Nowhere-zero flows

Let D be a digraph, I' Abelian group. A I'-circulation in D is a
mapping f: E(D) — I’ such that

ffw) =f~(),
where f* (V) = Xees+ f(€), [T(v) = Yees- f(€) and
5t (X) = {e € E(D): tail in X head in V(D) — X}
0~ (X) ={e € E(D): tailin X headin V(D) — X}
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A nowhere-zero I'-flow is a I'-circulation such that f(e) # 0 for
every e € E(D). A nowhere-zero k-flow is a Z-circulation f such
that 0 < |f(e)| < k for every edge e. Compare to nowhere-zero
(NZ) Z-flow. These are properties of the underlying undirected
graph of D.

Thm. Let G be a plane graph. Then G has a NZ k-flow if and only
if G 1s face k-colorable.



Pf. < Color the faces using 1, ..., k. Let D be an orientation of G.

Define ¢(e) = c(f1) — c(f2).
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Then ¢p(e) # 0V e € E(D).

= Any integer-valued circulation in a plane graph is an integer
linear combination of “facial circulations”




Now let ¢ be a NZ k-flow. Then there exists a function
p:F(G) — Z such that

¢(e) = B(f1) — B(f2),

where f; is the face to the left of e and f, is the face to the right.
Define a(f) to be the residue class of S(f) (mod k). Then « is a k-
coloring of the faces.

Thm. Let D be a digraph. There 1s a polynomial P such that for
every Abelian group I" the number of NZ I'-flows in D is P(|I'|).

Proof. If D has no non-loop edge, then P(x) = (x — 1)IE(®)I,
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Otherwise pick a non-loop edge e, and let ¢p(D) be the # of NZ I'-
flows in D. Then

¢(D) = ¢p(D/e) — p(D\e)
Theorem follows by induction. O
Thm. A graph has Z,-flow if and only if it has a k-flow.
Pf. < easy.
= Let f: E(D) — Z be such that
(Hho<|f(e)]<kVeeE(D)



2) f*(v) = f~(w)(mod k)

Let D(f) = Yypevp) |f T (v) — f~(W)I, and choose f satisfying (1)
and (2) with D(f) minimum. WMA f(e) >0V e € E(D). Let

A={weVD):f*() > f~ )}
and

B={veVD):f*(v) <f~ )}
Claim. 7 directed A = B path.

Pf. O.w. decrease the flow by k along such path. If A = B = @,
then done, so WMA one is empty, and hence both are, because
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0=f*"(X)>f"(X), acontradiction. O

Corollary. For a graph G and a group I', the following are
equivalent:

(1) G is NZ I'-flow
(2) G has a NZ k-flow, where k = |I’|.

Corollary. A cubic graph has a NZ 4-flow if and only if it is 3-
edge-colorable.

Proof. NZ 4-flow & NZ Z, X Z,-flow & 3-edge-coloring using
the colors (0,1), (1,0), (1,1)

Thm. If G is plane, then G has a NZ k-flow if and only if G is k-
colorable

Corollary. The 4CT is equivalent to: Every 2-edge-connected cubic
planar graph 1s 3-edge-colorable.



Thm. A cubic graph has a NZ 3-flow < it is bipartite.

Pf. NZ 3-flow ©Z;-flow &3 orientation s.t. f = 11is a Z3-flow.
Since G cubic = sources vs. sinks 1s a bipartition. That proves =.

& Direct one way =Z5-flow O
3-flow conjecture. Every 4-edge-connected graph has a NZ 3-flow.

3-edge-coloring conjecture. Every 2-edge-connected cubic graph
with no Petersen minor is 3-edge-colorable (& NZ 4-flow).

4-flow conjecture. Every 2-edge-connected graph with no Petersen
minor has a NZ 4-flow.

This implies

Grotzsch conjecture. Let ¢ be a planar graph of max degree 3 with
no subgraph H s.t. H has all vertices of degree 3, except for exactly
one of degree 2. Then G 1s 3-edge-colorable.

Implies the 4CT.

S-flow conjecture. Every 2-edge-connected graph has a NZ 5S-flow.



