Matchings in bipartite graphs

Let G be a bipartite graph with bipartition (4, B). A matching M is
a complete matching from A to B if it saturates every vertex of A.

If |A| = |B|, then a complete matching from A to B is the same as
a perfect matching.

Obstruction:

B N(S)

N(S) == {v & S: v is adjacent to a vertex in S}

If IN(S)| < |S] for some S € A, then A complete matching A to B

Theorem. (Hall) A bipartite graph with bipartition (4, B) has a
complete matching from A to B if and only if [N(S)| = |S] for
every S € A.



Theorem. (Hall) A bipartite graph with bipartition (4, B) has a
complete matching from A to B if and only if |[N(S)| = |S| for
every S € A.

Proof #1. Using Menger’s theorem
= already done

< If there exist |A| disjoint paths from A to B, then their edge-sets
form a complete matching from A to B. Thus WMA 7 |A| disjoint
A-B paths. By Menger’s theorem 3X € V(G) such that G\ X has
no A-B path and |X| < |A].

A S XNA

(7

LetS:=A— X.Then N(S) € X N B and hence
INO) < IXnB|=[X]-[XNnA| <[A] =X N Al =|S],

a contradiction. O



Proof #2. From first principles (< only)
Case 1. |[N(S)| > |S| forevery @ # S & A.

Pick v € A and a neighbor u of v. A ? Vv

Apply induction to G\{u, v}.

Case 2. |[N(S)| = |S| for some @ = S & A.

Let G, :== G[S U N(S)] A ' S l ]

G, = G\(S UN(S)) \

Apply induction to G; and G,. B N(S)

(4 clearly satisfies the induction hypothesis.

To see that G, satisfies the induction hypothesis for L € A — S,
look at No(L U S).

INg(S)| + [Ng,(L)| = INg(SUL)| =2 |SUL| =[S+ |L]

and so|NG2 (L)| > |L|, as desired. O
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Perfect matchings in (not necessarily bipartite) graphs

[
=
/7™

If 0(G\X) > |X| for some X, then G has no perfect matching.

An obstruction:

Let o(H): = # of odd components of H.

Tutte’s 1-factor theorem (1947). A graph G has a perfect
matching if and only if 0(G\X) < |X| for every X € V(G).
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Definition. Let M be a matching in G. A cycle C in G of length

2k + 1 containing k edges of M is called an M-blossom. Let G/C
denote the graph obtained from G by contracting all edges of C and
deleting all loops and parallel edges.

Lemma. Let M be a matching in G, and let C be an M-blossom
inG. LetG' :=G/Cand M' := M — E(C). If M is a maximum
matching in G, then M’ is a maximum matching in G'.

Proof. Suppose not. Then IM’-augmenting path P’ in G'. We will
exhibit an M-augmenting path in G. Let w be the new vertex of G'.
WMA w € V(P"), for otherwise P’ is as desired.

AL oS -
O—C— 0 P——0— =2
y -V —_ 7

The vertex w divides P’ into P; and P,. Let u, v be the ends of P’.
WMA by symmetry that the edge of P, incident with w 1s in M.

12



Then in G the path P, becomes a path from v to the tip of the
blossom, and P; becomes a path from u to the blossom. Follow Py
from u to u’ € V(C), then follow C along the even path from u’ to
the tip, and then follow P,. That gives an M-augmenting path in
G. O

13



Definition. Let M be a matching in G, and letr € V(G) be
M-unsaturated. An M-alternating tree rooted at r is a tree T
such that

(1) T is a subgraph of G

i) reV(T)

(111) every path in T with end r is M-alternating

(iv) if e € M is incident with a vertex of T, then e € E(T)
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Given an M-alternating tree T let
A(T):={v € V(T):vis at odd distance from r in 7}

B(T):={v € V(T): v is at even distance from r in 7}

Theorem. Let G be a graph, let M be a maximum matching in G,
let v € V(G) be M-unsaturated, and let T be an M-alternating tree
rooted at r. Then there exists a set X € V(G) such that

XNnV(T) € A(T) and o(G\X) > |X]|.

Note that this implies Tutte’s theorem.
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