WEEK 12 PROBLEMS Math 6014A

1. A tournament is a directed graph T such that for every two distinct vertices $u, v \in V(T)$, T contains exactly one of the directed edges (u, v), (v, u). (This corresponds to the results of a tournament: $(u, v) \in E(T)$ means u beat v, whereas $(v, u) \in E(T)$ means v beat u.) Prove that there is a tournament T on n vertices with at least $n!2^{1-n}$ (directed) Hamiltonian paths.

Hint. Consider a random tournament on n vertices.

2. Let G be a simple graph with n vertices and m edges. Prove that G contains a bipartite subgraph with at least m/2 edges.

Hint. Consider a random partition of V(G) into two sets.

3. Let $0 and <math>\epsilon > 0$ be fixed. Prove that almost every graph in $\mathcal{G}(n, p)$ has at least $(p - \epsilon)n^2/2$ edges and at most $(p + \epsilon)n^2/2$ edges.

4. Let $p = c(\log n)/n$. Prove that if c > 1 then a.e. graph in $\mathcal{G}(n, p)$ has no isolated vertices, and that if c < 1 then a.e. graph in $\mathcal{G}(n, p)$ has an isolated vertex.

5. Hajós conjectured that every graph with no K_t subdivision is (t-1)-colorable. Prove that almost every graph in $\mathcal{G}(n, 1/2)$ is a counterexample to the conjecture.

6. Let $f(d) = \binom{n}{d} 2^{-\binom{d}{2}}$. Prove that for $d \ge \log_2 n$ this function is decreasing, and deduce that there exists an integer $d_0 = d_0(n)$ such that $f(d_0) \ge 1 > f(d_0 + 1)$. Prove that there exists a constant c such that $2\log_2 n - c\log\log n \le d_0 \le 2\log_2 n + 1$.