
8 

 

Matchings in bipartite graphs 

Let � be a bipartite graph with bipartition (�, �). A matching � is 

a complete matching from � to � if it saturates every vertex of �. 

If |�| = |�|, then a complete matching from � to � is the same as 

a perfect matching. 

Obstruction:   

 

 

 

 

 

�(�) ≔ {� ∉ �: � is adjacent to a vertex in �} 

If |�(�)| < |�| for some � ⊆ �, then ∄ complete matching � to � 

 

Theorem. (Hall) A bipartite graph with bipartition (�, �) has a 

complete matching from � to � if and only if |�(�)| ≥ |�| for 

every � ⊆ �.   
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Theorem. (Hall) A bipartite graph with bipartition (�, �) has a 

complete matching from � to � if and only if |�(�)| ≥ |�| for 

every � ⊆ �.   

Proof  #1. Using Menger’s theorem   

⇒ already done 

⇐ If there exist |�| disjoint paths from � to �, then their edge-sets 

form a complete matching from � to �. Thus WMA ∄|�| disjoint 

�-� paths.  By Menger’s theorem ∃! ⊆ "(�) such that �\! has 

no �-� path and |!| < |�|.   

 

 

 

 

 

 

Let �: = � − !. Then �(�) ⊆ ! ∩ � and hence  

|�(�)| ≤ |! ∩ �| = |!| − |! ∩ �| < |�| − |! ∩ �| = |�|, 

a contradiction.                          □ 
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Proof  #2.  From first principles (⇐ only) 

Case 1.  |�(�)| > |�| for every ∅ ≠ � ⫋ �. 

Pick � ∈ � and a neighbor - of �.  

Apply induction to �\{-, �}. 

 

 

 

Case 2.  |�(�)| = |�| for some ∅ ≠ � ⫋ �.  

Let �. ≔ �/� ∪ �(�)1 

�2 ≔ �\(� ∪ �(�))  

 Apply induction to �. and �2. 

 

�. clearly satisfies the induction hypothesis.   

To see that �2 satisfies the induction hypothesis for 3 ⊆ � − �, 

look at �4(3 ∪ �). 

|�4(�)| + |�46
(3)| = |�4(� ∪ 3)| ≥ |� ∪ 3| = |�| + |3| 

and so7�46
(3)7 ≥ |3|, as desired.                               □ 
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Perfect matchings in (not necessarily bipartite) graphs 

An obstruction: 

 

 

Let 8(9): =  # of odd components of 9.   

If 8(�\!) > |!| for some !, then � has no perfect matching. 

 

Tutte’s 1-factor theorem (1947).  A graph � has a perfect 

matching if and only if 8(�\!) ≤ |!| for every ! ⊆ "(�). 
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Definition. Let � be a matching in �.  A cycle ; in � of length 

2= + 1 containing = edges of � is called an �-blossom.  Let �/; 

denote the graph obtained from � by contracting all edges of ; and 

deleting all loops and parallel edges. 

 

Lemma.  Let � be a matching in �, and let ; be an �-blossom 

in �.  Let �@ ≔ �/; and �@ ≔ � − A(;).  If � is a maximum 

matching in �, then �′ is a maximum matching in �′. 

Proof.  Suppose not. Then ∃�′-augmenting path C′ in �′.  We will 

exhibit an �-augmenting path in �.  Let D be the new vertex of �′.  
WMA D ∈ "(C@), for otherwise C′ is as desired. 

 

The vertex D divides C′ into C. and C2.  Let -, � be the ends of C′.  
WMA by symmetry that the edge of C2 incident with D is in �.   
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Then in � the path C2 becomes a path from � to the tip of the 

blossom, and C. becomes a path from - to the blossom.  Follow C. 

from - to -′ ∈ "(;), then follow ; along the even path from -′ to 

the tip, and then follow C2.  That gives an �-augmenting path in 

�.    □ 
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Definition. Let � be a matching in �, and let E ∈ "(�) be  

�-unsaturated.  An �-alternating tree rooted at E is a tree F 

such that 

(i) F is a subgraph of � 

(ii) E ∈ "(F) 

(iii) every path in F with end E is �-alternating 

(iv) if G ∈ � is incident with a vertex of F, then G ∈ A(F) 
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Given an �-alternating tree F let  

�(F): = {� ∈ "(F): � is at odd distance from E in T} 

�(F): = {� ∈ "(F): � is at even distance from E in T} 

 

Theorem.  Let � be a graph, let � be a maximum matching in �, 

let E ∈ "(�) be �-unsaturated, and let F be an �-alternating tree 

rooted at E. Then there exists a set ! ⊆ "(�) such that  

! ∩ "(F) ⊆ �(F) and 8(�\!) > |!|.   

 

Note that this implies Tutte’s theorem. 

  


