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ABSTRACT

The topic of planar graphs is covered in many books and articles, but the treatment
usually relies on intuition or on deep topological theorems that are quoted without
proof. I give a self-contained rigorous introduction to planar graphs.

1 The Jordan curve theorem and Euler’s formula

Throughout these notes graphs are allowed to have loops and multiple edges.

Definition 1.1. A polygonal arc is a set A ⊆ R
2 which is the union of finitely many straight line

segments and is homeomorphic to the interval [0, 1]. The images of 0 and 1 under the homeomor-
phism are called the ends of A. A polygon is a set B ⊆ R

2 which is the union of finitely many
straight line segments and is homeomorphic to the unit circle {(x, y) ∈ R

2 : x2 + y2 = 1}. By a
bend of a polygonal arc or a polygon P we mean a point of P where two different straight line
segments meet. Thus P has finitely many bends.

Definition 1.2. Let Ω ⊆ R
2 be an open set, and for x, y ∈ Ω let us define x ∼ y if there exists a

polygonal arc A ⊆ Ω with ends x and y. Then ∼ is an equivalence relation, and the equivalence
classes are called the arcwise connected components of Ω. If x ∼ y for any two x, y ∈ Ω, then
we say that Ω is arcwise connected. Now if F ⊆ R

2 is closed, we say that an arcwise connected
component of R

2 − F is a face of F .

Theorem 1.3 (Jordan curve theorem for polygons). Every polygon P has exactly two faces, of

which exactly one is bounded. The boundary of each of the two faces is P .

Proof. For x ∈ R
2 − P and a half-line L originating in x and containing no bends of P let π(x,L)

denote the number of intersections of L with P modulo 2. It is easy to check that this can be
extended to all half-lines originating in x in such a way that π(x,L) does not depend on L. Let
us call that value π(x). Furthermore, it follows that the function π is continuous, and hence is
constant on each arcwise connected component of R

2 −P . By choosing two points x1 and x2 close
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to each other, but on opposite sides of a straight-line segment of P we can show that π(x1) 6= π(x2).
Thus P has at least two faces.

Suppose now that P has at least three faces, and choose a point in each, say x1, x2, x3. Pick a
point x on the boundary of P inside a straight-line segment S of P . Pick a small open neighborhood
O of x such that O∩P = O ∩S. By shooting a half-line from each of x1, x2, x3 toward P and then
following the boundary of P until we hit O we see that each of x1, x2, x3 can be reached from a
point in O by a polygonal arc not intersecting P . But O − P has at most two arcwise connected
components, and hence P has at most two faces. It follows that every point of O ∩ S belongs to
the boundary of both faces of P , and since x was arbitrary, we deduce that the boundary of both
faces of P is P . We leave it as an exercise to show that exactly one of the faces is bounded.

Definition 1.4. A plane graph is graph G such that
(i) V (G) ⊆ R

2,
(ii) for every non-loop edge e ∈ E(G) with ends u and v there exists a polygonal arc A with

ends u and v such that e = A − {u, v} ⊆ R
2 − V (G),

(iii) for every loop e ∈ E(G) incident with u ∈ V (G) there exists a polygon P containing u such
that e = P − {u} ⊆ R

2 − V (G), and
(iv) if e, e′ ∈ E(G) are distinct, then e ∩ e′ = ∅.

Thus an edge of a plane graph is a subset of the plane that includes no vertices, not even its ends.
We define the point set of G to be the set

⋃
e∈E(G) e ∪ V (G), and by abusing notation we shall

denote this set also by G. Thus the faces of G are the arcwise connected components of R
2 − G.

The set of faces of a plane graph G will be denoted by F (G).

Definition 1.5. A graph G is planar if it is isomorphic to a plane graph Γ. We say that Γ is a
(planar) drawing of G.

Lemma 1.6. Let G be a plane graph, let e ∈ E(G), and let x1, x2 ∈ R
2 −G be two points such that

the straight line segment connecting them intersects e exactly once, and is otherwise disjoint from

G. Let fi be the face of G that includes xi. Then e is a subset of the boundary of both f1 and f2

and is disjoint from the boundary of every other face of G.

Proof. This follows by a similar argument as the second half of the proof of Theorem 1.3.

Corollary 1.7. If G is a plane graph and f ∈ F (G), then the boundary of f is the point set of a

subgraph of G. In particular, if the boundary of f includes a point belonging to an edge e ∈ E(G),
then it includes the entire edge e.

Definition 1.8. Let G, e, f1, f2 be as in Lemma 1.6. We will refer to f1 and f2 as the two faces
incident with e. Please note that f1 and f2 need not be distinct.

