Nowhere-zero flows

Let *D* be a digraph, Γ Abelian group. A Γ -circulation in *D* is a mapping $f: E(D) \to \Gamma$ such that

$$f^+(v) = f^-(v),$$

where $f^+(v) = \sum_{e \in \delta^+} f(e), f^-(v) = \sum_{e \in \delta^-} f(e)$ and
 $\delta^+(X) = \{e \in E(D): \text{tail in } X, \text{ head in } V(D) - X\}$
 $\delta^-(X) = \{e \in E(D): \text{tail in } X, \text{ head in } V(D) - X\}$

A nowhere-zero Γ -flow is a Γ -circulation such that $f(e) \neq 0$ for every $e \in E(D)$. A nowhere-zero k-flow is a Z-circulation f such that 0 < |f(e)| < k for every edge e. Compare to nowhere-zero (NZ) Z_k -flow. These are properties of the underlying undirected graph of D.

Thm. Let *G* be a plane graph. Then *G* has a NZ *k*-flow if and only if *G* is face *k*-colorable.

Pf. \Leftarrow Color the faces using 1, ..., *k*. Let *D* be an orientation of *G*. Define $\phi(e) = c(f_1) - c(f_2)$.

Then $\phi(e) \neq 0 \forall e \in E(D)$.

⇒ Any integer-valued circulation in a plane graph is an integer linear combination of "facial circulations"

Now let ϕ be a NZ *k*-flow. Then there exists a function $\beta: F(G) \rightarrow \mathbb{Z}$ such that

$$\phi(e) = \beta(f_1) - \beta(f_2),$$

where f_1 is the face to the left of e and f_2 is the face to the right. Define $\alpha(f)$ to be the residue class of $\beta(f) \pmod{k}$. Then α is a k-coloring of the faces.

Thm. Let *D* be a digraph. There is a polynomial *P* such that for every Abelian group Γ the number of NZ Γ -flows in *D* is $P(|\Gamma|)$.

Proof. If *D* has no non-loop edge, then $P(x) = (x - 1)^{|E(D)|}$.

Otherwise pick a non-loop edge e, and let $\phi(D)$ be the # of NZ Γ -flows in D. Then

$$\phi(D) = \phi(D/e) - \phi(D \setminus e)$$

Theorem follows by induction.

Thm. A graph has \mathbb{Z}_k -flow if and only if it has a *k*-flow.

Pf. \Leftarrow easy.

 \Rightarrow Let $f: E(D) \rightarrow \mathbb{Z}$ be such that

 $(1) \ 0 < |f(e)| < k \ \forall \ e \in E(D)$

 $(2) f^+(v) \equiv f^-(v) \pmod{k}$

Let $D(f) \coloneqq \sum_{v \in V(D)} |f^+(v) - f^-(v)|$, and choose f satisfying (1) and (2) with D(f) minimum. WMA $f(e) > 0 \forall e \in E(D)$. Let

$$A = \{v \in V(D): f^+(v) > f^-(v)\}$$

and

$$B = \{ v \in V(D) : f^+(v) < f^-(v) \}$$

Claim. \nexists directed $A \rightarrow B$ path.

Pf. O.w. decrease the flow by *k* along such path. If $A = B = \emptyset$, then done, so WMA one is empty, and hence both are, because

$$\sum_{v \in V(D)} f^+(v) = \sum_{e \in E(D)} f(e) = \sum_{v \in V(D)} f^-(v)$$

By the claim $\exists X$ with $A \subseteq X$, $B \cap X = \emptyset$ and $\delta^+(X) = \emptyset$.

 $0 = f^+(X) > f^-(X), \text{ a contradiction.}$

Corollary. For a graph *G* and a group Γ , the following are equivalent:

(1) *G* is NZ Γ -flow

(2) *G* has a NZ *k*-flow, where $k = |\Gamma|$.

Corollary. A cubic graph has a NZ 4-flow if and only if it is 3-edge-colorable.

Proof. NZ 4-flow \Leftrightarrow NZ $Z_2 \times Z_2$ -flow \Leftrightarrow 3-edge-coloring using

the colors (0,1), (1,0), (1,1)

Thm. If *G* is plane, then *G* has a NZ *k*-flow if and only if G^* is *k*-colorable

Corollary. The 4CT is equivalent to: Every 2-edge-connected cubic planar graph is 3-edge-colorable.

Thm. A cubic graph has a NZ 3-flow \Leftrightarrow it is bipartite.

Pf. NZ 3-flow $\Leftrightarrow \mathbb{Z}_3$ -flow $\Leftrightarrow \exists$ orientation s.t. f = 1 is a \mathbb{Z}_3 -flow. Since *G* cubic \Rightarrow sources vs. sinks is a bipartition. That proves \Rightarrow .

 $\Leftarrow \qquad \text{Direct one way} \Rightarrow \mathbb{Z}_3 \text{-flow} \qquad \Box$

3-flow conjecture. Every 4-edge-connected graph has a NZ 3-flow.

3-edge-coloring conjecture. Every 2-edge-connected cubic graph with no Petersen minor is 3-edge-colorable (\Leftrightarrow NZ 4-flow).

4-flow conjecture. Every 2-edge-connected graph with no Petersen minor has a NZ 4-flow.

This implies

Grőtzsch conjecture. Let G be a planar graph of max degree 3 with no subgraph H s.t. H has all vertices of degree 3, except for exactly one of degree 2. Then G is 3-edge-colorable.

Implies the 4CT.

5-flow conjecture. Every 2-edge-connected graph has a NZ 5-flow.