
Nowhere-zero flows 

Let � be a digraph, � Abelian group. A Γ-circulation in � is a 

mapping �: ���� → � such that 

�	�
� � ���
�, 
where �	�
� � ∑ �����∈�� , ���
� � ∑ �����∈��  and  

�	��� � �� ∈ ����:	tail	in	X,	head	in	"��� # �$ 
����� � �� ∈ ����:	tail	in	X,	head	in	"��� # �$ 

 

A nowhere-zero Γ-flow is a Γ-circulation such that ���� % 0 for 

every � ∈ ����.  A nowhere-zero '-flow is a (-circulation � such 

that 0 ) |����| ) ' for every edge �.  Compare to nowhere-zero 

(NZ) (+-flow. These are properties of the underlying undirected 

graph of �. 

Thm.  Let , be a plane graph.  Then , has a NZ '-flow if and only 

if , is face '-colorable. 



Pf.  ⇐	Color	the	faces	using	1, … , '.		Let	�	be	an	orientation	of	,.		
Define	<��� � =��>� # =��?�.			

	
Then <��� % 0	∀	� ∈ ����.	

 

 

⇒	Any	integer-valued	circulation	in	a	plane	graph	is	an	integer	
linear	combination	of	“facial	circulations”	

	
	
	



Now	let	<	be	a	NZ		'-flow.		Then	there	exists	a	function	
O: P�,� → Q	such	that		

<��� � O��>� # O��?�, 
where �> is the face to the left of � and �? is the face to the right.  

Define R��� to be the residue class of O��� (mod '). Then R is a '-

coloring of the faces.   

Thm.  Let � be a digraph.  There is a polynomial S such that for 

every Abelian group Γ the number of NZ Γ-flows in � is S�|�|�. 
Proof.  If � has no non-loop edge, then S�T� � �T # 1�|U�V�|. 

 

Otherwise pick a non-loop edge �, and let <��� be the # of  NZ Γ-

flows in �.  Then 

<��� � <�� ��⁄ # <��\�� 
Theorem follows by induction.      □ 

Thm.  A graph has Q+-flow if and only if it has a '-flow. 

Pf.  ⇐ easy. 

⇒ Let �: ���� → Q be such that  

(1) 0 ) |����| ) '	∀	� ∈ ���� 



(2) �	�
� ≡ ���
��mod	'� 
Let ���� ≔ ∑ |�	�
� # ���
�|\∈]�V� , and choose � satisfying (1) 

and (2) with ���� minimum.  WMA ���� ^ 0	∀	� ∈ ����.  Let  

_ � �
 ∈ "���: �	�
� ^ ���
�$ 
and  

` � �
 ∈ "���: �	�
� ) ���
�$ 
Claim.  ∄ directed _ → ` path. 

Pf.  O.w. decrease the flow by ' along such path.  If _ � ` � ∅, 

then done, so WMA one is empty, and hence both are, because 
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By the claim ∃	� with _ ⊆ �, ` ∩ � � ∅ and �	��� � ∅. 
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0 � �	��� ^ �����, a contradiction.    □ 

Corollary.  For a graph , and a group Γ, the following are 

equivalent: 

(1) , is NZ Γ-flow 

(2) , has a NZ '-flow, where ' � |�|. 
Corollary.  A cubic graph has a NZ 4-flow if and only if it is 3-

edge-colorable. 

Proof.  NZ 4-flow ⇔ NZ (? × (?-flow ⇔ 3-edge-coloring using  

the colors �0,1�, �1,0�, �1,1� 
Thm. If , is plane, then , has a NZ '-flow if and only if ,∗ is '-

colorable 

Corollary.  The 4CT is equivalent to: Every 2-edge-connected cubic 

planar graph is 3-edge-colorable.  

  



Thm.  A cubic graph has a NZ 3-flow ⇔ it is bipartite. 

Pf.  NZ 3-flow ⇔Qn-flow	⇔∃	orientation s.t.	� � 1	is a	Qn-flow.  

Since	,	cubic	⇒	sources vs. sinks is a	bipartition. That proves	⇒.	
⇐	 	 	 	 Direct one way	⇒Qn-flow 	 	 □	
3-flow conjecture.  Every 4-edge-connected graph has a NZ 3-flow. 

3-edge-coloring conjecture.  Every 2-edge-connected cubic graph 

with no Petersen minor is 3-edge-colorable (⇔ NZ 4-flow).  

4-flow conjecture.  Every 2-edge-connected graph with no Petersen 

minor has a NZ 4-flow.   

This implies 

Grőtzsch conjecture.  Let , be a planar graph of max degree 3 with 

no subgraph p s.t. p has all vertices of degree 3, except for exactly 

one of degree 2.  Then , is 3-edge-colorable.   

Implies the 4CT. 

5-flow conjecture.  Every 2-edge-connected graph has a NZ 5-flow.   

 