Lemma 1.9. Let G be a plane graph that is a forest. Then G has exactly one face.

Proof. Exercise. Use induction on the number of vertices plus the number of bends.

Lemma 1.10. Let G′ be a subgraph of a plane graph G. Then

(i) every face of G is a subset of a face of G′,

(ii) if f is a face of G and bd(f) ⊆ G′, then f is a face of G′, and

(iii) if f ′ ∈ F (G′) is disjoint from G, then f ′ ∈ F (G).

Proof. Statement (i) follows immediately: a face f of G is an arcwise-connected subset of R
2 − G,

and hence is a subset of an arcwise-connected component of R
2 − G′, that is, a face of G′.

To prove (ii) let f be a face of G. By (i) there exists a face f ′ of G′ such that f ⊆ f ′. If f = f ′,
then (ii) holds, and so we may assume that the inclusion is proper. Hence there exists a point
x′ ∈ f ′ − f . Let x ∈ f , and let A ⊆ f ′ be a polygonal arc with ends x, x′. Since A is not a subset
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of f , it intersects the boundary of f , say in a point z. But z ∈ f ′, and hence z 6∈ G′, contrary to
hypothesis. This proves (ii).

To prove (iii) let f ′ ∈ F (G′) be disjoint from G. Then f ′ is an arcwise connected subset of
R

2−G, and therefore is a subset of a face f of G. By (i) we have f ⊆ f ′, and hence f ′ = f ∈ F (G),
as desired.

Lemma 1.11. Let e be an edge of a plane graph G that belongs to a cycle of G, and let f1, f2 ∈ F (G)
be the two faces incident with e. Then f1 6= f2.

Proof. For i = 1, 2 the face fi is a subset of a face f ′

i of C, by Lemma 1.10(i). By Lemma 1.6 the
edge e is disjoint from the boundary of all faces of F (G) − {f1, f2}, and hence it is disjoint from
the boundary of all faces of F (C)−{f ′

1, f
′

2}. But the edge e belongs to the boundary of both faces
of C by Theorem 1.3, and hence f ′

1 6= f ′

2, implying that f1 6= f2, as desired.

Lemma 1.12. Let G be a plane graph, let e ∈ E(G), and let f1 and f2 be the two faces incident

with e. Let f12 denote the point set f1 ∪ e ∪ f2. Then f12 is a face of G\e and F (G) − {f1, f2} =
F (G\e) − {f12}.

Proof. To prove the first assertion we notice that f12 is arcwise connected, and hence is a subset of
a face f ′ of G\e. We may assume that f12 is a proper subset of f ′, for otherwise f12 ∈ F (G\e), as
desired. Thus there exists a polygonal arc A with ends x ∈ f12 and y ∈ f ′−f12 such that A ⊆ f ′. By
considering a proper subset of A we may assume that A∩e = ∅. Since y ∈ f ′−f12 ⊆ R

2−G−f1−f2

it follows that y belongs to a face of G other than f1 or f2, but then A connects points belonging
to different faces of G, and yet A ∩ G = ∅, a contradiction. Thus f12 ∈ F (G\e).

For the second assertion let f ∈ F (G)−{f1, f2}. Since f1, f2 are the only two faces of G incident
with e by Lemma 1.6, we deduce that bd(f) ⊆ G\e, and hence f ∈ F (G\e) by Lemma 1.10(ii).
Clearly f 6= f12. Conversely, let f ′ ∈ F (G\e) − {f12}. Then f ′ ∩ G = ∅, and hence f ′ ∈ F (G) by
Lemma 1.10(iii). Further, f ′ 6∈ {f1, f2}, because f1, f2 6∈ F (G\e).

Theorem 1.13 (Euler’s formula). Every connected plane simple graph G satisfies |V (G)|+|F (G)| =
|E(G)| + 2.

Proof. We proceed by induction on |E(G)|. If G has no cycles, then it is a tree, and the formula holds
by Lemma 1.9. Thus we may assume that G has a cycle C. Let e ∈ E(C), and let f1, f2 ∈ F (G) be
the two faces incident with e. Then f1 6= f2 by Lemma 1.11. The formula follows from Lemma 1.12
by induction applied to the graph G\e.

Corollary 1.14. Every simple planar graph G on n ≥ 3 vertices has at most 3n−6 edges. Moreover,

if G has no triangles, then it has at most 2n − 4 edges.

Proof. We may assume that G is connected, for an edge joining vertices in different components
of G may be added without violating planarity. Let q be the number edge-face incidences (e, f),
with the proviso that if f1 and f2 are the two faces incident with e and f1 = f2, then the incidence
(e, f1) = (e, f2) is counted twice. Then q = 2|E(G)|. On the other hand, since G has no loops
or parallel edges, each face contributes at least three toward q, and hence q ≥ 3|F (G)|. Thus
|F (G)| ≤ 2|E(G)|/3, and substituting this into Euler’s formula gives the the first inequality. The
second inequality follows similarly.

