is the same as a perfect matching.

Obstruction:

 $N(S) \coloneqq \{v \notin S : v \text{ is adjacent to a vertex in } S\}$ If |N(S)| < |S| for some $S \subseteq A$, then \nexists complete matching A to B

Theorem. (Hall) A bipartite graph with bipartition (A, B) has a complete matching from A to B if and only if $|N(S)| \ge |S|$ for every $S \subseteq A$.

Theorem. (Hall) A bipartite graph with bipartition (A, B) has a complete matching from *A* to *B* if and only if $|N(S)| \ge |S|$ for every $S \subseteq A$.

Proof #1. Using Menger's theorem

 \Rightarrow already done

 \Leftarrow If there exist |A| disjoint paths from *A* to *B*, then their edge-sets form a complete matching from *A* to *B*. Thus WMA $\nexists |A|$ disjoint *A*-*B* paths. By Menger's theorem $\exists X \subseteq V(G)$ such that $G \setminus X$ has no *A*-*B* path and |X| < |A|.

Let S := A - X. Then $N(S) \subseteq X \cap B$ and hence $|N(S)| \le |X \cap B| = |X| - |X \cap A| < |A| - |X \cap A| = |S|$, a contradiction. **Proof #2.** From first principles (\Leftarrow only) **Case 1.** |N(S)| > |S| for every $\emptyset \neq S \subsetneqq A$. Pick $v \in A$ and a neighbor u of v. Apply induction to $G \setminus \{u, v\}$.

В

u

 G_1 clearly satisfies the induction hypothesis.

To see that G_2 satisfies the induction hypothesis for $L \subseteq A - S$, look at $N_G(L \cup S)$.

 $|N_G(S)| + |N_{G_2}(L)| = |N_G(S \cup L)| \ge |S \cup L| = |S| + |L|$ and so $|N_{G_2}(L)| \ge |L|$, as desired. **Perfect matchings in (not necessarily bipartite) graphs** An obstruction:

Let o(H): = # of odd components of *H*.

If $o(G \setminus X) > |X|$ for some X, then G has no perfect matching.

Tutte's 1-factor theorem (1947). A graph *G* has a perfect matching if and only if $o(G \setminus X) \leq |X|$ for every $X \subseteq V(G)$.

Definition. Let *M* be a matching in *G*. A cycle *C* in *G* of length 2k + 1 containing *k* edges of *M* is called an *M*-blossom. Let *G*/*C* denote the graph obtained from *G* by contracting all edges of *C* and deleting all loops and parallel edges.

Lemma. Let *M* be a matching in *G*, and let *C* be an *M*-blossom in *G*. Let $G' \coloneqq G/C$ and $M' \coloneqq M - E(C)$. If *M* is a maximum matching in *G*, then *M'* is a maximum matching in *G'*.

Proof. Suppose not. Then $\exists M'$ -augmenting path P' in G'. We will exhibit an M-augmenting path in G. Let w be the new vertex of G'. WMA $w \in V(P')$, for otherwise P' is as desired.

The vertex *w* divides P' into P_1 and P_2 . Let *u*, *v* be the ends of P'. WMA by symmetry that the edge of P_2 incident with *w* is in *M*.

Then in *G* the path P_2 becomes a path from *v* to the tip of the blossom, and P_1 becomes a path from *u* to the blossom. Follow P_1 from *u* to $u' \in V(C)$, then follow *C* along the even path from u' to the tip, and then follow P_2 . That gives an *M*-augmenting path in *G*.

Definition. Let *M* be a matching in *G*, and let $r \in V(G)$ be *M*-unsaturated. An *M*-alternating tree rooted at *r* is a tree *T* such that

- (i) T is a subgraph of G
- (ii) $r \in V(T)$
- (iii) every path in T with end r is M-alternating
- (iv) if $e \in M$ is incident with a vertex of *T*, then $e \in E(T)$

Given an *M*-alternating tree *T* let

 $A(T) := \{ v \in V(T) : v \text{ is at odd distance from } r \text{ in } T \}$ $B(T) := \{ v \in V(T) : v \text{ is at even distance from } r \text{ in } T \}$

Theorem. Let *G* be a graph, let *M* be a maximum matching in *G*, let $r \in V(G)$ be *M*-unsaturated, and let *T* be an *M*-alternating tree rooted at *r*. Then there exists a set $X \subseteq V(G)$ such that $X \cap V(T) \subseteq A(T)$ and $o(G \setminus X) > |X|$.

Note that this implies Tutte's theorem.