Corollary 1.15. The graphs K5 and K3,3 are not planar.

Proof. This follows immediately from Corollary 1.14.
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2 Kuratowski’s theorem

A subdivision of a graph H is a graph obtained from H replacing the edges of H by internally
disjoint paths of nonzero length with the same ends. An H subdivision in a graph G is a subgraph
of G isomorphic to a subdivision of H. From Corollary 1.15 we deduce

Corollary 2.1. No planar graph has a K5 or K3,3 subdivision.

The objective of this section is to prove Kuratowski’s theorem, the converse of Corollary 2.1.

Lemma 2.2. Let G be a plane graph consisting of two vertices and three internally disjoint paths

P1, P2, P3 joining them. Then G has precisely three faces with boundaries P1 ∪ P2, P2 ∪ P3 and

P1 ∪ P3, respectively.

Proof. The graph P1 ∪P2 has exactly two faces by Theorem 1.3; let f3 be the one disjoint from P3.
Let f1, f2 be defined similarly. Then f1, f2, f3 ∈ F (G) by Lemma 1.10(iii), and they are distinct,
because their boundaries are distinct. Conversely, let f be a face of G, and let x ∈ bd(f) − V (G).
From the symmetry we may assume that x belongs to the point set of P1. Now P1 is incident with
at most two faces of G by Lemma 1.6, and hence it is incident with f2, f3 and no other face of G.
Thus f = f2 or f = f3 as desired.

We need the following “ear-decomposition” theorem for 2-connected graphs.

Theorem 2.3. For every 2-connected graph G there exist subgraphs G0, G1, . . . , Gk such that

(i) G0 is a cycle,

(ii) for i = 1, 2, . . . , k the graph Gi is a path with both ends in G0 ∪G1 · · · ∪Gi−1 and otherwise

dijsoint from it, and

(iii) G = G0 ∪ G1 · · · ∪ Gk.

Theorem 2.4. The boundary of every face of a 2-connected plane graph is the point set of a cycle

of G.

Proof. We proceed by induction on |V (G)|. If G is a cycle, then the theorem follows from Theo-
rem 1.3. By Theorem 2.3 we may therefore assume that G has a 2-connected subgraph G′ such
that G is obtained from G′ by adding a path P with ends in G′ and otherwise disjoint from G′.

Let f ∈ F (G). Then f ⊆ f ′ for some face f ′ of G′. By induction the face f ′ is bounded by a
cycle C of G′. If the interior of P is not a subset of f ′, then f = f ′ by Lemma 1.10; thus C is the
boundary of f and the theorem holds. We may therefore assume that the interior of P is a subset
of f ′. Now bd(f) ⊆ f ′ ∩ G ⊆ C ∪ P , and hence f is a face of C ∪ P by Lemma 1.10(ii). Thus f is
bounded by a cycle by Lemma 2.2.

Definition 2.5. We say that a plane graph G is a straight line plane graph if each edge of G is a
straight line segment. We say that a straight line plane graph G is a convex plane graph if every
face of G is bounded by a convex polygon. Thus we can speak of a straight line drawing and convex

drawing of a planar graph.

Definition 2.6. We denote the graph obtained from a graph G by contracting the edge e by G/e.
A minor of a graph G is any graph obtained from a subgraph of G by contracting edges. An H
minor is a minor isomorphic to H.

Exercise 2.7. (i) If a graph G has an H subdivision, then it has an H minor.
(ii) If H has maximum degree at most three, then a graph G has an H subdivision if and only

it has an H minor.
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Exercise 2.8. Let H be a fixed graph. Prove that the following statements are equivalent:
(a) For any graph G, the graph G has an H minor if and only if it has an H subdivision.
(b) The graph H has maximum degree at most three.

Lemma 2.9. Every 3-connected graph G on at least five vertices has an edge e such that G/e is

3-connected.

Lemma 2.10. Every 3-connected simple graph with no K5 or K3,3 minor has a convex planar

drawing.

Corollary 2.11. Every 3-connected simple planar graph has a convex planar drawing.

Our next objective is to replace minors by subdivisions in the statement of Lemma 2.10. The
next lemma says that in the context of the presence of K5 or K3,3 the two are actually equivalent.

Lemma 2.12. A graph G has a K5 or K3,3 minor if and only if it has a K5 or K3,3 subdivision.

Lemma 2.10 cannot be extended to all graphs, but the weaker conclusion that G has a straight
line drawing can. It is possible to deduce that by decomposing graphs into smaller graphs along
cutsets of size at most two, but doing so carefully is not very pleasant. It seems preferable to take
a different route. The following purely combinatorial lemma will allow us to bypass these technical
difficulties.

Lemma 2.13. Let G be a graph on at least four vertices with no K5 or K3,3 subdivision, and assume

that adding an edge joining any pair of nonadjacent vertices creates a K5 or K3,3 subdivision. Then

G is 3-connected.

Proof. We proceed by induction on |V (G)|. The lemma clearly holds when G has exactly four
vertices, and so we may assume that |V (G)| ≥ 5. We leave proving that G is 2-connected as
an exercise. Suppose for a contradiction that G\u\v is disconnected for some two vertices u, v ∈
V (G). Then G can be written as G1 ∪ G2, where V (G1) − V (G2) 6= ∅ 6= V (G2) − V (G1) and
V (G1) ∩ V (G2) = {u, v}. It follows from the maximality of G that u, v are adjacent in G, and so
we may assume that they are adjacent in both G1 and G2. By induction each of G1, G2 is either
3-connected, or has at most three vertices. By Lemma 2.10 we may assume that G1, G2 are plane
graphs. For i ∈ {1, 2} let wi ∈ V (Gi) be such that u, v,wi belong to the boundary of some face of
Gi.

By hypothesis the graph G + w1w2 contains a K5 or K3,3 subdivision K. It follows that for
some i ∈ {1, 2} all except possibly one branch-vertex of K belong to Gi. From the symmetry we
may assume that i = 1. Since G1 has no K5 or K3,3 subdivision and u, v are adjacent in G1 we
deduce that some branch-vertex x of K belongs to G2. But x is separated from the other branch-
vertices of K by the 3-element set {u, v,w1}, and hence K is isomorphic to K3,3. It also follows
that if in G we identify all vertices of V (G2) − V (G1) into a single vertex, the new graph is also a
counterexample to the lemma. Thus it follows by induction that G is equal to this graph; in other
words, G2 is a triangle with vertices u, v, w2. But now it follows that G+ w1w2 is planar, contrary
to Corollary 2.1.

Theorem 2.14. For a graph G the following conditions are equivalent:

(1) G is planar,

(2) G has a straight line planar drawing,

(3) G has no K5 or K3,3 minor,

(4) G has no K5 or K3,3 subdivision.
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Proof. Statements (3) and (4) are equivalent by Lemma 2.12. (2) ⇒ (1) is trivial and (1) ⇒ (4)
follows from Corollary 2.1. To prove (3) ⇒ (2) let G have no K5 or K3,3 minor. By adding
edges to G we may assume that it is edge-maximal in the sense that it satisfies the hypotheses
of Lemma 2.13. By that lemma G is 3-connected, and hence it has a straight line drawing by
Lemma 2.10.

Exercise 2.15. Let G be a 3-connected simple graph not isomorphic to K5. Then G is planar if
and only if it has no K3,3 subdivision.

3 Uniqueness of planar drawings

Definition 3.1. A cycle C in a graph G is called peripheral if it is induced and G\V (C) has at
most one component.

Theorem 3.2. Let G be a 3-connected simple plane graph, and let C be a subgraph of G. Then C
bounds a face in G if and only if C is a peripheral cycle.

Proof. If C is a peripheral cycle, then by Theorem 1.3 one of the faces of C, say f , is disjoint from
G, and its boundary is C. By Lemma 1.10 the face f is a face of G, and hence C bounds a face of
G, as desired.

Conversely, let C be the boundary of a face f ∈ F (G). Then C is a cycle of Theorem 2.4.
Suppose first that some edge e ∈ E(G) − E(C) has both its ends, say u, v, on C. Since G is
simple the graph C\u\v consists of two components, and since G is 3-connected, there is a path
P in G\u\v joining those two components. Let x, y be the ends of P . We may assume that P
is otherwise disjoint from C. By adding a new vertex into the face f and joining it to x, y, u, v
we obtain a planar drawing of a subdivision of K5, contrary to Lemma 2.1. This proves that C is
induced.

Thus we may assume for a contradiction that G\V (C) has at least two components. Let
a, b ∈ V (G) − V (C) belong to different components of G\V (C). By Menger’s theorem there exist
three internally disjoint paths P1, P2, P3 between a and b. It follows that each of P1, P2, P3 uses
a vertex of C; let ci ∈ V (Pi) ∩ V (C). The plane graph obtained from G by inserting a new vertex
into the face f and joining it to c1, c2, c3 has a K3,3 subdivision, contrary to Lemma 2.1.
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